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        Risk importance measures are indexes that are used 
to rank systems, structures and components (SSCs) using 
risk-informed methods. The most used/known measures 
are: Risk Reduction Worth (RRW), Risk Achievement 
Worth (RAW), Birnbaum (B) and Fussell-Vesely (FV). 
Once obtained from classical Probabilistic Risk Analysis 
(PRA) analyses, these risk measures can be effectively 
employed to optimize component testing and 
maintenance. In contrast to classical PRA methods, 
Dynamic PRA methods couple stochastic methods with 
safety analysis codes to determine risk associate to 
complex systems such as nuclear plants. Compared to 
classical PRA methods, they can evaluate with higher 
resolution the safety impact of timing and sequencing of 
events on the accident progression. The objective of this 
paper is to present a series of algorithms that can be used 
to determine classical risk importance measures (RRW, 
RAW, B and FV) along with newly developed ones from a 
Dynamic PRA analysis.  
 
 
  
I. INTRODUCTION 

 
Risk Importance Measures (RIMs) [1] are indexes 

that are used to rank systems, structures and components 
(SSCs) based on their contribution to the overall risk. The 
most used measures [2] are:  
• Risk Reduction Worth (RRW), 
• Risk Achievement Worth (RAW), 
• Birnbaum (B), and,  
• Fussell-Vesely (FV).  

Typically, this ranking is performed in a classical 
PRA framework, where risk is determined by considering 
probability associated to the minimal cut-sets generated 
by static logic structures [3] (e.g., Event-Trees, Fault-
Trees). In a classical PRA analysis, each SSC is 
represented by a set of basic events; as an example 
emergency diesel generators can be represented by two 

basic events: failure to start and failure to run. The risk 
measures associated to each basic event are calculated 
from the generated cut-sets by determining:  
• The nominal risk  
• The increased risk assuming basic event failed  
• The reduced risk assuming basic event perfectly 

reliable  
In this context, the Nuclear Regulatory Commission 

(NRC) has issued the 10CFR50.69 document [4,5] 
designed to guide plant owners to perform a risk-informed 
categorization and treatment of SSCs in order to reduce 
operating and maintenance costs while preserving 
acceptable risk levels. The described categorization is 
based on a set of risk importance measures obtained from 
the plant classic PRA models. 

In contrast to classical PRA methods, Dynamic PRA 
methods [6] couple stochastic methods (e.g., RAVEN [7], 
ADAPT [8], ADS [9], MCDET [10]) with safety analysis 
codes (RELAP5-3D [11], MELCOR [12], MAAP [13]) to 
determine risk associate to complex systems such as 
nuclear plants. Accident progression is thus determined 
by the simulation code and not set a-priori by the user. 
The advantage of this approach, compared to classical 
PRA methods, is that a higher fidelity of the results can be 
achieved since: 
• No assumption of timing/sequencing of events is 

set by the user but dictated by the accident 
evolution 

• No success criteria are defined but instead, the 
simulation stops if either a fail or a success state 
are reached 

• There is no need to compute convolution integrals 
in order to specify probability of basic events that 
temporally depends from other basic events. 

The scope of this paper is to present a method to 
determine classical RIMs from Dynamic PRA data. Few 
test cases will be presented in order to show how the 
calculation is performed. In addition, new margin-centric 



RIMs that better capture the continuous aspect of a 
Dynamic PRA approach will be presented. 
 
II. CLASSICAL RIMs IN CLASSICAL PRA 

 
In classical PRA methods, for any basic event, the 

most used RIMs measures are: Risk Achievement Worth 
(RAW), Risk Reduction Worth (RRW), Birnbaum (B) 
and Fussell-Vesely (FV) [2]. All these RIMs are 
calculated by determining three values based on core 
damage frequency (CDF): 
• 𝑅!: nominal CDF 
• 𝑅!! : CDF for basic event 𝑖  assuming perfectly 

reliable 
• 𝑅!!: CDF for basic event 𝑖 assuming it has failed 

Once these three values are determined, then the RIMs are 
calculated [2] as follows for each basic event 𝑖: 

𝑅𝐴𝑊! =
𝑅!!

𝑅!
   (1) 

𝑅𝑅𝑊! =
𝑅!
𝑅!!
   (2) 

𝐵! = 𝑅!! − 𝑅!!   (3) 

𝐹𝑉! =
𝑅! − 𝑅!!

𝑅!
   (4) 

Note the four RIMs listed above is not exhaustive: in 
literature it is possible to find additional RIMs such as the  
Differential Importance Measure (DIM) [14]. Since, the 
scope of this paper is tight to risk-informed application of 
10CFR50.69, we will focus this paper only on the four 
RIMs listed above. 

 
III. DYNAMIC PRA: THE RISMC APPROACH 

 
The RISMC PRA approach [15] is based on several 

Dynamic PRA methods in which the deterministic and 
stochastic modeling are merged in a single analysis 
framework (see Figure 1). In the deterministic model we 
include: 
• Modeling of the thermal-hydraulic behavior of the 

plant [16] 
• Modeling of external events such as flooding [17] 
• Modeling of the operators responses to the accident 

scenario [18] 
Note that deterministic modeling of the plant or 

external events can be performed by employing specific 
simulator codes but also surrogate models [19], known as 
reduced order models (ROM). ROMs would be employed 
in order to decrease the high computational costs of 
employed codes.  

In addition, multi-fidelity codes can be employed to 
model the same system; the idea is to switch from low-
fidelity to high-fidelity code when higher accuracy is 
needed (e.g., use low-fidelity codes for steady-state 
conditions and high-fidelity code for transient conditions) 

In the stochastic modeling we include all stochastic 
parameters that are of interest in the PRA analysis such 
as: 
• Uncertain parameters 
• Stochastic failure of system/components 

 

 
Figure 1. RISMC approach. 

As mentioned earlier, Dynamic PRA methods heavily 
rely on multi-physics system simulator codes (e.g., 
RELAP5-3D [11]) coupled with stochastic analysis tools 
(e.g., RAVEN [7]).  Each simulation run can be described 
by using two sets of variables: 
• 𝒄 = 𝒄(𝑡) represents the status of components and 

systems of the simulator (e.g., status of emergency 
core cooling system, AC system) 

• 𝜽 = 𝜽(𝑡) represents the temporal evolution of a 
simulated accident scenario, i.e., 𝜽(𝑡) represents a 
single simulation run. Each element of 𝜽 can be for 
example the values of temperature or pressure in a 
specific node of the simulator nodalization. 

From a mathematical point of view, a single 
simulator run can be represented as a single trajectory in 
the phase space. The evolution of such a trajectory in the 
phase space can be described as follows: 

𝜕𝜽 𝑡
𝜕𝑡

=𝓗 𝜽, 𝒔, 𝒄, 𝑡

𝜕𝒄 𝑡
𝜕𝑡

= 𝓒 𝜽, 𝒔, 𝒄, 𝑡
 (5) 

where: 
• 𝓗 is the actual simulator code that describes how 

𝜽 evolves in time 
• 𝓒 is the operator which describes how 𝒄 evolves in 

time , i.e., the status of components and systems at 
each time step 

• 𝐬  is the set of N stochastic parameters 𝑠!   (𝑖 =
1,… , 𝑆) . 

Starting from the system located in an initial state, 
𝜽 𝑡 = 0 = 𝜽(0), and the set of stochastic parameters 
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(which are generally generated through a stochastic 
sampling process), the simulator determine at each time 
step the temporal evolution of 𝜽(𝑡). At the same time, the 
system control logic1 determines the status of the system 
and components 𝒄(𝑡). The coupling between these two 
sets of variables is shown in Figure 2. 

 

 
Figure 2. Relationship between simulator phisics code 

(H) and control logic (C). 

A typical dynamic PRA analysis is performed by: 
1. Associating a probabilistic distribution function 

(pdf) to the set of stochastic parameters 𝒔 (e.g., 
timing of events) 

2. Performing stochastic sampling of the pdfs defined 
in Step 1 

3. Performing a simulation run given 𝒔 sampled in 
Step 2, i.e., solve the system of equations (1) 

4. Repeating Steps 2 and 3 M times and evaluating 
user defined stochastic parameters such as core 
damage (CD) probability (𝑃!"). 

 
IV. CLASSICAL RIMs IN A DYNAMIC PRA 
CONTEXT 

 
In a Dynamic PRA environment, 𝑅! is obtained (e.g., 

through Monte-Carlo sampling) by: 
• Running 𝑁 simulation (e.g., RELAP5 runs) 
• Counting the number 𝑁!" of simulations that lead 

to core damage (CD) condition 
• Calculating 𝑅! =   

!!"
!

 
Note that while basic events in classical PRA are mainly 
Boolean, in a Dynamic PRA environment the sample 
parameters can be, not only Boolean, but more often 
continuous. As an example, let consider two basic events: 

1. Emergency Diesel Generator (EDG) failure to start, 
and,  

2. EDG failure to run 
In classical PRA analyses, a probability value is 

associated to each basic event. On the other side, in a 
Dynamic PRA framework, a Bernoulli distribution could 
be associated to the first basic event and a continuous 
distribution (e.g., exponential distribution) could be 
associated to the second basic event.  

                                                
1 Which is usually integral part of the system simulator 

At this point a challenge arises: the determination of 
𝑅!!  and 𝑅!!  for each sampled parameter; two possible 
approaches can be followed2: 

1. Perform a Dynamic PRA for 𝑅! and each 𝑅!! and 
𝑅!! 

2. Determine an approximated value of 𝑅!!  and 𝑅!! 
from the simulation runs generated to calculate 𝑅! 

Regarding Approach 1, given the computational costs 
of each Dynamic PRA, it is unfeasible to determine 𝑅!! 
and 𝑅!!  for each sampled parameter. In fact, if we 
consider 𝑀 sample parameters (i.e., S basic events), then 
the risk importance analysis would require 2𝑆 + 1 
Dynamic PRA analyses.  

Regarding Approach 2, a method (implemented in 
RAVEN as an internal post-processor) was developed and 
it is here presented. This method requires an input from 
the user: 
• Range, 𝐼!!, of the variable 𝑠! that can be associated 

to “basic event with component perfectly reliable” 
• Range, 𝐼!!, of the variable 𝑠! that can be associated 

to “basic event in a failed status” 
Given this kind of information, it is possible to calculate 
𝑅!! and 𝑅!! as follows3: 

𝑅! =   
𝑁!"
𝑁

 (6) 

𝑅!! =
𝑁!",!!∈!!!

𝑁
 (7) 

𝑅!! =
𝑁!",!!∈!!!

𝑁
 (8) 

Note that this approach has an issue related to the choices 
of 𝐼!!  and 𝐼!! . Depending on their values, 𝑅!!  and 𝑅!! 
might change accordingly. In addition, the statistical error 
associated to the estimates of 𝑅!! and 𝑅!! also changes.  

An example is shown in Figure 1 for both cases 
(discrete and continuous) of a basic event 𝑥! represented 
as a stochastic variable which is sampled (e.g., through a 
Monte-Carlo process) for each simulation run. 

Lets consider the continuous case and assume 𝑠! 
correspond to the basic event “EDG failure to run”. The 
user might impose the following in order to determine 𝑅!! 
and 𝑅!!: 
• 𝐼!! = 𝑇!!,∞  where 𝑇!!  may be set equal to the 

simulation mission time (e.g., 24 hours). This 
implies that a sampled value for EDG failure to run 
greater than 24 hours implies that the EDG actually 
does not fail to run (reliability equal to 1.0) 

                                                
2 A possible approach would be to develop a new sampling strategy 

designed ad-hoc to maximize the amount of data that can be generated 
to determine more reliable values of 𝑅!! and 𝑅!!. However, research of 
effective algorithms is still under way. 

3 It is here indicated: 
• 𝑁!",!!∈!!

!  as the number of simulations leading to core damage and 
with parameter 𝑠! ∈ 𝐼!!  

• 𝑁!",!!∈!!!  the number of simulations leading to core damage and 
with parameter𝑠! ∈ 𝐼!! 

Θ(t) 
c(t) 

H

C

Θ(0) 
s 



• 𝐼!! = 0,𝑇!!  where 𝑇!! may be set to an arbitrary 
small value (e.g., 5 min). This implies that a 
sampled value for EDG failure to run smaller than 
5 min implies a reliability equal to 0.0 

Note that while the definition of 𝐼!!  is perfectly 
reasonable, one would argue that a smaller interval should 
be chosen for 𝐼!! (e.g., 30 seconds or less).  

Recall that ideally, a value of 𝑠! = 0.0  should be 
theoretically chosen (and not an interval); however, given 
the nature of the distribution this is not allowed. Given the 
nature of the problem, we are bound to choose an interval 
𝐼!!: 
• A small interval in the neighbor of 𝑠! = 0.0 would 

lead to a value of 𝑅!! close to the theoretical one. 
However, the number of actual sampled values 
falling in 𝐼!!  would be very small, i.e., large 
stochastic error. 

• A large interval in the neighbor of 𝑠! = 0.0 would 
lead to a value of 𝑅!! far from the theoretical one. 
However, the number of actual sampled values 
falling in 𝐼!!  would be very high, i.e., small 
stochastic error. 

A solution to the large statistical error associated to a 
very small interval 𝐼!!  can be solved by employing 
different sampling algorithms other than the classical 
Monte-Carlo one.  
 

 
Figure 3. Treatment of discrete (top) and continuous  
(bottom) stochastic variables for reliability purposes. 

As an example, a better resolution of the final value 
for 𝑅!! can be achieved by sampling uniformly the range 

of variability of 𝑥! and associate an importance weight to 
each sample. At this point the counting variable 𝑁!" is 
weighted by the weight of each sample. By sampling 
uniformly the range of variability of 𝑥!, the number of 
samples in the interval 𝐼!! would be significantly higher. 

 
V. EXAMPLES 

 
In this section we presented three examples that will 

help the reader to understand how this method can be 
applied to fairly common cases. 

 
I.A. Example I 
 
The first example is shown in Figure 4: it consists of 3 
components arranged in a series/parallel configuration. In 
this case the following probabilities of failures (on-
demand) are provided: 
• 𝑝! = 1.0  10!! 
• 𝑝! = 5.0  10!! 
• 𝑝! = 1.0  10!! 

From a dynamic PRA point of view the analysis of this 
system is performed as follows: 

1. Define 3 stochastic parameters (i.e., 𝑆 = 3): 
a. 𝑠!: status of component A 
b. 𝑠!: status of component B 
c. 𝑠!: status of component C 

2. Assign a distribution to each stochastic parameter; 
in this case a Bernoulli distribution4  

3. Define 𝐼!! and 𝐼!! for each distribution: in this case 
we have chosen5 𝐼!! = [0.0,0.1] and 𝐼!! = [1.0,1.1]  

4. Generate N samples, for example by Monte-Carlo 
sampling6 

3. Determine 𝑅!, 𝑅!! and 𝑅!! for each component  
5. Determine the desired RIMs for each component 

 

 
Figure 4. System for Example I and II. 

Note that a Monte-Carlo sampling is not the best 
sampling strategy in terms of computational costs. This is 
                                                
4  It is here assumed this distribution is defined over two possible 

outcomes: 0 (component operating) with probability 1-p, and, 1 
(component failed) with probability p. 

5 Note that the intervals 𝐼!! and 𝐼!! chosen are including the two possible 
outcomes of the Bernoulli distribution. 

6 In this case the simulator returns 1 (system failure) if 𝑠! = 1 or if 
𝑠! = 𝑠! = 1 and it returns 0 otherwise. 
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even more relevant if the value of 𝑝! , 𝑝!  or 𝑝!  were 
several order of magnitude lower.  

A more effective sampling strategy would be the 
Grid sampling: the stochastic variables are sampled over a 
fixed Cartesian grid and a probability weight is associated 
to each sample.  

In this case, each stochastic variable 𝑠!  is sampled 
over two values, 0.0 and 1.0, and the probability weights 
𝑤!! and 𝑤!! values associated to each sample coordinate 
are: 
• 𝑠! = 0.0: 𝑤!! = 𝑝𝑟𝑜𝑏 𝑠! ∈ −∞, 0.5  
• 𝑠! = 1.0: 𝑤!! = 𝑝𝑟𝑜𝑏(𝑠! ∈ [0.5,+∞]) 

Following this grid sampling strategy, only 2! = 8 are 
needed. 

Below, the FV importance for all three components 
obtained by RAVEN (using a Grid sampling strategy) are 
shown compared with the analytical ones. 
 

Table 1. Results obtained for Example I. 

 Analytical RAVEN 
𝐹𝑉! 0.6656 0.6656 
𝐹𝑉! 0.3311 0.3311 
𝐹𝑉!  0.3311 0.3311 

 
I.B. Example II 
 

The second example is similar to Example I but with 
different reliability data: a failure rate is provided for each 
component (mission time: 24 hours):  

• 𝜆! = 1.0  10!!  ℎ𝑟!! 
• 𝜆! = 5.0  10!!ℎ𝑟!! 
• 𝜆! = 1.0  10!!ℎ𝑟!! 
Thus it is assumed that failure probability of each 

component is exponentially distributed: sampled value 𝒔𝒊 
from its own distribution is failure time of each 
component7 (𝒕𝑨, 𝒕𝑩 and 𝒕𝑪). 

In this case, 𝐼!! and 𝐼!! can be defined as follows: 
• 𝐼!! = [24.0,+∞] : component is considered 

perfectly reliable if the failure time is greater than 
the mission time 

• 𝐼!! = [0.0,1.0]: component is considered unreliable 
if the failure time occurs within the first hour 

As shown for Example I, a Grid sampling strategy has 
been employed. Table 2 shows the FV importance for all 
three components obtained by RAVEN (using a Grid 
sampling strategy) compared with the analytical ones. 
 
 

                                                
7 In this case the simulator returns 1 (system failure) if at a certain time 
𝑡 ∈ [0,24] component A has failed or if both components B and C have 
failed. 

Table 2. Results obtained for Example II. 

 Analytical RAVEN 
𝐹𝑉! 0.48957 0.48957 
𝐹𝑉! 0.4983 0.4983 
𝐹𝑉!  0.4983 0.4983 

 
I.C. Example III 
 

The third example considers a simplified ECCS 
model (see Figure 5) for a Pressurized Water Reactor 
(PWR). It consists of the following components and for a 
subset of them a value of mean time to failure (MTTF) is 
provided: 
• Motor-operate valve M (MTTF = 24 h) 
• Two redundant pumps, pump1 and pump2 (MTTF 

= 12 h) 
• Heat exchanger HX (reliability = 1.0) 

Pump1 is normally used while pump2 is on standby. 
If Pump1 fails then pump2 provide water flow. Pump2 
cannot fail while in standby. Switch from pump1 to 
pump2 is perfectly reliable. The cooling is such that it 
takes 2 hours to reach vessel failure condition if the M-
pump1-pump2 system has failed. Top event is: 
overheating of the vessel. Mission time is again equal to 
24 hours. 

 
Figure 5. System for Example III. 

Failure of the system occurs when temperature 
insider the core reaches a limit temperature. Note that the 
configuration is slightly different from the one presented 
in the first two examples (here a stand-by configuration is 
introduced) but also the condition of system failure is 
dictated by the dynamic behavior of the PWR.  The 
system is designed such that a late failure of the ECCS 
may not lead to system failure (i.e., natural circulation is 
providing enough cooling). In other words, the ECCS is 
vital especially in the hours right after a reactor scram. 

Note in this case classical PRA methods require few 
model simplifications in order to correctly determine 
system reliability. 

In contrast, a dynamic PRA analysis follows the same 
steps presented for the first two examples; the only 

M

valve& pump1&

pump2&

HX&



difference is represented by the simulator that is actually 
employed. 
Below are shown the FV importance for all three 
components obtained by RAVEN (using a Monte-Carlo 
sampling strategy) compared with the analytical ones. 
 

Table 3. Results obtained for Example III. 

 RAVEN 
𝐹𝑉!"#!! 0.25893 
𝐹𝑉!"#!! 0.25893 
𝐹𝑉!"#!$ 0.30331 

 
 

VI. NEW SET OF RIMs IN A DYNAMIC PRA 
CONTEXT 
 

Note that the RIMs described so far are tight to a 
binary logic of the outcome variable (e.g., OK vs. CD). 
Dynamic PRA approaches typically generate a continuous 
value of the outcome variables (e.g., peak clad 
temperature - PCT). In our application (see previous 
sections) we typically convert PCT to a discrete one as 
follows: 

• 𝑃𝐶𝑇 > 2200  𝐹: outcome  = CD 
• 𝑃𝐶𝑇 < 2200  𝐹: outcome  = OK 
Given the different structure of the approach used in 

this paper to solve a PRA problem (i.e., Dynamic instead 
of classical PRA), the reader might think that a different 
set of RIMs should/could be developed in order to capture 
the nature of the problem solved using Dynamic PRA. 

As a starting point, it would worth investigating the 
nominal probabilistic distribution (pdf) of PCT with the 
one obtained when reliability of each basic event 
(sampled parameter) is 0.0 or 1.0. So now we can 
indicate: 

1. 𝑝𝑑𝑓!(𝑇): nominal pdf of PCT 
2. 𝑝𝑑𝑓!!(𝑇): pdf of PCT associated to basic event 𝑖 

assuming basic event is perfectly reliable 
3. 𝑝𝑑𝑓!!(𝑇): pdf of PCT associated to basic event 𝑖 

assuming basic event has failed 
An example is shown below for a hypothetical case 

where obtained 𝑝𝑑𝑓!(𝑇) is indicated using an histogram 
while the limit value for PCT is shown using the red line 
passing at 2200 F. 

In order to make a connection to what has been 
presented in the previous section, note that by looking at 
Figure 6: 

𝑅! =    𝑝𝑑𝑓! 𝑇   𝑑𝑇
!

!!""

 (9) 

As part of the RISMC analysis, the user might want 
to supplement the results obtained in the previous section 
with the information associated to a more effective 
margin analysis. 

In particular, of interest for RISMC applications is 
(see Figure 7) the concept of margin: 

 
𝑚𝑎𝑟𝑔𝑖𝑛 =   2200 − 𝑃𝐶𝑇 given (𝑃𝐶𝑇 < 2200) 

 
Figure 6. Plot of a hypothetical 𝒑𝒅𝒇𝒐(𝑻) 

Using the same philosophy indicated in the previous 
section for classical RIMs, we want to determine: 

1. 𝑚𝑎𝑟𝑔𝑖𝑛!: pdf of the variable  2200 − 𝑃𝐶𝑇 given 
that 𝑃𝐶𝑇 < 2200 

2. 𝑚𝑎𝑟𝑔𝑖𝑛!!: pdf of the variable  2200 − 𝑃𝐶𝑇 given 
that 𝑃𝐶𝑇 < 2200 for basic event 𝑖 assuming it is 
perfectly reliable 

3. 𝑚𝑎𝑟𝑔𝑖𝑛!!: pdf of the variable  2200 − 𝑃𝐶𝑇 given 
that 𝑃𝐶𝑇 < 2200  for basic event 𝑖  when its 
assumed to be failed 

 
Figure 7. Plot of 𝒎𝒂𝒓𝒈𝒊𝒏𝒐 for the case shown in 

Figure 2 

Note now that 𝑚𝑎𝑟𝑔𝑖𝑛!, 𝑚𝑎𝑟𝑔𝑖𝑛!! and 𝑚𝑎𝑟𝑔𝑖𝑛!! are 
now pdfs and not numerical values. Hence, now the 
challenge arises on how to compare two pdfs: 
• 𝑚𝑎𝑟𝑔𝑖𝑛! vs. 𝑚𝑎𝑟𝑔𝑖𝑛!! 
• 𝑚𝑎𝑟𝑔𝑖𝑛! vs. 𝑚𝑎𝑟𝑔𝑖𝑛!! 



 
Assume two pdfs are given: 𝑝𝑑𝑓!(𝑥) and 𝑝𝑑𝑓!(𝑥). 

Few approaches can be followed: 
1. Z-test  
2. Kolmogorov–Smirnov test  

In the first approach (Z-test), the following variable 𝑍 
is computed: 

𝑍!,! =
𝑚𝑒𝑎𝑛 𝑝𝑑𝑓! −𝑚𝑒𝑎𝑛 𝑝𝑑𝑓!

𝑠𝑡𝑑_𝑑𝑒𝑣! 𝑝𝑑𝑓! − 𝑠𝑡𝑑_𝑑𝑒𝑣! 𝑝𝑑𝑓!
 (10) 

where: 
• 𝑚𝑒𝑎𝑛 𝑝𝑑𝑓  correspond to the mean of 𝑝𝑑𝑓(𝑥)  
• 𝑠𝑡𝑑_𝑑𝑒𝑣 𝑝𝑑𝑓  correspond to the standard 

deviation of 𝑝𝑑𝑓(𝑥)  
In the second approach (Kolmogorov–Smirnov test 

[20]), instead of the pdf, the cumulative distribution 
functions (pdf) are considered: 𝑐𝑑𝑓!(𝑥) and 𝑐𝑑𝑓!(𝑥). In 
particular, the Kolmogorov-Smirnov statistic is calculated 
as: 

𝐾𝑆!,! = sup
!

𝑐𝑑𝑓! 𝑥 − 𝑐𝑑𝑓!(𝑥)  (11) 
Note that so far we have imposed clad failure 

temperature (CFT) to be a fixed value, i.e., 2200 F. In 
many RISMC applications CFT is no longer a numerical 
value but it can be un uncertain parameter, i.e., a pdf is 
associated to CDF: pdf(T). This link goes back to the 
original logo of RISMC where a pdf for “load” and 
“capacity” (see Figure 4). 

A new definition of margin can be then defined: 
 

𝑚𝑎𝑟𝑔𝑖𝑛 = CFT − PCT   𝑔𝑖𝑣𝑒𝑛  (CFT − PCT > 0) 
 
From here, once the pdf associated to the margin variable 
is determined it is possible to employ either the Z-tests or 
the Kolmogorov–Smirnov test in order to measure how 
this pdf changes when each basic event is considered 
perfectly reliable or failed.  

 
Figure 8. Plot of the pdfs for PCT (green) and CFT 

(red). 

 

VII. CONCLUSIONS 
       
This paper has presented a mathematical framework for 
determining risk importance measures in a simulation 
based, i.e. dynamic, PRA framework. We have shown 
how classical measures can be derived and we have 
provided few explanatory examples. We have also 
indicated how the data generation method is extremely 
important to maximize the amount of information 
generated by each simulation run. Lastly we have 
presented an additional set of risk importance measures 
that are not bounded by a Boolean logic but explore the 
continuity of the problem. The advantage of these 
measures is that they capture the idea of “safety margin” 

 
Figure 9. Plot of the pdf of the variable 𝐂𝐅𝐓 − 𝐏𝐂𝐓. 

 
Figure 10. Plot of the pdf of the margin, i.e., 𝐂𝐅𝐓 −

𝐏𝐂𝐓 > 𝟎.  
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