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INTRODUCTION

Reactor physics codes rely on cross-section data to deter-
mine, for example, flux profiles or burn-up calculations. This
data contains cross section values for different neutron-atom
interactions (e.g., absorption, fission and scattering) for a large
number of isotopes as function of energy and it is tabulated
for a specific set of parameters (e.g., moderator temperature,
fuel temperature, moderator density). In order to perform such
neutronic calculations, the amount of this data that needs to
be stored is very large due to the high number of isotopes and
many tabulation points are needed. This data needs to be re-
trieved at each time iteration of the code from the machine
memory which negatively affects the computational time of the
code itself.

This paper aims to reduce the amount of data that needs to
be stored in order to decrease computational time of neutronic
codes. More specifically a reduction on the number of tabula-
tion points is performed. This reduction is performed by identi-
fying and eliminating redundant information in the tabulated
cross section data. This reduction is performed by employ-
ing dimensionality reduction techniques and, more specifically,
Principal Component Analysis [1] (PCA). We will present the
structure of the algorithm and we will evaluate error generated
by the data reduction process.

DIMENSIONALITY REDUCTION

Dimensionality reduction is the process of finding a bijec-
tive mapping function F:

F : RN 7→ RM (where M < N) (1)

which maps the data points from the N-dimensional space into a
reduced M-dimensional space (i.e., embedding on a manifold)
in such a way that the distances between each point and its
neighbors are preserved.

Linear algorithms for dimensionality reduction, such as
PCA [1] or multidimensional scaling (MDS) [2], have the ad-
vantage that they are easier to implement but they can only
identify linear correlations among variables. More advanced
algorithms such as ISOMAP [3], Kernel PCA [4], Laplacian
Eigenmaps [5] and Local Linear Embedding [6] are however
able to identify non-linear correlations among variables. How-
ever, a major disadvantage of non-linear algorithms is the diffi-
culty to construct the inverse function F−1 : RM 7→ RN .

In our application, the ability to build both F and F−1 is
essential and that is the main reason we chose linear algorithms

and, in particular, PCA due to its high computational speed and
flexibility.

Dimensionality reduction through PCA is accomplished
by determining the eigenvectors and their corresponding eigen-
values of the data covariance matrix1 S . The eigenvectors that
correspond to the largest eigenvalues (i.e., the principal compo-
nents) can be used as a set of basis functions. Thus, the original
space is reduced to the space spanned by few eigenvectors and
the original data points are projected into this new reduced
space.

Figure 1 shows an example of dimensionality reduction
using PCA for a data set distributed in a 2-dimensional space.
After performing the eigenvalue-eigenvector decomposition of
the covariance matrix, the algorithm chooses the eigenvector
having the largest eigenvalue (i.e., λ1) as subspace to project
the original data.

Fig. 1. Example of dimensionality reduction using PCA (reduc-
tion from D = 2 to d = 1).

DATA SET

The methodology that will be described in detail in the
next section has been tested on a set of cross-sections data
for neutron reactions. These data have been retrieved by an
internal tool of the Reactor Physics toolkit PHISICS [7] which
is capable of translating the binary AMPX cross section files
into a readable format. The binary files have been generated
through a SCALE 6.1/TRITON [8] depletion calculation of a
standard 17 × 17 UOx (4.2% enrichment) fuel assembly. Cross
sections considered are: n-tot, n-fis,n-abs,n-2n,n-α,n-p. Table I
summarizes the characteristics of the cross sections used in this
paper.

Data set is then composed of (NNparam
p ) = 32 tabulation

1Given a data set in the form of a matrix Z (size D×Λ), rows correspond to
data dimensions (D) and columns correspond to the number data observations
(Λ), the covariance matrix S is determined as: S = 1

Λ−1 Z′Z.



TABLE I. Cross Section Data: Summary

Energy groups NEG 6
Cross sections NXS 6

Tabulation parameters Nparam 5
Tabulation points Np 2
Tabulation matrices (NNparam

p ) = 32
Isotopes Niso 266

TABLE II. Tabulation Values
Parameter pi Value 1 Value 2

p1: Moderator Density (kg/cc) 700 950
p2: Moderator Temperature (K) 558 589

p3: Fuel Temperature (K) 900 1200
p4: Burn-up (GWd/MtHM) 0.0 25.0
p5: Control Rod Positiona 0.0 1.0

aRanging from 0 (fully withdrawn) to 1.0 (fully inserted)

matrices (having size Niso × (NXS · NEG) ):

A(p),p = [p1, . . . , pNparam ] (2)

each of them composed of 11,172 ( Niso · NXS · NEG ) elements.
Figure 2 shows how each element of the tabulated matrices is
distributed: elements of the matrix with high and low variability
are pictured in red and blue respectively. Our dimensionality
eduction algorithm will act on the regions of the matrix with
low variability.

Fig. 2. Distribution of each element of the tabulated matrices:
elements of the matrix with high and low variability are pictured
in red and blue respectively

Interpolation is performed linearly:

A(̃p) =

5∑
i=1

αiA(p(i))

=

5∑
i=1

A(pi(2)) − A(pi(1))
pi(2) − pi(1)

(p̃i − pi(1))

(3)

The reduction process will focus on the reduction of the number
of tabulation matrices. Before performing the data reduction
we investigated the distribution of each element of the tabu-
lated matrices. Figure 2 plots this analysis: elements of the
matrix with high and low variability are pictured in red and
blue respectively.

ALGORITHM IMPLEMENTATION

As mentioned earlier, we chose a linear algorithm for di-
mensionality reduction based on PCA [1]. The algorithm is
structured as follows:

Algorithm 1 PCA based Algorithm
1: Given N R×C matrices, view each matrix Xn (n = 1, . . . ,N)

as an RC-dimensional vector
2: Compute the mean X̄ of the Xn matrices
3: Compute deviation matrix U = [U1, . . . ,Un, . . . ,UN]

where Un = X̄ − Xn,
4: Compute the covariance matrix Cov = UT U
5: Perform eigenvalue/eignevector decomposition of Cov; N

eigenvectors wn and N corresponding eigenvalues λn are
generated

6: Sort eigenvalues in decreasing order
7: Choose the first M eigenvalues and their corresponding

eigenvectors
8: Compute vm = Uwm (m = 1, . . . ,M)
9: Each matrix Xn can be approximated as:

Xn ≈

M∑
m=1

yn,mvm (4)

where yn,m = vT
mUn

In our application Step 7 is performed by looking at the
reconstruction relative error: M is such that such error is below
1%: ∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
Xn −

M∑
m=1

yn,mvm

M∑
m=1

yn,mvm

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣
∞

< 1% (5)

RESULTS

We applied the PCA-based dimensionality reduction Algo-
rithm 1 based on the full data set with the scope of reducing the



Fig. 3. Plot of the eigenvalues values for each of the 32 eigen-
vectors (sorted in descending order)

number of cross section matrices. In this respect, Fig. 3 shows
the value of the eigenvalue for each of the 32 eigenvectors
sorted in descending order. As also described in Algorithm 1,
the reduction is performed by choosing the first M eigenvectors
such that the relative error in the reconstruction in below 1%
(see Eq. 5). For the data set described above we found that 14
was the minimum number of eigenvectors that satisfies Eq. 5.
A lower number of eigenvectors would negatively affects the
reconstruction error (see Eq. 5). That allowed us to reduce the
amount of data needed by 56%.

It is also relevant to mention that using only two points
by tabulation parameters created large variation in the data
set. This impairs the algorithm from being more effective.
When this algorithm will be applied to a finer sampling of the
parameter space (i.e., a larger number of cross section tabulation
matrices) it is expected to increase its effectiveness (i.e., a
wider reduction of tabulation matrices) and also to provide an
assessment of the minimal sampling to ensure a given accuracy.

CONCLUSIONS

This paper shows a first approach to reduce the amount
of cross section data needed for neutronic codes. We imple-
mented a PCA-based algorithm and despite the limitation of the
algorithm to model only linear correlations among variables,
we were able to considerably reduce the original set of cross
section matrices from 32 to 14 with only limited error in the
reconstruction process (below 1%). Further work will include
the following:

• Testing the algorithm presented in this paper for much
larger cross section data (in terms of both number and size
of the matrices)

• Implementation and testing dimensionality reduction algo-
rithms that can also model non-linear correlations among
variables

• Reduce the actual size of the matrices by not considering
regions of the matrices that have similar patterns (see
Fig. 2)

• Perform dimensionality reduction for MOX fuels and for
assembly located near control rods
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