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INTRODUCTION

A recent trend in the nuclear power engineering field is
the implementation of heavily computational time consuming
algorithms [1] and codes [2, 3] for both design and safety
analysis. The new generation of system analysis codes aim
to embrace several phenomena such as thermo-hydraulic,
structural behavior, system dynamics and human behavior,
as well as uncertainty quantification and sensitivity analyses
associated with these phenomena.

The use of dynamic probabilistic risk assessment (PRA)
methodologies, such as the dynamic event tree (DET)
methodology [1, 4], allows a systematic approach to uncertainty
quantification. The major challenges in using dynamic
methodologies are the heavier computational and memory
requirements compared to the classical event-tree/fault-tree
analysis to achieve better and more systematic description of
hardware/process/software/firmware/human interactions. Each
branch of a DET contains time evolutions of a large number of
variables and a large number of scenarios arising from a single
initiating event. Such large amounts of information are usually
very difficult to organize in order to identify the main trends
in scenario evolution and the main risk contributors for each
initiating event.

Clustering methodologies [5], such as the Mean-Shift
algorithm [6, 7], offer powerful tools that can help the user
to identify groups of scenarios that are representative of the
original data set and, thus, can reduce the effort involved
in data analysis. This is particularly useful to identify
commonalities among scenarios that have similar temporal
behavior but different outcomes or to identify differences
among data sets generated for different initial conditions or
system configurations.

In order to decrease the computational time of the clustering
algorithms, data dimensionality reduction is an effective
approach. The rationale is to identify the dependencies in
the original data set and perform the clustering on a reduced
data set without loosing information on system behavior.

In this article, a data reduction algorithm based on the local
implementation of the Principal Component Analysis (PCA) [8]
is described and applied to a large data set generated by a
DET. The paper also shows how the data reduction decreases
the computational time in clustering. We use the Mean-Shift
algorithm as a clustering tool but the proposed methodology
can be applied to any data clustering algorithm.

CLUSTERING AND DIMENSIONALITY REDUCTION

Clustering applied to scenario analysis is the process
of organizing scenarios into groups (i.e., clusters) whose
members have similar behavior. In the clustering using the
Mean-shift algorithm, each scenario si is represented as the
multidimensional vector

si = [si(0),si(1),si(2), . . . ,si(T )] (1)

where si(t) is an M-tuple which contains values of M chosen
system variables (x1, . . . ,xM) sampled at time t = 1, . . . ,T .
Note that the dimensionality of each scenario is M · T and
can be extremely high for complex systems (i.e., high number
of state variables and high sample instants).

These M variables are often heavily correlated and,
consequently, the information contained in the set of M state
variables comprising the full state space can still be maintained
by using a set of N variables where N < M. The objective of
the data reduction process is to determine those N variables by
finding the correlations among the original M state variables to
achieve dimensionality reduction1.

Dimensionality reduction is the process of finding a bijective
mapping function F:

F : RD 7→ Rd (where d < D) (2)

which maps the data points from the D-dimensional space into
a reduced d-dimensional space (i.e., embedding on a manifold)
in such a way that the distances between each point and its
neighbors are preserved. In our applications D = M+1, i.e., M
state variables plus time t.

Linear algorithms for dimensionality reduction, such as
PCA [8] or multidimensional scaling (MDS) [9], have the
advantage that they are easier to implement but can only identify
linear correlations among state variables. In order to overcome
this limitation, it is possible to partition the original data set into
smaller subsets and apply MDS or PCA to each of these subsets
(i.e., local analysis). This approach assumes that each of the
subsets are characterized by linear correlation among variables
and, thus, part of the dimensionality reduction process is to find
those subsets such that the correlation among variables can be
considered linear.

As reported in [10], the local application of MDS (i.e., the
ISOMAP algorithm) showed good dimensionality reduction
results. This paper focuses on the local application of PCA
using the same dataset used in [10].

1Note that those N variables are not necessarily a subset of the original M
variables but, more likely, a combination of those M state variables.



LOCAL PCA

The main idea behind PCA [8] is to perform a linear mapping
of the data set into a lower dimensional space such that the
variance of the data in the low-dimensional representation is
maximized.

This is accomplished by determining the eigenvectors and
their corresponding eigenvalues of the data covariance matrix2

S. The eigenvectors that correspond to the largest eigenvalues
(i.e., the principal components) can be used as a set of basis
functions. Thus, the original space is reduced to the space
spanned by few eigenvectors and the original data points are
projected into this new reduced space.

Figure 1 shows an example of dimensionality reduction
using PCA for a data set distributed in a 2-dimensional space.
After performing the eigenvalue-eigenvector decomposition of
the covariance matrix, the algorithm chooses the eigenvector
having the largest eigenvalue (i.e., λ1) as subspace to project
the original data. The algorithm is very easy to implement but
is not able to identify non-linear correlations among variables.

Fig. 1: Example of dimensionality reduction using PCA
(reduction from D = 2 to d = 1).

In order to overcome this limitation we implemented a
modified version of the PCA algorithm which performs the
dimensionality reduction by analyzing the local properties of
the data set as following (see Fig. 2):

1. Divide the mission time into K intervals [tk, tk+1] with
k = 1, . . . ,K

2. Consider the data points for all scenarios within a time
interval [tk, tk+1]

3. Perform the PCA algorithm for the subset of points
identified in Step 2

4. Repeat Steps 2 and 3 for all time intervals identified in
Step 1

5. Identify, for each time interval, the N number of
eigenvectors that maintains the local geometric properties
of the original data points

6. Project, for each time interval, the original data points into
the new reduced space.

2Given a data set in form of a matrix Z (size D×Λ), rows correspond to
data dimensions (D) and columns correspond to the number data observations
(Λ), the covariance matrix S is determined as: S = 1

Λ−1 Z′Z.

The choice of the time intervals [tk, tk+1] is performed by
recursively analyzing the rate of change of the covariance
matrix computed in that interval. The rationale is to chose
intervals where the rate of change of the covariance matrix is
below a fixed threshold.

The number N of eigenvectors is determined by inspecting
the sum of the corresponding N eigenvalues; N is chosen when
this sum is above 90% of the overall sum of the M eigenvalues.

CASE EVALUATED

The initiating event investigated was that of a station blackout
(SBO) at a U.S. PWR and the MELCOR code [3] was linked
to the ADAPT tool [1] to determine the evolution for each
DET scenario. The simulations using MELCOR model the
transient from the occurrence of the SBO through the core
melting phase and up to point of containment failure and release
of radionuclides to the environment. For the purposes of this
paper, we choose 8 state variables of interest (i.e., M = 8):

1. Seal LOCA flow rate [gpm]

2. Hydrogen mass generated [kg]

3. Core water level [m]

4. System Pressure [Pa]

5. Core vapor temperature [K]

6. Hot leg vapor temperature [K]

7. Intact core fraction [%]

8. Fuel Temperature [K]

We sampled each state variable 100 times (hence, T = 100)
which gave us an accurate description of all the 104 transients.
The resulting dimensionality of the data is equal to 100 ·8 =
800.

RESULTS

Dimensionality reduction using local PCA was performed for
the data set described in the previous section by using K = 30.
The dimensionality reduction process identified 6 variables (i.e.,
N = 6) from the original M = 8 state variables. The subsequent
reduction in the computational time for the clustering process
was19%.

In order to validate the dimensionality reduction algorithm,
we compared the clusters obtained from the original and the
reduced data sets. Table 1 shows a comparison of the clusters
obtained by the Mean-Shift algorithm for both the original
and the reduced sets and indicates that the 8 clusters obtained
from both data sets agree in terms of both number of scenarios
contained and cluster-to-scenario memberships.

Note that the original data set consists of only 8 state
variables chosen a priori by the user. A more complete



Fig. 2: Example of dimensionality reduction using local PCA (reduction from D = 2 to d = 1) with K = 5.

TABLE 1: Clusters obtained using Mean-Shift for both original
and reduced data set. Each entry indicates the number of
scenarios contained in each cluster.

Cluster Original Reduced Cluster membership

1 5 5 Identical
2 49 49 Identical
3 41 41 Identical
4 3 3 Identical
5 1 1 Identical
6 1 1 Identical
7 1 1 Identical
8 3 3 Identical

application of this algorithm would be to start with the full
set of state variables (e.g., the MELCOR code [3] has 50,000
data channels where each data channel corresponds to a specific
state variable of a specific node of the simulator) and perform
the dimensionality reduction on this full set. Due to the fact
that these data channels are often heavily correlated, it is
expected that much larger dimensionality and computational
time reduction would be achieved with the full set.

CONCLUSIONS

This paper presents a methodology to reduce the
dimensionality of a data set by locally implementing the PCA
algorithm in order to reduce the computational time in the
clustering process. The algorithm has been applied to a
large data set generated by a DET for the SBO analysis of
a PWR. The resulting dimensionality reduction led to about
19% computational time reduction in performing the clustering.
It is expected that the computational time savings would be
more significant when a larger number of state variables is
chosen to characterize each scenario.
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