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Abstract – A new generation of dynamic methodologies is being developed for nuclear reactor 

probabilistic risk assessment (PRA) which explicitly account for the time element in modeling the 

probabilistic system evolution and use numerical simulation tools to account for possible 

dependencies between failure events.  The dynamic event tree (DET) approach is one of these 

methodologies.  One challenge with dynamic PRA methodologies is the large amount of data they 

produce which may be difficult to analyze without appropriate software tools. The concept of 

“data mining” is well known in the computer science community and several methodologies have 

been developed in order to extract useful information from a dataset with a large number of 

records. Using the dataset generated by the DET analysis of the reactor vessel auxiliary cooling 

system (RVACS) of an ABR-1000 for an aircraft crash recovery scenario and the Mean-Shift 

Methodology for data mining, it is shown how clusters of transients with common characteristics 

can be identified and classified. 

 
 

I. INTRODUCTION 

 

A new generation of dynamic methodologies is being 

developed for nuclear reactor probabilistic risk assessment 

(PRA) which explicitly accounts for the time element in 

modeling the probabilistic system evolution and use 

numerical simulation tools to provide possible 

dependencies between failure events.  A challenging aspect 

of these methodologies, such as the dynamic event tree 

(DET) methodology
1
, is the large number of scenarios 

generated for a single initiating event. Such large amounts 

of information can be difficult to organize in order to 

extract useful information. In particular, as part of the PRA 

framework, it is important to identify the main scenarios 

that are the most significant risk contributors. 

Each scenario obtained from DET analysis contains 

information on all the system components and the system 

process variables, such as the spatial and temporal 

distribution of pressure and temperature in the reactor 

coolant and the containment. In scenario aggregation, we 

are trying to accomplish two tasks: 

 

 Identify the scenarios that have "similar" behaviors 

(i.e., identify the most evident clusters) 

 Assign each scenario to a cluster (i.e., classification) 

 

The objective of this paper is to illustrate an approach 

to group and classify a set of scenarios generated by a DET 

methodology. This approach is based on the Mean-Shift 

algorithm developed by Fukunaga and Hostetler
2
. We will 

show how to employ this methodology to a set of transient 

accident scenarios. As an application of this methodology, 

we will use the data generated by a previous study for the 

recovery of the reactor vessel auxiliary cooling system 

(RVACS) for an ABR-1000 reactor following an aircraft 

crash
3
. 

 

II. THE CLASSIFICATION PROBLEM 

 

From a mathematical viewpoint, a clustering process 

attempts to search for a partition C = {C1, … ,CK} of the 

set of patterns X = {x1, … , xj, … , xN} where each pattern 

can be represented as a multi-dimensional vector xj = (xj1, 

… , xj2, … , xjd) and each component xji is said to be a 

feature (attribute, dimension or variable). The partition C 

of X is such that: 

 

𝐶𝑖 ≠ ∅  ∀𝑖 = 1, ⋯ , 𝐾 

 𝐶𝑖 = 𝑿

𝐾

𝑛=1

 

𝐶𝑖 ∩ 𝐶𝑗 = ∅    ∀𝑖, 𝑗 = 1, ⋯ , 𝐾    𝑎𝑛𝑑  𝑖 ≠ 𝑗 
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In our applications, we are dealing with transient 

scenarios and, thus, each xi can be viewed as a trajectory 

distributed in the state space rather points in an n-

dimensional space. However, we will show that we can 

sample all the scenarios at several time instants and 

consider the values of the variables of interest at these time 

instants as the generic measure xji. 

 

III. METHODOLOGY PROPOSED 

 

Mean-Shift Methodology (MSM) is a non-parametric 

iterative mode-seeking procedure that shifts each data 

point to the average of data points in its neighborhood. We 

adopt the MSM to set the modes as the cluster centers and 

to assign each point to one cluster center only. By cluster 

center we mean a region with high point density.  

Starting from a generic point (i.e., point sA in Fig. 1), 

the algorithm associates a hyper-dimensional sphere 

centered at that point. The radius of this sphere is called the 

bandwidth BW. The idea is to consider all the points that 

are inside this sphere and determine the center of mass of 

these points (point m(sA) in Fig. 1).  In particular, given a 

point 𝑠 ∈ 𝑆 in an n-dimensional Euclidean space, the center 

of mass of sA is simply: 

 

𝑚 𝑠𝐴 =
 𝐾 𝑠−𝑠𝐴  𝑠𝑠∈𝑆

 𝐾 𝑠−𝑠𝐴  𝑠∈𝑆
   (1) 

 

where K(x) is often referred to as the Kernel.  

 

 

Fig. 1 Graphical representation of the Mean-Shift algorithm 

 

The purpose of this function is its ability to assign different 

weights to different points during the estimation of the 

center of mass. Several Kernels can be used as illustrated 

in Ref. 4.  If, for example, we use a 2-D flat kernel (see 

Fig. 2) 

 

𝐾 𝑥  =  
1          if  𝑥  ≤BW

0          if  𝑥  >BW,
   (2) 

 

then the center of mass simply becomes the mean of the 

points within the disc shown in the upper plane of Fig. 2. 

In this work, we have used the biweight kernel
4
 (see Fig. 

3): 

 

𝐾 𝑥  =  
(1 −  𝑥  2)2   if  𝑥  ≤BW

0                        if  𝑥  >BW
   (3) 

 

After estimating the center of mass, the MSM 

determines the calculated position m(sA) (see Fig. 1), and 

repeats the calculation for the center of mass for the points 

included in the ball having an identical value of radius (i.e., 

BW) but now centered on m(sA). 

This operation converges to the mode of the data 

distribution when the distance between the new center of 

mass and the old one is below a fixed threshold (i.e., sC in 

Fig. 1 is reached). When this condition is reached: 

 

 point sC is considered the center of a cluster, and 

 the original point sA is uniquely assigned to the cluster 

centered by point sC. 

 

This procedure is repeated for all the points 𝑠 ∈ 𝑆 to 

estimate: 

 

 the center of all the clusters in S, and, 

 the cluster to which each point belongs (each point 

belongs to one cluster only). 

 

 

Fig. 2. Graphical representation of the 2-D flat kernel with BW=1 

 

 

Fig. 3. Graphical representation of the 2-D biweight  

kernel with BW=1 
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An important component in clustering is selection of 

distance measure between the points. Considering that the 

set of points 𝑠 ∈ 𝑆 lies in a metric space, the choice of 

distance should satisfy the metric properties. In Table 1, we 

list commonly used metrics from among which we use the 

Euclidean distance as our distance measure. 

  

TABLE 1 

Comparison of different metrics 

 
 

Aside from the choice of the distance measure, the 

geometry of the data points plays a vital role in the “point 

to cluster” decision process. Figure 4 illustrates the results 

of MSM when it is applied to a set of points distributed 

normally along two rings.  As shown in Fig. 4, the data 

lying on two rings are clustered into two clusters denoted 

by red and green colors. 

 

 

Fig. 4. MSM applied to a set of data distributed over two rings. 

Different colors denote different clusters generated by the MSM. 

 

IV. DEMONSTRATION CASE 

 

As mentioned in the Section 1, the system that is 

analyzed in this work is the RVACS of ABR-1000 reactor
3
, 

schematically shown in Fig. 5. The RVACS is a passive 

decay-heat removal system that removes heat by natural 

circulation of air in the gap between the vessel and a duct 

surrounding the vessel. With this system, the reactor decay 

heat is released to the atmosphere through 4 towers. 

 

 

Fig. 5. RVACS system applied to ABR-1000 

 

 ADAPT (Analysis of Dynamic Accident Progression 

Trees)
1
 is used here as the DET generator tool while the 

system dynamics are modeled using RELAP5
5
. At time 

zero with the plant operating at 100% power, an aircraft 

crashes into the plant. Three of the four towers are assumed 

to be destroyed, producing debris that blocks the air 

passages (hence, impeding the possibility to remove the 

decay heat).  The reactor trips, offsite power is lost, the 

pump trips and coasts down.   

A recovery crew and heavy equipment are used to 

remove the debris. Figure 6 illustrates the strategy that is 

followed by the crew in reestablishing the capability of the 

RVACS to remove the decay heat. Several assumptions 

have been made for the purpose of the analysis: 

 

 A tower is assumed to have no heat removal capacity 

until the rubble has been removed.  At that point it is 

assumed to regain full capacity. 

 There is a one hour period following the crash in 

which a fire is being extinguished.  

 There is a uniform probability of work being initiated 

between one and nine hours after the crash. 

 The workers remove debris from one tower at a time.  

 After work begins on a tower there is a minimum time 

of two hours to recover the tower. 

 There is a uniform distribution of recovery between 

two and ten hours.  The team then moves on to the 

next tower. 

 The difficulty of recovering each tower is assumed to 

be independent of the other towers.  
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Fig. 6. Crew recovery strategy for the aircraft crash scenario6 

 

For an actual application of dynamic event trees to the 

development of optimal accident management strategies, a 

substantial effort would be required to determine the 

durations and probability density functions employed in 

the analysis. The uncertainties in crew arrival time and 

tower recovery are treated as aleatory (stochastic) in nature 

and represented in the analysis by cumulative distribution 

functions.  Branching occurs at the times associated with 

the probabilities 0.001, 0.25, 0.5, 0.75, and 1.0 (upper limit 

up recovery) on the cumulative distribution function.  

When the trigger time is reached, a branching occurs in 

which one branch represents tower recovery and the other 

branch represents non-recovery.  The latter branch then 

continues until the next branching point is reached on the 

cumulative distribution function.  ADAPT keeps track of 

the scenario probability for each pathway through the 

growing tree. 

Only one Top Event is considered: temperature T of 

the core reaches the limit of 1000 K, associated with clad 

failure by eutectic formation. Figure 7 plots the temporal 

behavior of the temperature of the core for all the scenarios 

generated by ADAPT (about 500 different transient runs).   

 

 

Fig. 7. Graphical representation of the scenarios generated by 

ADAPT for the aircraft crash scenario 

 

Mission time for this system analysis has been fixed to 

200,000 s beyond which time clad failure has either 

occurred or the temperature has peaked and is declining. 

 

V. RESULTS 

 

As mentioned in Section II, each transient is 

represented as a vector in an n-dimensional space. Each 

component of this vector corresponds to the value of the 

variables of interest sampled at a specific time instant
7
. For 

this example, we consider only the temperature T of the 

core as the variable of interest sampled in 56 time instants. 

Thus each scenario xi can be represented as a vector in a 

56-dimensional space as following: 

 

𝑥𝑖 =  𝑇(0), 𝑇(1), … , 𝑇(56)       (4) 

 

When dealing with DET methodologies several issues 

may arise at this point: 

 

1. Branching might occur at different time instants 

depending when the branching rules are met during a 

transient evolution. 

2. When the failure criterion (fuel temperature reaches 

1000 K) or the mission time is reached, the simulation 

stops.  Hence the length of the scenarios might vary. 

 

The first issue is resolved by adding a special script 

inside ADAPT to print results of each scenarios at specific 

instants. The second issue was resolved for this example by 

assuming that for those scenarios in which the failure 

temperature of 1000 K was achieved the temperature is 

assumed to remain fixed until the end of the mission time. 

Figures 8 and 9 show the cluster centers obtained for 

two different values of bandwidth BW (40 and 30 

respectively). A cluster center can be seen as the 

representative scenario for a subset of scenarios (i.e., a 

cluster of scenarios) where the size of the cluster depends 

on the value of the bandwidth. In both Figures 8 and 9, the 

numbers in the legend indicate the number of scenarios 

that are part of each specific cluster.  In this analysis, more 

than 80% of the scenarios lead to fuel failure.  For the 

broader bandwidth, the clusters appear to represent the two 

key differences obtained in the analysis, events that lead to 

fuel failure and events that do not lead to fuel failure.  

However, a large number of failure scenarios are mapped 

into what could be interpreted as the non-failure group.  

For the narrower bandwidth, there is better discrimination 

between the groups. 
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Fig. 8. Cluster centers for BW=40 

 

 

 

Fig. 9. Cluster centers for BW=30 

 

VI. CONCLUSIONS 

 

This paper illustrates a practical methodology to 

analyze the set of transients generated by the DET 

approach. We have illustrated how it is possible to group 

the scenarios in clusters and to assign uniquely each 

scenario to one cluster.  We also demonstrated the 

application of Mean-Shift analysis to a set of scenarios 

generated by the DET analysis of the reactor RVACS of an 

ABR-1000 for an aircraft crash recovery scenario.  ADAPT 

was used as a DET generator tool while the system 

dynamics are modeled using RELAP5. 

 

 

VII. ACKNOWLEDGMENTS 

 

“This work is a product of the project “Risk-Informed 

Balancing of Safety, Non-Proliferation, and Economics for 

the Sodium-Cooled Fast Reactor (SFR)” supported by the 

US Department of Energy under a NERI contract (DE-

FG07-07ID14888).  The views presented here are those of 

the authors and do not necessarily represent the views of 

the US Department of Energy.” 

REFERENCES 

 

1. B. RUTT, U. Catalyurek, A. Hakobyan, K. Metzroth, 

T. Aldemir, R. Denning, S. Dunagan, D. Kunsman, 

“Distributed Dynamic Event Tree Generation for 

Reliability and Risk Assessment”, 1-4244-0420-7/06, IEEE 

(2006). 

 

2. K. FUKUNAGA, L. Hostetler, “The estimation of the 

gradient of a density function, with applications in pattern 

recognition”, IEEE Transactions on Information Theory, 

21, 32-40 (1975). 

 

3. R. WINNINGHAM, K. Metzroth, T. Aldemir, R. 

Denning, “Aircraft Crash Recovery Scenario Dynamic 

Event Tree Analysis of the RVACS Passive Decay Heat 

System Employing the ADAPT tool with RELAP5-3D”, 

Proceedings of American Nuclear Society, (2009). 

 

4. Y. CHENG, “Mean Shift, Mode Seeking, and 

Clustering”, IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 17, no. 8, (1995). 

 

5. The RELAP5-3D Code Development Team, 

RELAP5-3D Code Manual, Volume I: Code Structure, 

System Models, and Solution Methods, INEEL-EXT-98-

00834, June 2005. 

 

6. R. D. WINNINGHAM, K. Metzroth, T. Aldemir, R, 

Denning, “Passive Heat Removal System Recovery 

following an Aircraft Crash using Dynamic Event Tree 

Analysis”, Trans. Am. Nucl. Soc., 100, 461 - 462 (June 

2009) 

 

7. D. MANDELLI, T. Aldemir, A. Yilmaz, “Scenario 

Aggregation in Dynamic PRA Uncertainty Quantification”, 

under review for potential publication in Trans. Am. Nucl. 

Soc., 102, (June 2010). 

750

800

850

900

950

1000

1050

0 50000 100000 150000 200000

Te
m

p
e

ra
tu

re
 [K

]

Time [s]

BW=40

283

163

750

800

850

900

950

1000

1050

0 50000 100000 150000 200000

Te
m

p
e

ra
tu

re
  [

K
]

Time [s]

BW=30

92

229

60

64

1


