
1 INTRODUCTION  

In the past decades, several numerical simulation 

codes have been employed to simulate accident dy-

namics, e.g., RELAP5-3D (RELAP5-3D team 

2005), MELCOR (Gauntt 2001). In order to evaluate 

the impact of uncertainties into accident dynamics, 

several stochastic methodologies have been coupled 

with these codes. These stochastic methods range 

from classical Monte-Carlo and Latin Hypercube 

sampling to stochastic polynomial methods. Similar 

approaches have been introduced into the risk and 

safety community where stochastic methods, e.g., 

RAVEN (Alfonsi 2014), ADAPT (Rutt et al. 2006), 

MCDET (Hofer 2002), have been coupled with safe-

ty analysis codes in order to evaluate the safety im-

pact of timing and sequencing of events on the acci-

dent progression. These approaches are usually 

called Dynamic PRA methods.   These simulation-

based uncertainties and safety methods usually gen-

erate a large number of simulation runs which are 

typically discarded once coarse averaging coeffi-

cients (e.g., core damage frequency or sensitivity 

coefficients) are determined. 

The scope of this paper is to present a broad 

overview of data mining methods and algorithms 

that can be used to analyze and extract useful infor-

mation from large data sets containing time depend-

ent data. In this context, extracting information 

means constructing input-output correlations, find-

ing commonalities, and identifying outliers. Data 

mining is a fairly generic concept that entails the 

generation of information and knowledge from data.  

The process of generation of infor-

mation/knowledge can be performed in various ways 

depending on the type of application but it possible 

to classify data analysis approaches into three cate-

gories:  

 Reduced Order Modeling: algorithms that re-

duce to the complexity of the data by finding a 

mathematical objects that emulate the behavior 

of the data by learning its input/output rela-

tions and reconstructing such relations through 

a regression/interpolation approach  

 Dimensionality Reduction: this category in-

cludes all methods than aim to reduce the di-

mensionality of the data set and project the 

original data into a reduced space   

 Clustering: algorithms in this category parti-

tion the data based on a set of defined similari-

ty measure (i.e., a distance metric). This paper 

focuses on the latter category applied in partic-

ular to the analysis of time dependent data, i.e., 

simulated accident transients. By grouping 
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simulated transients, provided a set of similari-

ty laws, it is possible to identify commonalities 

regarding initial and boundary conditions and 

accident progression.  

We will describe several aspects that orbit around 

data mining of Dynamic PRA data such as:  

 Data pre-processing: how the data is pre-

processed prior behind analyzed  

 Data representation: how each transient is rep-

resented from a mathematical point of view 

 Similarity metrics: how distance among transi-

ent is measured and calculated  

2 DATA SET FORMAT 

We will indicate with Ξ the data set generate by 

any of the methods mentioned above which contain 

𝑁 time series
1
 𝛨𝑛:  
Ξ = {𝛨1 , … , 𝛨n, … , 𝛨N} (1) 

To preserve generality, we can assume that each 

scenario 𝛨𝑛 contains three components: 
𝛨𝑛 = {𝜽𝑛, 𝚫𝑛, 𝚪𝑛} (2) 

These components are the following: 

 Continuous data 𝜽𝑛: this data contains the 

temporal evolution of each scenario, i.e., the 

time evolution of the 𝑀 state variables 𝑥𝑚
𝑛  

(𝑚 = 1, … , 𝑀) (e.g., pressure and temperature 

at a specific computational node). All of these 

state variables change in time 𝑡 (where 𝑡 rang-

es2 from 0 to 𝑡𝑛):  
𝜽𝑛 = {𝑥1

𝑛, … , 𝑥𝑀
𝑛 } (3) 

where each 𝑥𝑚
𝑛  is a an array of values having 

length 𝑇𝑛. Hence, 𝜽𝑛 can be viewed as a 

𝑀 × 𝑇𝑛 matrix
3
. 

 Discrete data 𝚫𝑛: which contains timing of 

events. Note that a generic event 𝐸𝑖
𝑛 can occur: 

o At a time instant 𝜏𝑖: in this case the event 

can be defined as (𝐸𝑖
𝑛, 𝜏𝑖), or, 

o Over a time interval [𝜏𝑖
𝛼 , 𝜏𝑖

𝜔]: in this case 

the event can be defined as (𝐸𝑖
𝑛, [𝜏𝑖

𝛼 , 𝜏𝑖
𝜔]) 

 Set 𝚪𝑛 of 𝑉 boundary conditions 𝐵𝐶𝑣
𝑛 (𝑣 =

1, … , 𝑉) and 𝑈 initial  conditions 𝐼𝐶𝑢
𝑛 (𝑢 =

1, … , 𝑈). 

This paper focuses on the continuous part 𝜽𝑛. 

3 DATA PRE-PROCESSING 

Depending on the application, the data set may 

need to be pre-processed. A common pre-processing 

                                                 
1 In this paper we will indicate time series as simulation runs or histories 
2 This allows us to maintain generality by having time series with different time 
lengths 
3 As an example, 𝑥2

3 is a vector having length 𝑇3 which represents the temporal 

profile of variable 2 for scenario 3. 

method is the Z-normalization procedure: each vari-

able 𝑥𝑚
𝑛  of 𝜽𝑛 is transformed into 𝑥̂𝑚

𝑛 : 

𝑥̂𝑚
𝑛 =

𝑥𝑚
𝑛 − 𝑚𝑒𝑎𝑛(𝑥𝑚

𝑛 )

𝑠𝑡𝑑𝐷𝑒𝑣(𝑥𝑚
𝑛 )

 (4) 

where 𝑚𝑒𝑎𝑛(𝑥𝑚
𝑛 ) and 𝑠𝑡𝑑𝐷𝑒𝑣(𝑥𝑚

𝑛 ) represent the 

mean and the standard deviation of 𝑥𝑚
𝑛 . This trans-

formation provides an equal importance to every 𝑥𝑚
𝑛  

and it compensates for amplitude offset and scaling 

effects when distance between time series is com-

puted
4
. 

In case the time-series are affected by noise, it 

might be worthwhile to smooth the time series using 

classical filtering and regression techniques so that 

the noise is filtered out and the series information is 

maintained. A commonly used de-noising or filter-

ing technique is the kernel-regression technique. 

This simple technique starts from the raw data 𝜽𝑛 

which is time dependent (i.e., 𝜽𝑛(𝑡)) and generate 

the regressed term 𝜽̃𝑛(𝑡′) as follows: 

𝜽̃𝑛(𝑡′) =
∑ 𝐾(𝑡 − 𝑡′) 𝜽𝑛(𝑡)

𝑇𝑛
𝑡=0

𝐾(𝑡 − 𝑡′)
 (5) 

where 𝐾(𝑡 − 𝑡′) is the kernel used to smooth 𝜽𝑛. 

Another operation that can be performed in the 

pre-processing is the re-sampling of 𝜽𝑛. Recall that 

𝜽𝑛 contains the values of the time dependent data 

variables {𝑥1
𝑛, … , 𝑥𝑀

𝑛 } sampled at specific time in-

stants. The re-sampling operation reduces those time 

instants by choosing a new set of time instants (typi-

cally a smaller set) that preserves the information 

content of the 𝜽𝑛. The motivations behind the choice 

of this step are the following: less memory intensive 

and faster computations. 

4 DATA REPRESENTATION 

One of the most fundamental modeling choices 

regarding time dependent data is how each time se-

ries is actually represented in the data mining pro-

cess. Reference (Lint et al. 2003) provides a broad 

analysis of the many representation methods. Some 

of these methods have been implemented in RA-

VEN; the choice of these implemented methods was 

based on their effectiveness on nuclear engineering 

applications. 

4.1 Real-valued 

The original format of the time series is main-

tained. This approach does not require any prior 

knowledge from the user so it can be considered a 

fail-safe approach. On the other side this method 

                                                 
4 This is in particular relevant when 𝑥𝑚 have different scales (e.g., temperatures 

in the [500,2200] F interval while pressures are in the [0,16 106] Pa interval)
  



(depending on the data set) can be memory and 

computationally intensive. 

4.2 Polynomial 

The time series is approximated by a Taylor pol-

ynomial function up to a fixed degree and the vector 

of coefficients are retained as representatives for the 

time series (see Figure 1). Recall that 𝜽𝑛 =
{𝑥1

𝑛, … , 𝑥𝑀
𝑛 } contains the temporal evolution of a set 

of 𝑀 variables (i.e., 𝑥1
𝑛 = 𝑥1

𝑛(𝑡)), for the Taylor case 

for example, the approximation is performed as fol-

lows for each 𝑥1
𝑛(𝑡): 

𝑥1
𝑛(𝑡) ≅ ∑ 𝑐𝜍  𝑡𝜍

𝐶

𝜍=0

 (6) 

The representation process using Taylor expan-

sion replace 𝑥1
𝑛(𝑡) with a vector having dimension-

ality 𝐶 + 1 containing all coefficients 𝑐𝜍 (𝜍 =

0, … , 𝐶). 

 
Figure 1. Polynomial approximation of a time series for several 

polynomial degrees. 

4.3 Chebyshev  

The Chebyshev representation follows exact 

principle presented above for the Taylor case: 

𝑥1
𝑛(𝑡) ≅ [∑ 𝑐𝜍 𝑇𝜍(𝑡)

𝐶−1

𝜍=1

] −
1

2
𝑐0 (7) 

where 𝑇𝜍(𝑡) is the Chebyshev polynomial of or-

der 𝜍: 
𝑇0(𝑡) = 1

𝑇1(𝑡) = 𝑡

𝑇2(𝑡) = 2 𝑡2 − 1

𝑇3(𝑡) = 4 𝑡3 − 3 𝑡

𝑇4(𝑡) = 8 𝑡4 − 8 𝑡2 + 1
⋯
𝑇𝜍+1(𝑡) = 2 𝑡 𝑇𝜍(𝑡) − 𝑇𝜍−1(𝑡)

 (8) 

The representation process using Chebyshev ex-

pansion replace 𝑥1
𝑛(𝑡) with a vector having dimen-

sionality 𝐶 + 1 containing all coefficients 𝑐𝜍  

(𝜍 = 0, … , 𝐶). 

4.4 Legendre 

The Legendre polynomials are polynomials of 

the following form: 
𝑃0(𝑡) = 1

𝑃1(𝑡) = 𝑡

𝑃2(𝑡) = (2 𝑡2 − 1)/2

𝑃3(𝑡) = (5 𝑡3 − 3 𝑡)/2

𝑃4(𝑡) = (35 𝑡4 − 30 𝑡2 + 3)/8
⋯

𝑇𝜍+1(𝑡) =
(2 𝜍 − 1) 𝑡 𝑇𝜍−1(𝑡) − (𝜍 − 1)𝑇𝜍−2(𝑡)

𝜍

 (9) 

The representation process using Chebyshev ex-

pansion replace 𝑥1
𝑛(𝑡) with a vector having dimen-

sionality 𝐶 + 1 containing all coefficients 𝑐𝜍 (𝜍 =

0, … , 𝐶).  

4.5 Laguerre 

The Laguerre polynomials 𝐿𝑛(𝑡) are polynomials  

of the following form: 
𝐿0(𝑡) = 1

𝐿1(𝑡) = 1 − 𝑡

…
(𝑛 + 1)𝐿𝑛(𝑡) − (2𝑛 + 1 − 𝑡)𝐿𝑛(𝑡) + 𝑛 𝐿𝑛−1(𝑡) = 0

 (10) 

4.6 Hermite 

The Hermite polynomials 𝐻𝑛(𝑡) are polynomials 

of the following form: 
𝐻0(𝑡) = 1

𝐻1(𝑡) = 𝑡

…
𝐻𝑛+1(𝑡) − 2 𝑡 𝐻𝑛(𝑡) + 2 𝑛 𝐻𝑛−1(𝑡) = 0

 (11) 

4.7 Discrete Fourier Transform 

Similar to the polynomial representation, the time 

series is approximated by a Fourier series (see Fig-

ure 2) and the series coefficients are retained as rep-

resentatives for the time series. The Fourier series is 

as follows: 

𝑥1
𝑛(𝑡) ≅

𝑎0

2
∑(𝑎𝜍 cos(𝜍 𝑡) + 𝑏𝜍 cos(𝜍 𝑡))

𝐶

𝜍=1

 (12) 

4.8 Singular Value Decomposition (SVD) 

This method performs an eigenvalues and eigen-

vectors decomposition of 𝜽𝑛 and selects a reduced 

set of eigenvectors. Each time series 𝛨𝑛 is represent-

ed by the coefficients associated to each eigenvector. 

Note that this decomposition must be performed on 

all time-series as a whole since SVD decomposition 

is performed on the covariance matrix which is cal-

culated by considering full set of time series and not 

one time series separately. 



 
Figure 2. Fourier approximation of a time series for several 

polynomial degrees. 

This is performed for each 𝑥𝑚 (𝑚 = 1, … , 𝑀) in-

dependently by: 

1. Normalizing the data: zero mean and unit vari-

ance  

2. Resampling the data set so that all time series 

are sampled on the exact same time instants 

3. Determining the covariance matrix  

4. Performing SVD of the covariance matrix, i.e., 

eigenvalues and eigenvectors decomposition. 

Note that each eigenvector is a time series 

sampled at the same time instants of the origi-

nal time series. The eigenvectors can be ranked 

based on the associated eigenvalues: the space 

reduction can be performed by considering the 

eigenvector with higher eigenvalues  

5. Projecting the original time series into the ei-

genvectors space (either reduced or not) and 

using the projection coefficients as time series 

representation format. 

5 MEASURING SIMILARITY 

The second important modeling choice when 

dealing with time series regards the type of similari-

ty metric also known as distance. Similar to the the-

ory behind distances in Euclidean space, a distance 

metric 𝑑(𝑆, 𝑄) measures the “similarity” between 

two time series 𝑆 and 𝑄. Recall that 𝑑(𝑆, 𝑄) has to 

obey the following rules: 

{  

𝑑(𝑆, 𝑆) = 0

𝑑(𝑆, 𝑄) = 𝑑(𝑄, 𝑆)

𝑑(𝑆, 𝑄) = 0  iff  𝑆 = 𝑄

𝑑(𝑆, 𝑄) ≤ 𝑑(𝑆, 𝐾) + 𝑑(𝐾, 𝑄)

 (13) 

When dealing with time series, the following two 

metrics are the most commonly used : Euclidean 

(Bryant 1985) and Dynamic Time Warping (DTW) 

(Berndt & Clifford 2004) distance. These distances 

are described in the next two subsections for the 

univariate case, i.e., two time series 𝑄 and 𝑆 where 

their continuous part has 𝑀 = 1. The more generic 

case, i.e., multivariate case, can be easily expanded 

from what is shown below. 

5.1 Euclidean 

Given two univariate time series 𝑆 and 𝑄 having 

identical length (i.e., 𝑇𝑆 = 𝑇𝑄) the Euclidean distance 

𝑑2(𝑆, 𝑄) is defined as (see Figure 3) (Chen et al. 

2015): 

𝑑2(𝑆, 𝑄) = √∑ (𝑥1
𝑆(𝑡) − 𝑥1

𝑄(𝑡))
2

𝑇𝑆

𝑡=0

 (14) 

 
Figure 3. Euclidean distance metric for two time series 𝑆 and 𝑄. Each 

black segment represents: 𝑥1
𝑆(𝑡) − 𝑥1

𝑄(𝑡). 

5.2 Dynamic Time Warping 

This distance can be viewed as a natural exten-

sion of the Euclidean distance applied to time series 

(Berndt & Clifford 2004). Given two univariate time 

series 𝑆 and 𝑄 having length 𝑇𝑆 and 𝑇𝑄 respectively
5
. 

The distance value 𝑑𝐷𝑇𝑊(𝑆, 𝑄) is calculated by fol-

lowing these two steps: 

1. Create a matrix 𝐷 = [𝑑𝑖,𝑗] having dimensional-

ity 𝑇𝑆 × 𝑇𝑄 where each element of 𝐷 (see Fig. 

3 for the time series shown in Fig. 4) is calcu-

lated as 𝑑𝑖,𝑗 = (𝑥1
𝑆[𝑖] − 𝑥1

𝑄[𝑗])2 for 𝑖 =

1, … , 𝑇𝑆  and 𝑗 = 1, … , 𝑇𝑄.  

2. Search a continuous path 𝑤𝑘|1
𝐾 in the matrix 𝐷 

that, starting from (𝑖, 𝑗) = (0,0), it ends at 

(𝑖, 𝑗) = (𝑇𝑆, 𝑇𝑄) and it minimizes the sum of 

all the 𝐾 elements 𝑤𝑘 = (𝑑𝑖,𝑗)
𝑘
 of this path 

(see white line in Figure 4): 

𝑑𝐷𝑇𝑊(𝑆, 𝑄) = min (∑ 𝑤𝑘

𝐾

𝑘=1

) (15) 

Each element of the path corresponds to a specif-

ic black segment in Figure 5.  

                                                 
5 Note that here he we have relaxed the requirement: 𝑇𝑆 = 𝑇𝑄 
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Figure 4. Colored plot of the distance matrix 𝐷 for the time series 𝑆 

and 𝑄 plotted in Figure 5. White line represents the warp path 

𝑤𝑘  (𝑘 = 1, … 𝐾). 

 
Figure 5. DTW distance metric for two time series 𝑆 and 𝑄. Each 

black segment represents an elements 𝑤𝑘 = (𝑑𝑖,𝑗)
𝑘
 of the warp path 

shown Figure 4. 

6 DATA MINING TECHNIQUES: CLUSTERING  

For the scope of this article we focused on two 

applications: data searching and clustering. While 

we believe clustering offers the best tools to “extract 

information” from data (see first section of this pa-

per), time series searching algorithms allow the user 

to match time series coming from different data sets. 

Data searching algorithms are an important class 

of data analysis tools that can be very useful to com-

pare and analyze similarities between two time se-

ries data sets (e.g., for code validation). In our expe-

rience, the two most reliable methods are the 

following: K-Nearest Neighbors (KNN) and Kd-

Tree (Bentley 1975). 

From a mathematical viewpoint, clustering (Jain 

et al. 1999) aims  to find a partition 𝑪 =
{𝐶1, … , 𝐶𝑙, … , 𝐶𝐿} of Ξ where each 𝐶𝑙 (𝑙 = 1, … , 𝐿) is 

called a cluster. The partition 𝑪 is such that: 

{

 𝐶𝑙 ≠ ∅  ∀𝑙 = 1, … , 𝐿

 ⋃ 𝐶𝑙

𝐿

𝑙=1

= Ξ
 (16) 

Even though the number of clustering algorithms 

available in the literature is large, usually the most 

used ones when applied to time series are the follow-

ing: Hierarchical (Jain et al. 1988), K-Means 

(Macqueen 1967) and Mean-Shift (Cheng 1995). 

Hierarchical algorithms build a hierarchical tree 

from the individual points (leaves) by progressively 

merging them into clusters until all points are inside 

a single cluster (root). Clustering algorithms such as 

K-Means and Mean-Shift, on the other hand, seek a 

single partition of the data sets instead of a nested 

sequence of partitions obtained by hierarchical 

methodologies.  

Two possible paths that can be followed to ana-

lyze time dependent data: 

1. Approach 1: Employ classical clustering algo-

rithms by transforming each time series as a 

single multi-dimensional vector. Recall that al-

gorithms such as K-Means and Mean-Shift can 

naturally deal with multi-dimensional vectors, 

i.e., each data point can be represented as a 

multi-dimensional vector. Following this, in 

this path each time series is converted into a 

multi-dimensional vector (as part of a pre-

processing step). This can be done, for exam-

ple, through a polynomial or Fourier transfor-

mation  

2. Approach 2: Maintain the original format of 

the time series end employ clustering algo-

rithms that can receive in input a distance ma-

trix (thus appropriate distance metrics needs to 

be defined). Few algorithms, such the hierar-

chical and the DBSCAN clustering algorithms 

can received in input the solely distance matrix 

Δ = [𝛿𝑖𝑗] where each element 𝛿𝑖𝑗 represent the 

distance between time series 𝑖 and 𝑗. 

6.1 Approach 1 

The first approach we followed is to perform 

clustering time series using classical clustering algo-

rithms (e.g., K-Means, Mean-Shift and Hierarchical) 

not directly on the time series but on the pre-

processed data. This can be accomplished when one 

of the above-mentioned representations is chosen: 

polynomial, Fourier, or SVD. Each time series is 

represented as a multi-dimensional vector where 

each dimension of the vector represents the coeffi-

cient of a specific base: polynomial, sine/cosine, and 

Eigen-vector decomposition respectively. 

Path 

Q 
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Figure 6. Plot of the time-dependent data set. 

 

 
Figure 7. Plot of the time series belonging to each of the two clusters 

(cluster_0 and cluster_1) using Mean-Shift. 

This is possible by performing the following 

steps in RAVEN (see data set shown in Figure 6): 

1. Load data either from file or from a database 

(as a third option, the data can be generated in 

the same RAVEN input file through a Monte-

Carlo sampling process for example) 

2. Re-sample data: perform a temporal re-

sampling of the data. This step might include 

also time-series synchronization: all time-

series are sampled at the same time instants. 

3. Convert data: convert the data from time-

dependent to static data (e.g., polynomial rep-

resentation) 

4. Cluster data: perform the actual clustering of 

the data (e.g., through Mean-Shift algorithm) 

on the converted data. The time series data 

shown in Figure 6 has been partitioned in two 

clusters (see Figure 7) and in addition the algo-

rithm has provided the average time series for 

each cluster (see Figure 8). 

 
Figure 8. Plot of the cluster centers for each of the two clusters. 

6.2 Approach 2 

This approach leverages the clustering algo-

rithms that can receive in input the similarity matrix. 

In RAVEN this is possible by performing the fol-

lowing steps: 

1. Load data either from file or from a database 

(e.g., consider the data set shown in Figure 9) 

 
Figure 9. Data set generated by RAVEN containing multiple 

discountinuites and having variable time length. 

2. Re-sample data: perform a temporal re-

sampling of the data. This step might include 

also time-series synchronization: all time-

series are sampled at the same time instants. 

3. Cluster data: perform the actual clustering of 

the data (e.g., through Hierarchical algorithm) 

on the pre-processed data. The dendrogram on 

the data set shown in Figure 9 is shown in Fig-

ure 10. 



 

Figure 10. Dendrogram obtained using the RAVEN hierarchical 

algorithm for the data set shown in Figure 9. 

 
Figure 11. Plot of the clustered data set shown in Figure 9 colored by 

the cluster labels; each of the 9 clusters (from 1 through 9) correspond 

a color using Hierarchical algorithm (see Figure 10). 

7 SPENT FUEL POOL ANALYSIS 

In the framework of the DOE/LWRS/RISMC 

Project – Industry Application #2, a RELAP5-3D  

code thermal-hydraulic model of a spent fuel pool 

(SFP) has been developed (Parisi et al. 2016). The 

scope of the model has been methodology testing for 

investigate External Events by deterministic and 

PRA codes. The RELAP5-3D model is a simplified 

model of a NPP SFP (see Figure 12). 

Since the scope of the RELAP5-3D model was 

methodology proving, a limited number of thermal-

hydraulic nodes have been used in order to achieve 

fast-running calculations. E.g., one calculation simu-

lating one-day transient (86400 seconds) could be 

run in 120 seconds of computer time.  

The heat load of the SFP is equivalent to the 1/3
rd

 

of the decay heat load of a ~2.5 GWth Westinghouse 

3-Loop PWR core (157 Fuel Assemblies). The 

thermal-hydraulic channels of the fuel elements have 

the characteristics of a 15x15 Westinghouse PWR 

Fuel Assembly. The water volumes of the SFP have 

been scaled according to the modeled heat load. 

 
Figure 12. Simplified model of a NPP SFP. 

Using RAVEN we performed a Monte-Carlo 

sampling of the stochastic variables and generated a 

database of 2000 time series. The sampled stochastic 

variables are the following: 

1. 20600700:6 time of LOCA 

2. 20600560:6 pump1 failure time  

3. 20600570:6 pump2 failure time 

4. 1000101:3 size of the break 

5. 20600610:6 time required for operator to per-

form recovery action 

The resulting database (HDF5 format) was 

downloaded and analyzed on a personal laptop using 

again RAVEN. The plot of the time series for six of 

the output variables are shown in Figure 1. 

 
Figure 13. Plot of time series generated by RAVEN-RELAP5. 

Regarding the data analysis of this big dataset, 

we performed a series of clustering operations using 

several algorithms as follows: 

1. We initially performed a hierarchical cluster-

ing coupled with DTW distance metric. From 

here we were able to clearly partition the data 



set into two clusters (see dendrogram of Figure 

14): 

a. Cluster 1 (see Figure 15 top): this cluster 

contains all simulations that led to system 

failure outcome. In addition this cluster 

contains also a few simulations that even 

though they did not led to system failure.  

By looking at Figure 15, these simula-

tions can be observed at the far right of 

the top left plot. These simulations would 

have actually led to system failure out-

come if the simulation end-time stopping 

condition would have not met; thus, they 

can be considered as “false positives”. 

b. Cluster 2 (see Figure 15 bottom): this 

cluster contains all scenarios that led to 

system success outcome. Note that many 

scenarios have very high clad tempera-

tures due to the fact that system recovery 

occurred prior system failure event. 

2. We then considered time series contained in 

Cluster 2 and on it we performed a further 

clustering using Mean-Shift. Given the struc-

ture of this data set, we were able to obtain 

again two clusters: Cluster 1_1 (see Figure 

16 top) and Cluster 1_2 (see Figure 16 bot-

tom). By looking at the temporal profiles of 

the scenarios contained in each cluster it is 

possible to observe that the temperatures at 

the end of the transients are significantly dif-

ferent: in the [350,400] interval for Cluster 

1_1 and in the [700,1100] interval for Cluster 

1_2. 

 
Figure 14. Dendrogram obtained by the hierarchical algorithm. 

By analyzing the distribution of the input param-

teres for both clusters we were able to deduce that 

only a combination of seal LOCA size (1000101:3), 

seal LOCA timing (20600700:6) and operator action 

timing (20600610:6) values create such different be-

havior. 

 

 
Figure 15. Plot of the time histories contained in Cluster 1 (top) and 

Cluster 2 (bottom) 

Thus, we studied the combination of these three 

input variables by scatter plotting each simulation 

run in this 3D input space (see Figure 17). What we 

obtained is unexpected: 

 Simulation runs in Cluster 1_2 are character-

ized by values the [0.01,0.04] interval range 

for seal LOCA size and lower values for seal 

LOCA timing 

 Simulation runs in Cluster 1_1 are character-

ized by values outside the [0.01,0.04] interval 

range for seal LOCA size and lower values for 

seal LOCA timing and higher values of LOCA 

timing 

Note that the cloud of points shown in Figure 17 

of Cluster 1_1 appear to surround the left, right and 

top boundaries of the cloud of points of Cluster 1_2. 

In summary, using the analytical model data set 

we were able to gather the following information: 

The first level clustering revealed a small subset 

of simulations (6 runs) which even though they 

could be considered success only because the mis-

sion time stopping condition happened right before 

failure outcome was met. Thus, these simulations 

can be considered as false positive (i.e., simulation 

runs characterized by a false successful system out-

come). Only by employing a first-derivative time se-

ries re-sampler coupled with hierarchical clustering 



with DTW warping it was possible to discover these 

false positive. The factor that clearly characterizes 

these clusters is the operator recovery timing. A val-

ue of 10000 seconds for operator recovery timing is 

the threshold level. 

 

 
Figure 16. Plot of the time histories contained in Cluster 1_1 (top) and 

Cluster 1_2 (bottom) 

 The most relevant data exploration occurred at 

the second level clustering where only simula-

tion runs leading to a successful outcome. Here 

we noticed two clear trends in the generated 

simulations. By looking at Figure 16 it was 

possible to identify such distinction but classi-

cal statistical methods would have failed to 

create a clear partition of the dataset. We were 

able to obtain such clear separation by parti-

tioning the data set into three clusters (i.e., 

Cluster 1, Cluster 1_1 and Cluster 1_2
6
) ob-

tained by employing clustering in two levels. 

The scatter plots shown in Figure 17 indicate 

that depending on the values of seal LOCA 

size, seal LOCA timing and operator action 

timing create two behave in the SFP in term of 

final clad temperature and SFP water level. 

 

                                                 
6 Recall that Cluster 2 is the union of Cluster 1_1 and Cluster 1_2 

 

 
Figure 17. Scatter plot of three stochastic variables for the scenarios in 

Cluster 1_1 and Cluster 1_2: seal LOCA size (1000101:3), seal LOCA 

timing (20600700:6) and operator action timing (20600610:6). 

8 CONCLUSIONS 

In this paper we have presented an overview of 

methods that can be employed to analyze time de-

pendent data. We cover all main aspects of a typical 

analyze ranging from data pre-processing, metric 

choice, data searching and clustering. These algo-

rithms have been developed or are under current de-

velopment within the RAVEN statistical framework. 
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