
Assembling Multiple Models Within the RAVEN Framework

A. Alfonsi*, C. Rabiti*, D. Mandelli*

* Idaho National Laboratory
andrea.alfonsi@inl.gov, cristian.rabiti@inl.gov, diego.mandelli@inl.gov

INTRODUCTION

RAVEN (Risk Analysis Virtual ENvironment) [1,2,3]
is an INL-developed software tool that can be used to
identify and increase the safety margin in complex systems.

As a generic software framework, RAVEN is designed
to perform parametric and probabilistic analysis based on
the response of complex system codes. RAVEN is capable
of investigating the system response as well as the input
space using Monte Carlo, Grid, or Latin Hyper Cube
sampling schemes, but its strength is focused toward system
feature discovery, such as limit surfaces, separating regions
of the input space leading to system failure, using dynamic
supervised learning techniques.

RAVEN is currently able to construct multi-targets
Reduced Order Models [4], which are aimed to represent the
response of a system (in a fixed configuration) for multiple
Figures of Merits (FOMs) and time-dependent ROMs [5,6].
These capabilities represent the initial steps for a larger
implementation about the interaction of multiple models. In
fact, in several cases, multiple models need to interface with
each other since the initial conditions of one are dependent
on the outcomes of another.

To better understand the problem that here is solved, it
is useful to consider a simple example:
• The following problem is considered: a weather

forecast simulation code “a” is used to compute the
external (i.e. ambient) temperature in a certain location.
A second model “b” is inquired to compute the average
temperature in a room having as boundary condition,
among several others, the external ambient temperature.
The response of the model “b” depends on the outcome
of the model “a”.

The reported example is only aimed to illustrate the reason
why the creation of a framework to make interact different
models is a key development for the advancement of
RAVEN as a comprehensive calculation flow driver.
Before reporting how the ensemble-models have been
implemented, it is necessary to briefly describe the
representative Model “entities” that are available in
RAVEN.

MODELS IN RAVEN

The Model entity, in the RAVEN environment,
represents a “connection pipeline” between the input and the
output space. The RAVEN software itself does not own any
physical model (i.e., it does not possess the equations
needed to simulate a system), but implements APIs by

which any generic model can be integrated and interrogated.
In the RAVEN framework four different model categories
(entities) are defined:

• Codes
• Externals
• ROMs
• Post-Processors
The Code model represents the interface object that

establishes the communication pipe between RAVEN and
any driven code. Currently, RAVEN has APIs for several
different codes:

- RELAP5-3D and RELAP-7, a safety analysis
codes (thermal-hydraulic) developed at INL;

- Any MOOSE-based application;
- Modelica, object-oriented, declarative, multi-

domain modeling language for component-oriented
modeling of complex systems;

- MELCOR, engineering-level computer code that
models the progression of severe accidents in light-
water reactor nuclear power plants (coupling under
development by the University of Rome “La
Sapienza”);

- MAAP5, computer code that models the
progression of severe accidents in light-water
reactor nuclear power plants (coupling performed
by the Ohio State University);

- And several others.

The data exchange between RAVEN and the driven

code can be performed either by direct software interface or
by files such as input files. If the system code is
parallelized, the data exchanging by files is generally the
way to follow since it can be much more optimized in large
clusters.

The External model allows the user to create, in a
Python file (imported, at run-time, in the RAVEN
framework), its own model (e.g. set of equations
representing a physical model, connection to another code,
control logic, etc.). This model will be interpreted/used by
the framework and, at run-time, will become part of
RAVEN itself.

The ROM (Reduced Order Model) represents an API to
several different algorithms. A ROM is a mathematical
representation of a system, used to predict a selected output
space of a physical system. The creation and sub-sequential
usage of a ROM involves a procedure named “training”.
The “training” is a process that uses sampling of the

physical model to improve the prediction capability
(capability to predict the status of the system given a
realization of the input space) of the ROM. More
specifically, in RAVEN the ROM is trained to emulate a
high fidelity numerical representation (system codes) of the
physical system.

The Post-Processor model is aimed to manipulate the
data generated, for example, employing a sampling strategy.
In RAVEN several different post-processors are available:
1) Statistics Post-Processor, aimed to compute all the
statistical figure of merits (e.g. expected values, variance,
skewness, covariance matrix, sensitivity coefficients, etc.);
2) Limit Surface, which computes the Limit Surface,
inquiring a goal function (i.e. a function that determines if a
certain coordinate in the input space led to a failure or
success), and so many others.

ENSEMBLE MODEL STRUCTURE IN RAVEN

As already mentioned, in several cases multiple models
need to interface with each other since the initial conditions
of some are dependent on the outcomes of others. In order
to face this problem in the RAVEN framework, a new
model category (e.g. class), named EnsambleModel, was
implemented [7]. This class is able to assemble multiple
models of other categories (i.e. Code, External Model,
ROM), identifying the input/output connections, and,
consequentially the order of execution and which sub-
models can be executed in parallel.

Figure 1 - Example of an EnsembleModel constituted

by 3 sequential sub-models.

Figure 1 reports an example of an EnsembleModel that

is constituted by 3 sub-models (ROMs, Codes, or External
Models). As it can be noticed:

- The Model 2 is connected with the Model 1
through the variable Θ (Model 1 output and Model
2 input);

- The Model 3 is connected with the Model 2
through the variable Π (Model 2 output and Model
3 input);

In this case, the EnsembleModel is going to drive the
execution of all the sub-models in a serial sequence, since

each model (except the Model 1) is dependent on one of the
outcomes of previously executed.

In several cases, the input of a model depends on the
output of another model whose input is the output of the
initial model. In this situation, the system of equation is
non-linear and an iterative solution procedure needs to be
employed. The EnsembleModel entity in RAVEN is able to
detect the non-linearity of the sub-models’ assembling and
activate the non-linear solver: an iterative scheme. Figure 2
shows an example of when the EnsembleModel entity
activates the iteration scheme, which ends when the residue
norm (between an iteration and the other) falls below a
certain input-defined tolerance.

Figure 2 – EnsembleModel resolving in a non-linear

system of equations – Numerical iterations.

Figure 3 - EnsembleModel data exchange.

In RAVEN all the models’ outputs (e.g. whatever code

output, etc.) are collected in internal containers (named
DataObjects) that are aimed to store time-series and
input/output data relations in a standardized fashion; in this
way, the communication of the output information among
different entities (i.e. Models) can be completely agnostic
with respect to the particular type of output generated by a
model. The Ensemble-Model entity fully leverages this

Model 1 x1 =
α
β

!

"
##

$

%
&& y1 =

Θ
Σ

#

$
%

&

'
(

Model
N-1

xN−1 =
Θ
δ

#

$
%

&

'
(yN−1 =

Φ
Π

$

%
&

'

(
)

Model N xN =
Π
µ

"

#
$$

%

&
'' yN =

Ψ
Γ

#

$
%

&

'
(

Model&1"x1 =
Γ
β

"

#
$$

%

&
'' y1 =

Θ
Σ

#

$
%

&

'
(

Model&
N$1"

xN−1 =
Θ
δ

#

$
%

&

'
(yN−1 =

Φ
Π

$

%
&

'

(
)

Model&N"xN =
Π
µ

"

#
$$

%

&
'' yN =

Ψ
Γ

#

$
%

&

'
(

PICARD’S&ITERATIONS&

Data Objects
Point Set

History Set

Model 1

Model 2 Model N

Model …

Inputs Outputs

Ensemble Model

peculiarity in order to transfer the data from a Model to the
other(s).

Based on the Input/Output relations of each sub-
models, the EnsembleModel entity constructs the order of
their execution and, consequentially, the links among the
different entities.

ENSEMBLE MODEL FOR 1-D FIGURE OF MERITS

The initial infrastructure of the EnsembleModel was
able to transfer information among different models just in
case of scalar quantities (e.g. peak clad temperature,
constant thermal conductivities, etc.). This limitation was
connected to the fact that in RAVEN the concept of “input
realization” was limited to scalar values (i.e. the RAVEN
code was able to perturb the input space in terms of scalar
quantities). Since the increasing interest in using RAVEN
also oriented to interconnection among heterogeneous
Models’ entities, the concept of treatable “input
realizations” has been revised, including the possibility to
process 1-D realizations.

Figure 3 schematically shows the communication
piping established by the EnsembleModel entity. It can be
noticed how the sub-models share information
(inputs/outputs data) using the DataObjects entity as
communication network.

Figure 4 – Pump controller model scheme

APPLICATION EXAMPLE
In order to test the newly developed capability to process 1-
D FOMs in an EnsembleModel configuration, two models
have been considered:
• A pump controller model (Model B) for a hypothetical

simplified PWR model (see Figure 4) has been used. It
consists of the following components:
o Reactor core (RX)
o Motor operated pump
o Pump digital controller
o Heat exchanger (HX)

This system is responsible to remove the decay heat
generated from the core (RX) in order to avoid damage of
the core itself. While we assumed that both the HS and the
pump are perfectly reliable components (i.e., no failure can
be introduced) the digital pump controller reliability model
has been performed using a continuous time Markov Chain
formulation.

In more detail, the controller has been modeled using 4
states (Figure 5):

o Operating: controller operating as designed
o Failed closed: controller failed by sending close

signal to pump (i.e., pump not running)
o Failed stuck: controller failed by sending oldest

valid signal to pump
o Failed random: controller failed by sending close

signal to pump
Since the scope of this exercise is to show the new

capability in RAVEN, an additional

Figure 5 - Continuos time Markov model for the pump
controller

In order to perform such analysis the model has been
coded as a RAVEN external model (see Sect. 2.2) which
determine the temporal profile of core temperature give the
two stochastic parameters:

o Pump controller failure time (CNTRf,time)
o Pump controller failure mode (CNTRf,mode)
The dynamic of the hypothetical system has been

modeled using basic mass and energy conservation laws so
no effective engineering conclusions can be gathered by this
example.
• A power history generator model (Model A) has been

used. It employs of the following simple equation:
𝑃𝑜𝑤𝑒𝑟 𝑡 = 1,500 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔! ∗ exp (−𝑡)

pump$
HX$RX

Controller

Figure 6 - Ensemble Model scheme for PWR controller
example

The power multiplier (scalingP) is an additional

stochastic parameter in this example analysis (Uniform
between 0.5 and 1.2).

The EnsembleModel data flow is shown in Figure 6.
The Model A generates a Power history (time-dependent)
that is passed into the Model B that employs the balance
analysis. Even if the presented example is quite simplified,
it shows the potential of this added capability.

By using RAVEN we sampled the three stochastic
parameters using a Monte-Carlo algorithm and generated
1500 simulations as shown in Figures Figure 7 and Figure 8.
Note in Figure 8 (i.e., Model B) that in some cases elevated
temperatures are recorded due to the potential failures of the
pump in the system.

Figure 7 - Plot of the 1500 histories (Power - Model B)
generated by RAVEN

Figure 8 - Plot of the 1500 histories (Temperature – Model
A) generated by RAVEN

Figure 9 – Input space partitioning with respect to
maximum temperature in the system

Figure 10 - Input space partitioning with respect to the
outcome of scenario (failure/success)

scalingP)

Model&A&

Model&B&

P(t)&

Sampling&

CNTRf,0me) CNTRf,mode)

T(t)& status&

In Figures Figure 9 and Figure 10 it can be seen as most of
the failures happened in failure mode 1 (i.e. controller failed
by sending close signal to pump (i.e., pump not running).
This simple example testifies how RAVEN can share 1-
Dimensional Figure of Merits, abstracting the concept of
“input realization” from scalars (e.g. uncertainty on thermal
conductivity) to vectors (e.g. power histories).

FINAL REMARKS

The upgrade of the EnsembleModel capability in
RAVEN in order to process 1-Dimensional Figure of Merits
represents a development that determined the need to
abstract the concept of “input realization” in the RAVEN
code. RAVEN has extended the concept of “input
realization” to any scalar and 1-Dimensional Figure of
Merits (i.e. parameter and vectorial uncertainties). This
abstraction makes the EnsembleModel infrastructure capable
to handle the current and future challenges and needs within
the RISMC “Industrial Applications” since they rely on
multiple models (i.e. codes), communicate through a
common interfaced infrastructure, and combine high-fidelity
codes with surrogate modeling. Future work in RAVEN is
to extend the EnsembleModel infrastructure in order to
process High-Density fields (both as input and output
spaces). This development is needed in order to make the
framework able to interface surrogate models that are
“trained” on mesh-data (e.g. 3-Dimensional power maps,
etc.).

REFERENCES
1. A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, and R.

Kinoshita, “RAVEN as a tool for dynamic probabilistic
risk assessment: Software overview,” in Proceeding of
M&C2013 International Topical Meeting on
Mathematics and Computation, CD-ROM, American
Nuclear Society, LaGrange Park, IL, 2013.

2. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, R.
Kinoshita, A. Naviglio, “Dynamic Event Tree Analysis
Through RAVEN”, International Topical Meeting on
Probabilistic Safety Assessment and Analysis (PSA
2013), September 22-26, Columbia, SC, USA, (2013).

3. A. A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, and
R. Kinoshita, “RAVEN: Development of the adaptive
dynamic event tree approach,” Tech. Rep. INL/MIS-14-
33246, Idaho National Laboratory (INL), (2014)

4. A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, S. Sen,
and C. Smith, “Improving limit surface search
algorithms in raven using acceleration schemes”,
INL/EXT-15-36100 (July 2015).

5. D. Mandelli, C. Smith, A. Alfonsi, C. Rabiti, J.
Cogliati, H. Zhao, I. Rinaldi, D. Maljovec, P.Talbot, B.
Wang, V. Pascucci “Reduced Order Model
Implementation in the Risk-Informed Safety Margin
Characterization Toolkit.” INL/EXT-15-36649
(September 2015)

6. C. Rabiti, A. Alfonsi, D. Huang, F. Gleicher, B. Wang,
H. S. Abdel-Khalik, V. Pascucci, and C. L. Smith,
“System Reliability Analysis Capability and Surrogate
Model Application in RAVEN”, INL/EXT-16-37243
(November 2016).

7. A. Alfonsi, C. Rabiti, D. Maljevoic, D. Mandelli, J.
Cogliati, “Enhancements to the RAVEN code in
FY16”, INL/EXT-16-40094 (September 2016).

