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INTRODUCTION 

RAVEN (Risk Analysis Virtual ENvironment) [1,2,3] 
is an INL-developed software tool that can be used to 
identify and increase the safety margin in complex systems.  

As a generic software framework, RAVEN is designed 
to perform parametric and probabilistic analysis based on 
the response of complex system codes. RAVEN is capable 
of investigating the system response as well as the input 
space using Monte Carlo, Grid, or Latin Hyper Cube 
sampling schemes, but its strength is focused toward system 
feature discovery, such as limit surfaces, separating regions 
of the input space leading to system failure, using dynamic 
supervised learning techniques.  

RAVEN is currently able to construct multi-targets 
Reduced Order Models [4], which are aimed to represent the 
response of a system (in a fixed configuration) for multiple 
Figures of Merits (FOMs) and time-dependent ROMs [5,6]. 
These capabilities represent the initial steps for a larger 
implementation about the interaction of multiple models. In 
fact, in several cases, multiple models need to interface with 
each other since the initial conditions of one are dependent 
on the outcomes of another.  

To better understand the problem that here is solved, it 
is useful to consider a simple example: 
• The following problem is considered: a weather 

forecast simulation code “a” is used to compute the 
external (i.e. ambient) temperature in a certain location. 
A second model “b” is inquired to compute the average 
temperature in a room having as boundary condition, 
among several others, the external ambient temperature.  
The response of the model “b” depends on the outcome 
of the model “a”. 

The reported example is only aimed to illustrate the reason 
why the creation of a framework to make interact different 
models is a key development for the advancement of 
RAVEN as a comprehensive calculation flow driver.  
Before reporting how the ensemble-models have been 
implemented, it is necessary to briefly describe the 
representative Model “entities” that are available in 
RAVEN.   
 
MODELS IN RAVEN 

The Model entity, in the RAVEN environment, 
represents a “connection pipeline” between the input and the 
output space. The RAVEN software itself does not own any 
physical model (i.e., it does not possess the equations 
needed to simulate a system), but implements APIs by 

which any generic model can be integrated and interrogated. 
In the RAVEN framework four different model categories 
(entities) are defined:   

• Codes 
• Externals 
• ROMs 
• Post-Processors 
The Code model represents the interface object that 

establishes the communication pipe between RAVEN and 
any driven code. Currently, RAVEN has APIs for several 
different codes: 

- RELAP5-3D and RELAP-7, a safety analysis 
codes (thermal-hydraulic) developed at INL; 

- Any MOOSE-based application; 
- Modelica, object-oriented, declarative, multi-

domain modeling language for component-oriented 
modeling of complex systems; 

- MELCOR, engineering-level computer code that 
models the progression of severe accidents in light-
water reactor nuclear power plants (coupling under 
development by the University of Rome “La 
Sapienza”); 

- MAAP5, computer code that models the 
progression of severe accidents in light-water 
reactor nuclear power plants (coupling performed 
by the Ohio State University); 

- And several others. 
 
The data exchange between RAVEN and the driven 

code can be performed either by direct software interface or 
by files such as input files. If the system code is 
parallelized, the data exchanging by files is generally the 
way to follow since it can be much more optimized in large 
clusters.  

The External model allows the user to create, in a 
Python file (imported, at run-time, in the RAVEN 
framework), its own model (e.g. set of equations 
representing a physical model, connection to another code, 
control logic, etc.). This model will be interpreted/used by 
the framework and, at run-time, will become part of 
RAVEN itself.  

The ROM (Reduced Order Model) represents an API to 
several different algorithms. A ROM is a mathematical 
representation of a system, used to predict a selected output 
space of a physical system. The creation and sub-sequential 
usage of a ROM involves a procedure named “training”. 
The “training” is a process that uses sampling of the 



physical model to improve the prediction capability 
(capability to predict the status of the system given a 
realization of the input space) of the ROM. More 
specifically, in RAVEN the ROM is trained to emulate a 
high fidelity numerical representation (system codes) of the 
physical system.  

The Post-Processor model is aimed to manipulate the 
data generated, for example, employing a sampling strategy. 
In RAVEN several different post-processors are available: 
1) Statistics Post-Processor, aimed to compute all the 
statistical figure of merits (e.g. expected values, variance, 
skewness, covariance matrix, sensitivity coefficients, etc.); 
2) Limit Surface, which computes the Limit Surface, 
inquiring a goal function (i.e. a function that determines if a 
certain coordinate in the input space led to a failure or 
success), and so many others. 

 
ENSEMBLE MODEL STRUCTURE IN RAVEN 

As already mentioned, in several cases multiple models 
need to interface with each other since the initial conditions 
of some are dependent on the outcomes of others. In order 
to face this problem in the RAVEN framework, a new 
model category (e.g. class), named EnsambleModel, was 
implemented [7]. This class is able to assemble multiple 
models of other categories (i.e. Code, External Model, 
ROM), identifying the input/output connections, and, 
consequentially the order of execution and which sub-
models can be executed in parallel.  

 

 
Figure 1 - Example of an EnsembleModel constituted 

by 3 sequential sub-models. 
 
Figure 1 reports an example of an EnsembleModel that 

is constituted by 3 sub-models (ROMs, Codes, or External 
Models). As it can be noticed: 

- The Model 2 is connected with the Model 1 
through the variable Θ (Model 1 output and Model 
2 input); 

- The Model 3 is connected with the Model 2 
through the variable Π (Model 2 output and Model 
3 input); 

In this case, the EnsembleModel is going to drive the 
execution of all the sub-models in a serial sequence, since 

each model (except the Model 1) is dependent on one of the 
outcomes of previously executed. 

In several cases, the input of a model depends on the 
output of another model whose input is the output of the 
initial model. In this situation, the system of equation is 
non-linear and an iterative solution procedure needs to be 
employed. The EnsembleModel entity in RAVEN is able to 
detect the non-linearity of the sub-models’ assembling and 
activate the non-linear solver: an iterative scheme. Figure 2 
shows an example of when the EnsembleModel entity 
activates the  iteration scheme, which ends when the residue 
norm (between an iteration and the other) falls below a 
certain input-defined tolerance. 

 

 
Figure 2 – EnsembleModel resolving in a non-linear 

system of equations – Numerical iterations. 
 

 
Figure 3 - EnsembleModel data exchange. 

 
In RAVEN all the models’ outputs (e.g. whatever code 

output, etc.) are collected in internal containers (named 
DataObjects) that are aimed to store time-series and 
input/output data relations in a standardized fashion; in this 
way, the communication of the output information among 
different entities (i.e. Models) can be completely agnostic 
with respect to the particular type of output generated by a 
model. The Ensemble-Model entity fully leverages this 
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peculiarity in order to transfer the data from a Model to the 
other(s).  

Based on the Input/Output relations of each sub-
models, the EnsembleModel entity constructs the order of 
their execution and, consequentially, the links among the 
different entities. 

 
ENSEMBLE MODEL FOR 1-D FIGURE OF MERITS 

The initial infrastructure of the EnsembleModel was 
able to transfer information among different models just in 
case of scalar quantities (e.g. peak clad temperature, 
constant thermal conductivities, etc.). This limitation was 
connected to the fact that in RAVEN the concept of “input 
realization” was limited to scalar values (i.e. the RAVEN 
code was able to perturb the input space in terms of scalar 
quantities). Since the increasing interest in using RAVEN 
also oriented to interconnection among heterogeneous 
Models’ entities, the concept of treatable “input 
realizations” has been revised, including the possibility to 
process 1-D realizations.  

Figure 3 schematically shows the communication 
piping established by the EnsembleModel entity. It can be 
noticed how the sub-models share information 
(inputs/outputs data) using the DataObjects entity as 
communication network. 

Figure 4 – Pump controller model scheme 
 

APPLICATION EXAMPLE 
In order to test the newly developed capability to process 1-
D FOMs in an EnsembleModel configuration, two models 
have been considered: 
• A pump controller model (Model B) for a hypothetical 

simplified PWR model (see Figure 4) has been used. It 
consists of the following components:  
o Reactor core (RX) 
o Motor operated pump 
o Pump digital controller 
o Heat exchanger (HX)  

This system is responsible to remove the decay heat 
generated from the core (RX) in order to avoid damage of 
the core itself. While we assumed that both the HS and the 
pump are perfectly reliable components (i.e., no failure can 
be introduced) the digital pump controller reliability model 
has been performed using a continuous time Markov Chain 
formulation. 

In more detail, the controller has been modeled using 4 
states (Figure 5): 

o Operating: controller operating as designed 
o Failed closed: controller failed by sending close 

signal to pump (i.e., pump not running) 
o Failed stuck: controller failed by sending oldest 

valid signal to pump 
o Failed random: controller failed by sending close 

signal to pump  
Since the scope of this exercise is to show the new 

capability in RAVEN, an additional   

 
Figure 5 - Continuos time Markov model for the pump 
controller 
 

In order to perform such analysis the model has been 
coded as a RAVEN external model (see Sect. 2.2) which 
determine the temporal profile of core temperature give the 
two stochastic parameters: 

o Pump controller failure time (CNTRf,time) 
o Pump controller failure mode (CNTRf,mode) 
The dynamic of the hypothetical system has been 

modeled using basic mass and energy conservation laws so 
no effective engineering conclusions can be gathered by this 
example.  
• A power history generator model (Model A) has been 

used. It employs of the following simple equation: 
𝑃𝑜𝑤𝑒𝑟 𝑡 =   1,500 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔! ∗ exp  (−𝑡) 
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Figure 6 - Ensemble Model scheme for PWR controller 
example 

 
The power multiplier (scalingP) is an additional 

stochastic parameter in this example analysis (Uniform 
between 0.5 and 1.2). 

The EnsembleModel data flow is shown in Figure 6. 
The Model A generates a Power history (time-dependent) 
that is passed into the Model B that employs the balance 
analysis. Even if the presented example is quite simplified, 
it shows the potential of this added capability.  

By using RAVEN we sampled the three stochastic 
parameters using a Monte-Carlo algorithm and generated 
1500 simulations as shown in Figures Figure 7 and Figure 8. 
Note in Figure 8 (i.e., Model B) that in some cases elevated 
temperatures are recorded due to the potential failures of the 
pump in the system. 

 
Figure 7 - Plot of the 1500 histories (Power - Model B) 
generated by RAVEN 

 
Figure 8 - Plot of the 1500 histories (Temperature – Model 
A) generated by RAVEN 

 
Figure 9 – Input space partitioning with respect to 
maximum temperature in the system 

 
Figure 10 - Input space partitioning with respect to the 
outcome of scenario (failure/success) 
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In Figures Figure 9 and Figure 10 it can be seen as most of 
the failures happened in failure mode 1 (i.e. controller failed 
by sending close signal to pump (i.e., pump not running). 
This simple example testifies how RAVEN can share 1-
Dimensional Figure of Merits, abstracting the concept of 
“input realization” from scalars (e.g. uncertainty on thermal 
conductivity) to vectors (e.g. power histories). 
 
FINAL REMARKS 

The upgrade of the EnsembleModel capability in 
RAVEN in order to process 1-Dimensional Figure of Merits 
represents a development that determined the need to 
abstract the concept of “input realization” in the RAVEN 
code. RAVEN has extended the concept of “input 
realization” to any scalar and 1-Dimensional Figure of 
Merits (i.e. parameter and vectorial uncertainties). This 
abstraction makes the EnsembleModel infrastructure capable 
to handle the current and future challenges and needs within 
the RISMC  “Industrial Applications” since they rely on 
multiple models (i.e. codes), communicate through a 
common interfaced infrastructure, and combine high-fidelity 
codes with surrogate modeling.  Future work in RAVEN is 
to extend the EnsembleModel infrastructure in order to 
process High-Density fields (both as input and output 
spaces). This development is needed in order to make the 
framework able to interface surrogate models that are 
“trained” on mesh-data (e.g. 3-Dimensional power maps, 
etc.). 
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