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INTRODUCTION

Developments in uncertainty quantification in nuclear
simulations have decreased the computational cost required
to perform accurate sensitivity analysis [1, 2, 3, 4]. Imple-
mentation of these methods in the RAVEN [5] framework
allows additionally for time-dependent sensitivity analysis
of uncertain input variables. By demonstration we consider
an OECD benchmark case [6]. We propagate uncertain-
ties in the input parameters using RAVEN operating on the
BISON [7] fuels performance code. We then consider the
time-evolution of the sensitivity of several output responses
to the uncertain input parameters. We perform sensitivity
analysis using time-based stochastic collocation for gen-
eralized polynomial chaos (SCgPC) and high-dimension
model reduction (HDMR) [8].

METHODS

The details of the OECD benchmark and its parameter
uncertainties are described in [6]. The benchmark includes
a fuel pin in a steady-state PWR with power transients over
a 2000 day period. During this time there is a power ramp
up, then 2 sharp drops in power after steady-state operation
is reached. Uncertain parameters include fuel properties,
boundary conditions, and geometries. We treat each of the
uncertain inputs as independent parameters and consider
here four responses: maximum centerline fuel temperature
during the simulation, maximum creep strain experienced
by the clad, fission gas release percent, and clad elonga-
tion. The independent uncertain input parameters and their
distributions are given in Table I.

For propagation of uncertainty we make use of the
high-dimension model reduction (HDMR) expansion [9],

u(Y) = u0 +

N∑
n=1

un +

N∑
n1=1

n1−1∑
n2=1

un1,n2 + · · · , (1)

where u(Y) is the response as a function of inputs Y =
(y1, . . . , yN), N is the dimensionality of the input space, and
the components ui are defined as

u0 ≡

∫
· · ·

∫
u(Y)ρ(Y)dY, (2)

u1 ≡

∫
· · ·

∫
u(Y)ρ(y2, · · · , yN)dy2 · · · dyN , (3)

u1,2 ≡

∫
· · ·

∫
u(Y)ρ(y3, · · · , yN)dy3 · · · dyN , (4)

and so forth, where ρ(Y) is the joint probability distribution
function of Y . Each of the terms in Eq. 1 can be represented

using a generalized polynomial chaos expansion,

u(Y) ≈
∑
k∈Λ

ckΦk(Y), (5)

where Φk are multidimensional orthonormal polynomials
of order k = (k1, . . . , kN) and Λ is a combination of multi-
indices corresponding to polynomial orders. Scalar coef-
ficients ck are approximated using sparse-grid collocation
numerical integration [10],

ck =

∫
· · ·

∫
u(Y)Φk(Y)ρ(Y)dY ≈

L∑
`=1

w`u(Y`)Φk(Y`).

(6)
Sobol’ sensitivity indices are obtained from the

HDMR expansion as

Si =
var[ui]

var[u(Y)]
. (7)

The accuracy of the Sobol’ sensitivity indices is dependent
on the order of polynomials used in the subset generalized
polynomial chaos expansions. For this work, each sub-
set is limited to first-order polynomials in each dimension,
providing a linear understanding of the global sensitivities.
While higher orders may reveal additional features, the lin-
ear expansion is much less expensive to calculate and pro-
vides a reasonable analysis of the uncertainty space.

TABLE I: Uncertain Parameters
Parameter Mean Std. Dev.
clad cond. 16 2.5
clad thick 6.7e-4 8.3e-6
clad rough 5e-7 1e-7
creep rate 1 0.15
fuel cond. 1 0.05
fuel dens. 10299.24 51.4962
fuel exp. 1e-5 7.5e-7

fuel radius 4.7e-3 3.335e-6
fuel swell 5.58e-5 5.77e-6
gap cond. 1 0.025
gap width 9e-5 8.33e-6
mass flux 3460 57.67

rod pressure 1.2e6 4e4
sys pressure 1.551e7 51648.3

power scaling 1 0.016667
Parameter Low High
inlet temp 558 564
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Fig. 1: Response Mean Values

Time-dependent uncertainty analysis in RAVEN is
performed using a snapshot approach: for each requested
time step through the simulation, a HDMR expansion sur-
rogate model is created for each response using the data
reported from BISON. Interpolating between surrogates
makes the collective time-dependent surrogate model. In
this mode, it is critical to sample many time steps to pro-
vide accurate interpolation. Because the quadrature points
needed to create the HDMR surrogates is the same at each
time step, no additional BISON simulations are required to
transition from steady-state to time-dependent uncertainty
analysis.

RESULTS

The evolution of the mean and variance of the four re-
sponses over burnup is given in Figs. 1-2. Each response is
scaled linearly by the parameter shown in the legend. The
nominal power shape in time is superimposed for reference.

In general variance increases as the transients are sim-
ulated; however, some drops in the variance of the max
centerline temperature warrant attention. Immediately af-
ter each power drop, the max centerline temperature drops
significantly as well. Because the variance is dominated
by the system power near the transients, the system power
scaling factor is the chief source of variance. Since the un-
certain parameter is a scaling factor, a reduction in the total
power results in a smaller variance, which is reflected in
the reduction in variance for the max centerline tempera-
ture immediately after transients.

In Figs. 3-6, the evolution of sensitivities of various
responses are shown with respect to increasing burnup. In
addition, the power history used in the simulation is over-
layed to provide insight in time-based changes. In each
case, only the most significant uncertain inputs are shown
for clarity. There are generally 4 significant events in the
simulation cycle. The first occurs just after 1% fission per
initial metal atom (FIMA), where the fuel has expanded
enough to make contact with the clad. The remainder are
near 0.02, 0.04, and 0.06 FIMA, where the system power
drops.
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Fig. 2: Response Variance Values
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Fig. 3: Max Fuel Centerline Temperature

The max fuel centerline temperature is taken at the ax-
ial center of the fuel pin. Sensitivity to the fuel conductiv-
ity dominates over most of the variance history; however,
system power has more impact near gradients in the power
profile.

As expected, the clad creep rate is the most sensitive
parameter for clad creep strain; however, it is interesting to
note the rise and fall of the gap thickness as an important
parameter in the middle of the burnup range.

Early in life the fission gas release is dependent on sev-
eral parameters, which gives way to only the fuel conduc-
tivity and system power later.

The sensitivities in the variance of clad elongation
have three distinct sections. At the beginning, clad elon-
gation is perturbed most by clad conductivity, inlet tem-
perature, and system power, with growing influence from
fuel density. These are somewhat suddenly replaced by gap
thickness, which then slowly trades places with clad creep
rate over the remainder of the life cycle.
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Fig. 4: Max Clad Creep Strain
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Fig. 5: Fission Gas Release (Percent)
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Fig. 6: Clad Elongation

DISCUSSION

We have demonstrated how HDMR and SCgPC can
be used in RAVEN to perform time-dependent uncertainty
propagation analysis in codes modeling transient behavior.
Reviewing the time-evolution of Sobol’ sensitivities pro-
vides new methods in understanding the impact of uncer-
tain input parameters as changes occur during the transient
simulation. At small additional cost to static uncertainty
propagation, transient analysis has valuable insights to of-
fer.
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