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        The Risk-Informed Safety Margin Characterization 
(RISMC) approach is developing an advanced set of 
simulation-based methodologies in order to perform 
Probabilistic Risk Analyses. These methods randomly 
perturb (by employing sampling algorithms) 
timing/sequencing of events and uncertain parameters of 
the physics-based models in order to estimate stochastic 
outcomes such as off-normal and damage states of the 
facility. This modeling approach applied to complex 
systems such as nuclear power plants requires the analyst 
to perform a series of computationally-expensive 
simulation runs given a large set of uncertain parameters. 
One issue is related to the fact that the space of the 
possible solutions can be sampled only sparsely and this 
precludes the ability to fully analyze the impact of 
uncertainties on the system dynamics. This paper 
describes how we can use novel methods that optimize the 
information generated by the sampling process by 
sampling unexplored or risk-significant regions of the 
issue space; we call this approach adaptive (smart) 
sampling algorithms. These methods infer the system 
response using surrogate models constructed from 
existing samples and predict the best location of the next 
sample. Thus, it is possible to understand features of the 
issue space with a smaller number of carefully selected 
samples. In this paper, we present how it is possible to 
perform adaptive sampling using the RAVEN statistical 
tool and highlight the advantages compared to more 
classical sampling approaches such as Monte-Carlo.  
 

 
I. INTRODUCTION 

 
The Risk-Informed Safety Margin Characterization 

(RISMC) [1] Pathway (as part of the Light Water 
Sustainability (LWRS) Program [2]) aims to develop 
simulation-based tools and methods to assess risks for 
existing Nuclear Power Plants (NPPs). 

This Pathway, by developing new simulation-based 
methods, is extending the Probabilistic Risk assessment 
(PRA) state-of-the-practice methods [3] which have been 
traditionally based on logic structures such as Event-Trees 
(ETs) and Fault-Trees (FTs) [4]. In more detail, the 

RISMC approach uses stochastic frameworks (i.e., 
RAVEN [5]) coupled with deterministic codes that model 
specific physical aspects of the plant (e.g., thermo-
hydraulic and thermo-mechanic using RELAP5-3D [6] or 
RELAP-7 [7], and GRIZZLY [8] respectively). 

One research direction is the use of surrogate models, 
also known as Reduced Order Models (ROMs), as 
possible substitutes for one or more of the needed 
physical aspects. The use of ROMs can greatly reduce the 
computational cost of a single multi-physics simulation 
run. This advantage is relevant when many simulation 
runs need to be performed according to the desired 
stochastic analysis (usually through a stochastic sampling 
process). 

 
II. RISMC APPROACH 

 
A single simulation run can be represented as a single 

trajectory in the phase space. The evolution of such a 
trajectory in the phase space can be described as follows: 

𝜕𝜽 𝑡
𝜕𝑡

=𝓗 𝜽, 𝒔, 𝑡  (1) 

where: 
• 𝜽 = 𝜽(𝑡)  represents the status of the system as 

function of time t; 𝜽(𝑡) represents a simulation run  
• 𝓗 is the actual simulator code that describes how 𝜽 

evolves in time 
• 𝒔 = 𝒔(𝑡)  represents the status of components and 

systems of the simulator (e.g., status of emergency 
core cooling system, AC system) 

By using the RISMC approach, the PRA analysis is 
performed by following these four steps (see Fig. 1): 
1. Associating a probabilistic distribution function (pdf) 

to the set of parameters 𝒔 (e.g., timing of events) 
2. Performing stochastic sampling of the pdfs defined in 

Step 1 
3. Performing a simulation run given 𝒔 sampled in Step 

2, i.e., solve Eq. (1) 
4. Repeating Steps 2 and 3 M times and evaluating user 

defined stochastic parameters such core damage (CD) 
probability (𝑃!"). 



 
Fig. 1. Overview of the RISMC modeling approach. 

III. RAVEN FRAMEWORK 
 

In order to perform PRA analyses of NPPs, the 
RISMC pathway is employing the RAVEN statistical 
framework, which is a recent add-on of the RAVEN 
package [9] that allows the user to perform generic 
statistical analysis. By statistical analysis we include: 
sampling of codes (e.g., Monte-Carlo [10] and Latin 
Hypercube Sampling [11], grid sampling, and Dynamic 
Event Tree (DET) [12]), generation of ROMs [13] (also 
known as surrogate models or emulators) and post-
processing of the sampled data and generation of 
statistical parameters (e.g., mean, variance, covariance 
matrix). 

 
Fig. 2.  Overview of the RAVEN statistical framework. 

Figure 2 shows an overview of the elements that 
comprise the RAVEN statistical framework: 
• Model: represents the pipeline between the input and 

output spaces. It is comprised of both interfaces for 
mechanistic codes (e.g., RELAP-7) and ROMs 

• Sampler: the driver for any specific sampling strategy 
(e.g., Monte-Carlo, Latin Hypercube Sampling, DET) 

• Database: the data storing entity 
• Post-processing: module that performs statistical 

analyses and visualizes results 

RAVEN is interfaced with several codes and, 
additionally, the users can build their own interfaces for 
the code they are interested in.  

If multiple simulations need to be run, RAVEN has 
the capability to run simulations in parallel on multiple 
nodes and/or multiple CPUs. RAVEN applicability ranges 
from Linux based desktop/laptop to high performance 
computing machines. 

RAVEN has also the capability to “train” ROMs 
from any data set generated by any code. These ROMs 
are usually a blend of interpolation and regression 
algorithms and such “training process” basically consists 
of setting the optimal parameters of the interpolation and 
regression algorithms that best fit the input data set. Once 
the ROMs are generated, they can be used instead of the 
actual codes to perform any type of analysis since the 
generation of data from ROMs is much faster than the 
original code.  
 

IV. SURROGATE MODELS 
 

A ROM is a mathematical model that aims to build a 
correlation given a set of data points. The starting point is 
typically a set of 𝑁 data points: 

(𝒔𝒊,𝓗(𝒔𝒊))     𝑖 = 1,… ,𝑁 (2) 

that samples the response 𝓗(𝒔) of the original model. 
Given the set of these 𝑁 data points, the ROM is trained 
and the resulting outcome is a model 𝜣(𝒔)  [13] that 
approximates the original model 𝓗(𝒔)(see Figure 2):  

𝜣 𝒔 : 𝒔𝒊 → 𝚯(𝒔𝒊) ≅𝓗(𝒔𝒊) (3) 

The advantage is the much faster computation of 𝜣(𝒔) 
(e.g., RELAP) compared to the original model 𝓗(𝒔).  

We have identified two classes of ROM: model based 
and data based. These two classes are described in the 
next two sections. 

 
IV.A. Model Based ROMs 

 
In model based ROMs the prediction is performed 

using a blend of interpolation and regression algorithms. 
Examples are: 
• Gaussian Process Models (GPMs) 
• Multi-dimensional spline interpolators 
This class of algorithms has the advantage that they 
possess great prediction capabilities if the original 𝓗(𝒔) 
is relatively smooth (i.e., not discontinuous).  
 

IV.B. Data Based ROMs 
 

In data based ROMs the prediction is performed by 
solely considering the input data by using data searching 
algorithms. Examples are: 
• K nearest neighbor classifier (KNN) [14] 
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• Graph based models [15] 
While the predictions of this class of ROMs is limited 
compared to model based ROMs, they have the advantage 
that they are able to handle very discontinuous 𝓗(𝒔). 
 

 
Fig. 3. Example of reduced order modeling approximation of a 

sampled 3-D response surface. 

V. ADAPTIVE SAMPLING 
 

The general adaptive sampling pipeline [16,17] 
begins firstly by selecting some initial training data, 
running the simulation and obtaining a collection of true 
responses at these data points. Second, it fits a response 
surface surrogate model from the initial set of training 
data. Third, a set of candidate points is chosen in the 
parameter space based on the selected sampling 
technique, and the surrogate model is evaluated at these 
points, obtaining a set of approximated values. Fourth, 
each candidate point is assigned a score based on some 
adaptive sampling scoring function (usually derived from 
qualitative or quantitative relations between the training 
points, their true and estimated response values). Finally, 
the candidate(s) with the highest score(s) are selected and 
added to the set of training data to begin a new cycle. 

As mentioned earlier this kind of sampling strategy 
requires not only simulator codes but also one, or possibly 
more, ROMs [13]. In our case, it is possible to view the 
code as a black-box 𝓗  that produces a set of output 
variables 𝒚 given a set of input parameters 𝒔: 

𝓗: 𝒔 → 𝒚(𝑡) =𝓗 𝜽, 𝒔, 𝑡  (4) 

In addition, an “objective function” is needed. This 
function gives indications on what is the desired 
“exploration” criteria. We give more description of the 
objective functions in Section V.A. 

The main adaptive sampling steps are explained as 
follows (see Fig. 4) 
1. Perform a set of runs using the simulator code: the 

number of required runs may depend on the 
dimensionality of the input space.  

2. Given the set of simulation runs obtained in Step 1, 
create a ROM. The objective of this ROM is to: 
• Infer the response of the simulator code, i.e., 

create an approximate output given the same set 
of input parameters 

• Predict the regions in the input space that 
maximize the objective function 

3. Employ the ROM to approximate the structure of the 
goal function 

4. Identify a set of points that satisfies the conditions 
specified in the goal function 

5. Chose a subset of points from the ones obtained in 
Step 4 that maximize the goal function 

6. Perform a simulation run for each of the points 
obtained in Step 5 using the simulator code 

7. Repeat Steps 2-6 until convergence is reached  
 

 
Fig. 4. Workflow of adaptive sampling algorithms. 

V.A. Objective Functions: Limit Surface 
 

As part of safety margin quantification, the RISMC 
approach aims to evaluate a set of limit surfaces [16,17]. 
A limit surface represents the boundaries in the input 
space (i.e., d-dimensional space; each dimension is one 
the d sampled variables) that separate failure region (i.e., 
characterized by the undesired simulation outcome; e.g., 
core damage) from success region (i.e., characterized by 
the desired simulation outcome; e.g., max clad 
temperature below 2200 F). 

The limit surface has a pure deterministic value; the 
stochastic information is generated when the probability 
of occurrence of the undesired event (e.g., CD) 𝑃!"  is 
determined as: 

𝑃!" =    𝑝𝑑𝑓 𝜛   𝑑𝜛
!"#$%&'  
!"#$%&

 (5) 

(!!,!(!!)) 
!(!) !(!) 

2.  Build/improve a surrogate model: a 
model that approximates the system 
behavior 

3.  Use the ROM to determine an 
approximation of the goal function 

4.  Determine a set of candidate points 

5.  Chose the best set of candidate points  

6.  Run the “real” model to verify the 
approximation 

1.  Generate a set of training simulations to 
sample the plant response 

Reach 
convergence 

No 

Yes 

Stop 



Equation 5 shows that 𝑃!" is equal to the area of the 
failure region weighted by the probability of being in the 
failure region itself (through the pdf 𝑝𝑑𝑓 𝜛 ). 

 
Fig. 5. Example of limit surface calculation for two different 

values of core power levels. 

Figure 5 shows the limit surface in a 2-dimensional 
space generated in [18] using RAVEN coupled with 
RELAP-7 for a boiling water reactor station blackout 
initiating event. As part of the analysis, we were 
interested in the evaluation of the safety impacts of power 
uprate (reactor core power increased from 100 to 120%). 
Such evaluation has been performed by evaluating both 
the increased core damage probability ∆𝑃!" and the limit 
surface for both 100% and 120% reactor core power level. 

Note that ∆𝑃!" can be written as the same integral 
indicated in Eq. 9 but evaluated only in the expanded 
failure region (∆Ω!"#$%&') 

∆𝑃!" =    𝑝𝑑𝑓 𝜛   𝑑𝜛
∆!!"#$%&'

 (6) 

 
V.B. Convergence Criteria 

 
During the adaptive sampling step, RAVEN 

continues to generate new sample coordinates until 
convergence is reached. RAVEN allows three types of 
convergence criteria: 
1. Maximum number of samples 
2. CDF-weight: the convergence is checked in terms of 

probability (cumulative distribution function: CDF) 
3. Value-weight: the convergence is checked on the 

hyper-volume in terms of variable values 
In addition it is possible to specify a value of persistence 
which allows the user to create an additional convergence 
check. It represents the number of times the computed 
convergence error needs to be below the tolerance value 
given by the user before stopping the adaptive-sampling 
calculation. 

 

VI. TEST CASES 
 

In this section we show how the methods and 
algorithms presented in the past sections are applied for 
particular sampling cases. These sampling cases cover 
both analytical problems (see Sections VI.A. VI.B. and 
VI.C.) but also safety related applications using safety 
analysis codes such as RELAP-7 (see Section VI.D.). For 
these cases we employed SVMs with Gauss kernel (also 
know as radial basis function) [19] as ROM to guide the 
choice of the adaptive sampling samples. 
 

VI.A. Single Region 
In this simple case, the limit surface is a single region 

located at the lower left corner of a 2-dimensional space. 
This is the most basic case that can be encountered. The 
model considered for this test case, given 𝑥!  and 𝑥! 
produces an output variable 𝑦 as: 

𝑦 = 𝑥!! + 𝑥! − 0.5 (7) 

Figure 6 shows the surface representing 𝑦; this test 
case failure occurs when 𝑦 > 0 (red plane in Fig. 6) while 
the analytical limit surface is the red line shown in Fig. 6. 

 

 
Fig. 6. Analytical shape of the single region limit surface 

estimated limit surface for different adaptive sampling iterations. 

Figure 7 show a summary of the adaptive sampling 
process generated using RAVEN. Each row in the plots of 
Figure 7 corresponds to an iteration of the adaptive 
sampling process. For each iteration two plots are shown: 
sample locations (left) and the estimated limit surface 
(right). For this case convergence (convergence in value 
is equal to 5  10!) was reached after 170 samples. 

Table 1 compares the number of samples required to 
evaluate this limit surface by using classical Monte-Carlo 
and adaptive sampling. Note the much higher number of 
Monte-Carlo samples that are needed to achieve such low 
value of convergence. 

Limit Surface 



TABLE 1. Number of samples required to evaluate the single 
region limit surface by using classical Monte-Carlo and adaptive 

sampling (convergence in value is equal to 5  10!!) 

 Number of Samples 
Monte-Carlo ∼107 

Adaptive 170 
 

 
Fig. 7. Single region limit surface: sample locations and the 

estimated limit surface for different adaptive sampling iterations. 

VI.B. Multiple Regions 
 

In this second analytical test case we provided a more 
challenging test case where the limit surface lies not in 
one but in multiple regions. More specifically, the limit 
surface in the top right and bottom left corner of a 2-
dimensional space. The analytical limit surface is shown 
in Fig. 8. The scope of this test is to show how the 
sampling process is able to identify limit surfaces that are 
topologically more complex than the one presented in 
Section VI.A. 

 
Fig. 8. Analytical shape of the multiple regions limit surface. 

The sample locations and the estimated limit surface 
are shown for different steps of the sampling process, i.e. 
at iteration 1, 30, 60, 150, 250 and 371 (see Fig. 9) past 
the training sampling (performed using a 6×6 cartesian 
grid). For each iteration note how the sample locations are 
quickly approaching the exact location of the limit surface 
and the estimated limit surface is converging. Note that 
for such complex limit surface the required number of 
samples has increased compared to the case shown in 
Section VI.A.: 371 vs. 170. 

Table 2 compares the number of samples required to 
evaluate this limit surface by using classical Monte-Carlo 
and adaptive sampling. 
 
TABLE 2. Number of samples required to evaluate the multiple 
region limit surface by using classical Monte-Carlo and adaptive 

sampling (convergence in value is equal to 5  10!!) 

 Number of Samples 
Monte-Carlo ∼107 

Adaptive 371 
 

VI.C. Convex Region 
 

The third analytical case aims to test the adaptive 
sampling algorithms to identify convex limit surfaces 
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(i.e., islands).  The analytical limit surface is the result of 
the intersection of the 3-dimensional surface (see Fig. 10): 

𝑦 = 𝑥!! + 𝑥!! − 0.5 (8) 

along with the plane 𝑦 = 0 (red plane in Fig. 10). The 
resulting limit surface is shown as the red line in Fig. 10. 
 

 
Fig. 9. Multiple regions limit surface: sample locations and the 

estimated limit surface for different adaptive sampling iterations. 

We performed the adaptive sampling analysis for this 
test case following an initial 6×6 Cartesian grid sampling 
for training. The sample locations and the estimated limit 
surface are shown for different steps of the sampling 
process, i.e. at iteration 1, 30, 60, 150, 250, 350 and 456 

(see Fig. 11) past the training sampling. For each 
iteration, note how the sample locations are quickly 
approaching the exact location of the limit surface and the 
estimated limit surface is converging.  

 
Fig. 10. Analytical shape of the convex limit surface.  

Note that for such complex limit surface the required 
number of samples has increased compared to the case 
shown in Section VI.A.: 456 vs. 170. Again note such 
number of samples could drastically decrease for less 
stringent constraints on convergence criteria. 

Table 3 compares the number of samples required to 
evaluate this limit surface by using classical Monte-Carlo 
and adaptive sampling. 
 
TABLE 3. Number of samples required to evaluate the convex 

limit surface by using classical Monte-Carlo and adaptive 
sampling (convergence in value is equal to 5  10!!) 

 Number of Samples 
Monte-Carlo ∼107 

Adaptive 456 
 

VI.D. RELAP-7 Test Case 
 

The fourth case presented to test the adaptive 
sampling scheme uses a more realistic application of 
adaptive sampling using the RISMC toolkit. Here we 
employed the RELAP-7 PWR system (see Fig. 12) as 
model coupled to RAVEN to perform adaptive sampling 
testing.  

The scenario considered is a grid-related loss of off-
site power (LOOP). In more detail, the scenario is the 
following (see Fig. 13): 
1. An external event (i.e., earthquake) causes the 

disruption in the power grid and causes a LOOP 
initiating event; the reactor successfully scrams and, 
thus, the power generated in the core follows the 
characteristic exponential decay curve 

2. The DGs start and cooling to the core is provided by 
the Emergency Core Cooling System (ECCS) 

Iteration Sample Locations Estimated Limit Surface 
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Limit Surface 



 
Fig. 11. Convex limit surface: sample locations and the 

estimated limit surface for different adaptive sampling iterations. 

3. At a certain time the DGs fail and, thus, conditions of 
SBO are reached; ECCS systems is subsequently off-
line. Without the ability to cool the reactor core, its 
temperature starts to rise 

4. In order to recover AC electric power, a plant 
recovery team is assembled in order to recover one of 
the two DGs 

5. If AC power is recovered prior reaching code damage 
condition (CD), the auxiliary cooling system (i.e., 
ECCS system) is able to cool the reactor core and, 
thus, core temperature decreases 

In this case, we limit the analysis to two stochastic 
variables: 
1. Time of loss of diesel generators (DGs) after LOOP 
2. Recovery time of DGs 

The RELAP-7 PWR model has been set up based on 
the parameters specified in the OECD main steam line 
break (MSLB) benchmark problem [20]. The reference 
design for the OECD MSLB benchmark problem is 
derived from the reactor geometry and operational data of 
the TMI-1 Nuclear Power Plant (NPP), which is a 2772 
MW two loop pressurized water reactor (see the system 
scheme shown in Fig. 12). An example of PWR SBO 
scenario generated using RELAP-7 is shown Fig. 13. 

For the scope of this article we wanted to show one 
of the capabilities of RAVEN to generate ROMs and 
perform statistical analysis on them. For this case we 
collected the actual simulated data by RELAP-7 in [18], 
generated a ROM from such data and performed adaptive 
sampling on the ROM instead of the RELAP-7 code. In 
more detail, we performed the following steps: 
1. Retrieved the hdf5 data generated by sampling 

RELAP-7 in [18] 
2. Trained a ROM given the data retrieved in Step 1 
3. Sampled on a 2-dimensional Cartesian grid the ROM 

obtained in Step 2 
4. Performed adaptive sampling and limit-surface 

search 

 
Fig. 12. Scheme of the TMI PWR benchmark. 

We performed the adaptive sampling analysis for this 
test case following an initial 6×6 Cartesian grid sampling 
for training. The sample locations and the estimated limit 
surface are shown for different steps of the sampling 
process, i.e. at iteration 1, 10, 30, 60, 100, 150 and 185 
(see Fig. 14) past the training sampling. For each iteration 
note how the sample locations are quickly approaching 
the exact location of the limit surface and the estimated 
limit surface is converging.  
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Table 4 compares the number of samples required to 
evaluate this limit surface by using classical Monte-Carlo 
and adaptive sampling. 

We repeated the analysis for the case where the 
reactor power is set to 120% (i.e., a 20% power uprate). 
The scope of evaluating this new limit surface is to 
determine the reduction of the time to recovery for DGs. 
 

 
Fig. 13. Example of LOOP scenario followed by DGs failure to 

run using the RELAP-7 code. 

TABLE 4. Number of samples required to evaluate the RELAP-
7 PWR SBO limit surface by using classical Monte-Carlo and 
adaptive sampling (convergence in value is equal to 5  10!!) 

 Number of Samples 
Monte-Carlo ∼107 

Adaptive 185 
 

A 20% reactor power increase implies that clad 
temperature is increasing at a higher rate and thus the clad 
is reaching its melting temperature (2200 F) much faster. 
We performed Steps 1 though 4 for the new data set and 
evaluated the new limit surface for the 120% test case and 
the results are shown Fig. 15. 

 
Fig. 14. Limit surface obtained for two different levels of core 

power: 100% and 120%. 

 
Fig. 15. RELAP-7 limit surface: sample locations and the 

estimated limit surface for different adaptive sampling iterations. 

VII. CONCLUSIONS 
 

In this report we have given an overview of adaptive 
sampling techniques that can be used to perform PRA 
analyses using the RISMC toolkit. Classical simulation 
based approaches rely on either stochastic (e.g., Monte-
Carlo or LHS) or deterministic (e.g., DET) sampling. As 
part of the RISMC Pathway, the type of results that can be 
obtained via simulation goes beyond the evaluation of 
probability of occurrence of certain events such core 
damage and containment breach.  
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The RISMC approach aims to determine observable 
outcomes in order to understand potential vulnerabilities 
and the limitations of the system under consideration. In 
order to do so, there is a need to deeply explore the space 
of possible events.  

For complex systems such as nuclear power plants, 
such exploration may require a large number of 
computationally expensive simulation runs which can be 
infeasible unless very large high-performance computing 
resources are used. 

Adaptive sampling techniques aim to reduce the 
computational costs of this kind of analysis by carefully 
selecting what are the most meaningful simulation runs to 
be performed. We have shown how such reduction can be 
achieved for both analytical and more complicated cases. 
In addition we have shown the kind of information that 
can be obtained by employing system simulator codes 
(e.g., RELAP-7) and stochastic analysis tools (e.g., 
RAVEN) that is unavailable if classical PRA tools (event-
tree and fault-tree based) are used.  

Classical PRA tools give a limited representation of 
the system under consideration, for example the timing 
and sequencing of events is only loosely considered. In 
[21] we have performed a comparison on classical and 
RISMC PRA analyses for a BWR SBO test case and we 
have shown not only the greater amount of information 
that can be obtained using the RISMC approach but also 
major differences regarding probability of occurrences of 
certain event sequences.  
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