
13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 
2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

1 

 
AN OVERVIEW OF REDUCED ORDER MODELING TECHNIQUES FOR SAFETY APPLICATIONS 

 
 

D. Mandelli†, A. Alfonsi, P. Talbot, C. Wang, D. Maljovec, C. Smith, C. Rabiti, J. Cogliati 
 

Idaho National Laboratory, 2525 North Fremont Street, Idaho Falls (ID) 
† Corresponding author: diego.mandelli@inl.gov 

 
 

 
        The RISMC project is developing new advanced simulation-based tools to perform Computational Risk Analysis (CRA) 
for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermal-hydraulic 
behavior of the reactors primary and secondary systems, but also external event temporal evolution and component/system 
ageing. Thus, this is not only a multi-physics problem being addressed, but also a multi-scale problem (both spatial, µm-mm-
m, and temporal, seconds-hours-years). As part of the RISMC CRA approach, a large amount of computationally-expensive 
simulation runs may be required. An important aspect is that even though computational power is growing, the overall 
computational cost of a RISMC analysis using brute-force methods may be not viable for certain cases. A solution that is 
being evaluated to assist the computational issue is the use of reduced order modeling techniques. During the FY2015, we 
investigated and applied reduced order modeling techniques to decrease the RISMC analysis computational cost by 
decreasing the number of simulation runs; for this analysis improvement we used surrogate models instead of the actual 
simulation codes. This article focuses on the use of reduced order modeling techniques that can be applied to RISMC 
analyses in order to generate, analyze, and visualize data. In particular, we focus on surrogate models that approximate the 
simulation results but in a much faster time (microseconds instead of hours/days).  
 

 
I. INTRODUCTION 

 
In the Risk Informed Safety Margin Characterization (RISMC) [1] approach, what we want to understand is not just the 

frequency of an event like core damage, but how close we are (or not) to key safety-related events and how might we increase 
the safety margin.  A safety margin can be characterized in one of two ways: 
• A deterministic margin, typically defined by the ratio (or, alternatively, the difference) of a capacity (i.e., strength) 

over the load 
• A probabilistic margin, defined by the probability that the load exceeds the capacity. A probabilistic safety margin is a 

numerical value quantifying the probability that a safety metric (e.g., for an important process observable such as clad 
temperature) will be exceeded under accident scenario conditions. 

The RISMC Pathway uses the probabilistic methods to determine safety margins and quantify their impacts to reliability 
and safety for existing Nuclear Power Plants (NPPs), i.e., pressurized and boiling water reactors (PWRs and BWRs).  As part 
of the quantification, we use both probabilistic (via risk simulation) and mechanistic (via system simulators) approaches. 
Probabilistic analysis is represented by the risk analysis while mechanistic analysis is represented by the plant physics 
calculations. In the plant simulation, all the deterministic aspects that characterize system dynamics (e.g., thermo-hydraulic, 
thermo-mechanics, neutronics) are coupled to each other. 

The risk simulation contains all deterministic elements that impact accident evolution (such as safety systems control 
logic and accident scenario initial and boundary conditions) in addition to stochastic ones (such as system/component failures 
and stochastic perturbation of internal elements of the physics simulation). The stochastic analysis [2] is performed in two 
steps: 1) sampling the stochastic parameters, and 2) evaluating the system response for the given set of sampled parameters. 

In the RISMC applications, system simulator codes model not only plant thermo-hydraulic, thermo-mechanic, neutronic 
and ageing behavior but also model external event and human interactions with the plant itself. This is not only a multi-
physics problem (i.e., different sets of equations are solved) but also a multi-scale one (i.e., both temporal and spatial scales). 
The drawback is that a single plant accident analysis (e.g., prediction of the seismic response of a BWR that underwent to a 
60 years life extension license) might require long computational time that grows exponentially if multiple runs (through the 
sampling process) are needed. 

In [3] we have focused our attention on the sampling strategies that we are employing. We initially employed classical 
sampling algorithms like Monte-Carlo, Grid and Latin Hypercube. In addition, we investigated more advanced sampling 
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algorithms that aim to reduce the number of samples required to perform the desired stochastic analysis. We have shown how 
this reduction would allow the user to greatly reduce the computational costs of a typical RISMC analysis. 

In this article, however we are focusing on how we can reduce the computational costs by more broadly employing 
Reduced Order Modeling techniques in typical RISMC-type analyses. We will show how reduced order modeling techniques 
can be applied to any RISMC analysis to generate, analyze and visualize data. In particular, we focus on surrogate models 
that approximate the simulation results but in a much faster time (microseconds instead of hours/days). We apply reduced 
order and surrogate modeling techniques to several RISMC types of analyses using RAVEN [4] and show the advantages that 
can be gained. 
 
II. RISMC METHOD 
 

The RISMC approach employs both deterministic and stochastic methods in a single analysis framework (see Figure 2). 
In the deterministic method set we include: 

• Modeling of the thermal-hydraulic behavior of the plant [5] 
• Modeling of external events such as flooding [6] 
• Modeling of the operators responses to the accident scenario [7] 

Note that deterministic modeling of the plant or external events can be performed by employing specific simulator codes but 
also surrogate models (see Section 5), known as reduced order models (ROM). ROMs would be employed in order to 
decrease the high computational costs of employed codes. 

In addition, multi-fidelity codes can be employed to model the same system; the idea is to switch from low-fidelity to 
high-fidelity code when higher accuracy is needed (e.g., use low-fidelity codes for steady-state conditions and high-fidelity 
code for transient conditions). On the other hand, in the stochastic modeling we include all stochastic parameters that are of 
interest in the PRA analysis (such as uncertain parameters and stochastic failure of system/components). 

As mentioned earlier, the RISMC approach heavily relies on multi-physics system simulator codes (e.g., RELAP5-3D 
[8]) coupled with stochastic analysis tools (e.g., RAVEN [4]). From a mathematical point of view, a single simulator run can 
be represented as a single trajectory in the phase space. The evolution of such a trajectory in the phase space can be described 
as follows: 

𝜕𝜽 𝑡
𝜕𝑡

=𝓗 𝜽, 𝒔, 𝑡  (1) 

where: 
• 𝜽 = 𝜽(𝑡) represents the temporal evolution of a simulated scenario, i.e., 𝜽(𝑡) represents a single simulation run 
• 𝓗 is the actual simulator code that describes how 𝜽 evolves in time 
• 𝒔 = 𝒔(𝑡) represents the status of components and systems of the simulator (e.g., status of emergency core cooling 

system, AC system) 
By using the RISMC approach, the PRA analysis is performed by [9]: 

1. Associating a probabilistic distribution function (pdf) to the set of parameters 𝒔 (e.g., timing of events) 
2. Performing stochastic sampling of the pdfs defined in Step 1 
3. Performing a simulation run given 𝒔 sampled in Step 2, i.e., solve Eq. (1) 
4. Repeating Steps 2 and 3 M times and evaluating user defined stochastic parameters such as core damage (CD) 

probability (𝑃!"). 
 
III. RAVEN 
 

The RAVEN statistical framework is a code, funded by both NEAMS and RISMC programs, that allows the user to 
perform generic statistical analysis. By statistical analysis we include: 
• Sampling of codes: either stochastic (e.g., Monte-Carlo [10] and Latin Hypercube Sampling [11]) or deterministic 

(e.g., grid and Dynamic Event Tree [12]) 
• Generation of Reduced Order Models [13] also known as Surrogate models 
• Post-processing of the sampled data and generation of statistical parameters (e.g., mean, variance, covariance matrix) 

Figure 1 shows a general overview of the elements that comprise the RAVEN statistical framework: 
• Model: it represents the pipeline between input and output space. It comprises both codes and also Reduced Order 

Models  
• Sampler: it is the driver for any specific sampling strategy (e.g., Monte-Carlo, LHS, DET) 
• Database: the data storing entity 
• Post-processing module: module that performs statistical analyses and visualizes results 
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Fig. 1 – Scheme of RAVEN statistical framework components 

IV. REDUCED ORDER MODELLING 
 

Reduced order modeling is a fairly generic term. Its semantics changes from field to field (e.g., computer science, 
engineering and so on). For the scope of this article, we include in the Reduced Order Modeling term all methodologies and 
algorithms that aim to reduce the complexity of a problem, where “a problem” is considered a broad term and can be either 
an abstract entity (e.g., a simulator code or a dataset) or a concrete entity (e.g., an experimental facility, a power plant). 

In the RISMC applications we are mainly dealing with numerical entities such as system codes like RELAP5-3D. It is 
relevant to highlight that the safety modeling of a nuclear system is not only a thermal-hydraulic problem but several other 
models are required: neutron transport, thermo-mechanics, chemistry, fracture propagation, etc. Note how the overall 
problem is not only multi-physics but also multi-scale both in the spatial scale but also in the temporal scale. While the 
coupling of these processes can be implicitly solved numerically, the RISMC project is focusing its attention toward the use 
of reduced order modeling techniques in order to decrease the computational cost (in terms of both computing power and 
memory requirement.) 

In this document we divided the concept of Reduced Order Modeling into three main categories: 
• Reduced physics: use of simulator codes that employ simplified physics problems. An example is the use of diffusion 

codes to solve neutronic problems instead of transport codes. In this category we also include the possibility to use in 
the same simulation run high and low fidelity models depending on the boundary conditions of the simulation. 

• Reduced dimensionality: a simulation run can be seen as a trajectory in the phase space and a single point in the input 
space. The dimensionality of these spaces can be very high for the complex analyses. This category includes all 
methods than aim to reduce the dimensionality of these spaces and project the original problem into the reduced space. 

• Surrogate model: surrogate models are mathematical objects that emulate the behavior of a code by learning its 
input/output relations and reconstructing such relations through a regression/interpolation based approach. 

For the last two categories the set of methodologies employed are typically based on regression (e.g., Gaussian process 
models [14]), interpolation (e.g., spline kernel and linear kernel) and dimensionality reduction algorithms (e.g., Principal 
Component Analysis -PCA- [15] and ISOMAP [16]). In order to illustrate how Reduced Order Modeling techniques can be 
applied in the RISMC approach, we have indicated in Figure 2 the set of methods that can be applied to each of the four 
RISMC steps: 
• Deterministic modeling: employment of reduced physics codes (i.e., multi-fidelity codes) or surrogate models instead 

of the actual codes 
• Stochastic modeling: reduction of the number of stochastic parameters to be sampled (i.e., reduction of the 

dimensionality of the input space) 
• Stochastic Analysis: reduction of the number of simulations to run by carefully choosing a minimum set of simulations 

that maximize the amount of information required by the analysis (adaptive – smart – sampling) 
• Data Post-Processing: use of stochastic analysis tools (e.g., Kernel Density Estimation methods) to summarize large 

amounts of data and employment of advanced topology-based visualization tools to visualize high dimensional data. 
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Fig. 2– Overview of how Reduced Order Modeling can be applied to the 4 main steps of a typical RISMC analysis 

 
IV.A. Surrogate Models 

 
A surrogate model is a mathematical model that aims to build a correlation given a set of data points. The starting point 

is typically a set of 𝑁 data points: 
(𝒔𝒊,𝓗(𝒔𝒊))     𝑖 = 1,… ,𝑁 (2) 

that sample the response of the original model. Given the set of these 𝑁 data points, the ROM is trained and the resulting 
outcome is a model 𝚯(𝒔) that approximates the original model 𝓗(𝒔)(see Figure 3):  

𝚯 𝒔 : 𝒔𝒊 → 𝚯(𝒔𝒊) ≅𝓗(𝒔𝒊) (3) 
The advantage of the ROM is the much faster computation of 𝚯(𝒔) (e.g., RELAP5-3D) compared to the original model 
𝓗(𝒔). However, the evaluation of a ROM is affected by an intrinsic error, which can not always be bound and/or quantified. 

We have identified two classes of ROM: model based and data based.  In model based ROMs the prediction is performed 
using a blend of interpolation and regression algorithms1. Examples are: 
• Gaussian Process Models (GPMs) [14] 
• Multi-dimensional spline interpolators [17] 

This class of algorithms has the advantage that they possess great prediction capabilities if the original 𝓗(𝒔) is relatively 
smooth (i.e., not discontinuous). 

 
Fig. 3 – Example of reduced order modeling approximation of a sampled 3-D response surface 

 
IV.B. Dimensionality Reduction 
 

Dimensionality reduction is the process of finding a bijective mapping function ℑ: 

                                                             
1 Interpolation: Given a set of 𝑁 data points (𝑥! , 𝑦!) 𝑖 = 1,… ,𝑁, interpolation aim to find a function 𝐹 that is of some user-defined form (e.g., linear) that 
has the values in that points exactly as specified, i.e., it satisfies 𝐹(𝑥!) = 𝑦! . Given the same set of 𝑁 data points (𝑥! , 𝑦!) 𝑖 = 1,… ,𝑁, regression, regression 
look for a function that minimizes some cost, usually sum of squares of errors 𝐹(𝑥!) − 𝑦! !!

!!! . The requirement 𝐹(𝑥!) = 𝑦!  is usually not imposed.  
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ℑ:ℝ! → ℝ!       where  𝑑   <   𝐷 
which maps the data points from the D-dimensional space into a reduced d-dimensional space (i.e. embedding on a manifold) 
in such a way that the distances between each point and its neighbors are preserved.  

Linear algorithms, such as PCA [15] or multidimensional scaling (MDS) [18], have the advantage that they are easier to 
implement; however, they can only identify linear correlation among variables. On the other hand, methodologies such as 
Local Linear Embedding [19] and ISOMAP [16] are more computationally intensive but they are able to identify non-linear 
correlations.  

The main idea behind PCA [15] is to perform a linear mapping of the data set onto a lower dimensional space such that 
the variance of the data in the low-dimensional representation is maximized. This is accomplished by determining the 
eigenvectors and their corresponding eigenvalues of the data covariance matrix2 Σ. The eigenvectors that correspond to the 
largest eigenvalues (i.e., the principal components) can be used as a set of basis functions. Thus, the original space is reduced 
to the space spanned by a few eigenvectors. 

Figure 4 shows an example of dimensionality reduction using PCA for a data set distributed in a 2-dimensional space. 
After performing the eigenvalue-eigenvector decomposition of the covariance matrix, the algorithm chooses the eigenvector 
having the largest eigenvalue (i.e., 𝜆!) as subspace to project the original data. The algorithm is very easy to implement but, 
on the other hand, PCA is not able to identify non-linear correlations of more complex data sets. 

 

 
Fig. 4 – Example of dimensionality (from D = 2 to d = 1) reduction using PCA 

 
IV.C Stochastic data analysis 
 

The RISMC uncertainties and safety methods usually generate a large number of simulation runs (database storage may 
be on the order of gigabytes or higher). This section shows how clustering algorithms that can be used to analyze and extract 
information from large data sets containing time dependent data. In this context, “extracting information” means constructing 
input-output correlations, finding commonalities, and identifying outliers.  

From a mathematical viewpoint, clustering [20] aims to find a partition 𝑪 = {𝐶!,… ,𝐶! ,… ,𝐶!} of Ξ where each 𝐶! 
(𝑙 = 1,… , 𝐿) is called a cluster. The partition 𝑪 is such that:  

  𝐶! ≠ ∅    ∀𝑙 = 1,… , 𝐿

   𝐶!

!

!!!

= Ξ  (4) 

Even though the number of clustering algorithms available in the literature is large, usually the most used ones when 
applied to time series are the following: Hierarchical [21], K-Means [22] and Mean-shift [23]. Hierarchical algorithms build a 
hierarchical tree from the individual points (leaves) by progressively merging them into clusters until all points are inside a 
single cluster (root). Clustering algorithms such as K-Means and Mean-Shift, on the other hand, seek a single partition of the 
data sets instead of a nested sequence of partitions obtained by hierarchical methodologies. 

An example is shown in Fig. 5 applied to a data set containing the time evolution of 1000 time series has been generated 
by randomly changing (through a Monte-Carlo sampling) three variables (i.e., 𝑥, 𝑦, 𝑧). We introduced a “discontinuity” in the 
temporal evolution of the time series depending if 𝑥 > 4 or 𝑥 < 4. By using K-Means clustering algorithm we were able 
partition the 1000 generated scenario into 2 clusters (see Figure 6). 

                                                             
2 Given a data set in form of a vector Z, rows correspond to data dimensions (D) and columns correspond to data observations (Λ), the 
covariance matrix Σ is determined as Σ = !

!!!
𝑍  𝑍′ 

. 
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Fig. 5 - Plot of a 1000 time series data set in a 2-dimensional space (plus time) Plot of the clusters obtained 

Note how the scenarios in each cluster have a very similar temporal behavior. Then, by looking at the histograms of the 
sampled variables 𝑥, 𝑦, 𝑧 for the scenarios contained in each cluster we were able to verify that 𝑥 was creating the splitting of 
the data set. Figure 7 shows the histograms of 𝑥 for both clusters: for Cluster_0  𝑥 < 4 while 𝑥 > 4 for Cluster_1. Note that 
we would not have been able to capture this “discontinuity” by considering only the end or max values of the time series 
[24,25]. 

 
Fig. 6 - Histograms of the sampled values for Cluster_0 and Cluster_1 (shown in Fig. 6) that created them and were captured by the 

clustering algorithm. 

V. PRA APPLICATIONS 
 

In this section we cover a set of applications that employs Reduced Order Modeling techniques. We will show a set of 
applications that are of interest in the RISMC pathway. 
 
V.A. Adaptive Sampling 
 

The general adaptive sampling pipeline [26] begins by selecting some initial training data, running the simulation and 
obtaining a collection of true responses at these data points. Second, it fits a response surface surrogate model from the initial 
set of training data. Third, a set of candidate points is chosen in the parameter space based on certain sampling techniques, 
and the surrogate model is evaluated at these points, obtaining a set of approximated values. Fourth, each candidate point is 
assigned a score based on some adaptive sampling scoring function (usually derived from qualitative or quantitative relations 
between the training points, their true and estimated response values). Finally, the candidate(s) with the highest score(s) are 
selected and added to the set of training data to begin a new cycle. 

As mentioned earlier this kind of sampling strategy requires not only simulator codes but also one, or possibly more, 
ROMs [13]. In our case, it is possible to view the code as a black-box 𝓗 that produces a set of output variables 𝒚 given a set 
of input parameters 𝒔: 

𝓗: 𝒔 → 𝒚(𝑡) =𝓗 𝜽, 𝒔, 𝑡  (5) 

Cluster_0 Cluster_1 
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In addition, it is needed to provide what we call an “objective function”. The objective function gives indications on what is 
the desired “exploration” criteria.  The main adaptive sampling steps are explained as follows (see Figure 7): 

1. Perform a set of runs of the simulator code: the number of required runs may depend on the dimensionality of the input 
space.  

2. Given the set of simulation runs obtained in Step 1, create a ROM. The objective of this ROM is to: 
• Infer the response of the simulator code, i.e., create an approximate output given the same set of input parameters 
• Predict the regions in the input space that maximizes the objective function 

3. Employ the ROM to approximate the structure of the goal function 
4. Identify a set of points that satisfy the conditions specified in the goal function and choose a subset of points from the 

ones obtained in Step 4 that maximize the goal function 
5. Perform a simulation run for each of the points obtained in Step 5 using the simulator code 
6. Repeat Steps 2 through 6 until convergence is reached  

As part of safety margin quantification, the RISMC approach aims to evaluate a set of limit surfaces [27]. A limit surface  
(see Figure 7) represents the boundaries in the input space (i.e., d-dimensional space; each dimension is one the d sampled 
variables) that separate the failure region (i.e., characterized by the undesired simulation outcome; e.g., core damage) from 
the success region (i.e., characterized by the desired simulation outcome; e.g., max clad temperature below 2200 F). 

         
Fig. 7 – Workflow of adaptive sampling algorithms (left) and example of limit surface calculation for two different values of core power 

levels [28] 

The limit surface has a pure deterministic value; the stochastic information is generated when the probability of 
occurrence of the undesired event (e.g., core damage) 𝑃!" is determined as: 

𝑃!" =    𝑝𝑑𝑓 𝜛   𝑑𝜛
!!"#$%&  
!"#$%&

 (6) 

Equation 6 shows that 𝑃!" is equal to the area of the failure region weighted by the probability of being in the failure region 
itself (through the probability distribution function 𝑝𝑑𝑓 𝜛 ). 

Figure 7 shows the limit surface in a 2-dimensional space generated in [28] using RAVEN for a pressurized water 
reactor station blackout initiating event. As part of the analysis, we were interested in the evaluation of the safety impacts of 
power uprate (reactor core power increased from 100 to 120%). Such evaluation has been performed by evaluating both the 
increased core damage probability ∆𝑃!" and the limit surface for both 100 and 120% reactor core power levels Note that 
∆𝑃!" can be written as the same integral indicated in Eq. 6 but evaluated only in the expanded failure region (∆Ω!"#$%&') 

∆𝑃!" =    𝑝𝑑𝑓 𝜛   𝑑𝜛
∆!!"#$%&'

 (7) 

 
V.B. Uncertainty Quantification and Sensitivity Analysis  

Another set of application of Surrogate Models relevant to the RISMC project is Uncertainty Quantification (UQ) and 
Sensitivity Analysis (SA). For these kinds of applications we are following a response-surface approach where a Surrogate 
Models is trained in the region of the input space of interest. This training process aim to reconstruct the system response in 
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this limited region of the input space. Then, the forward propagation of the uncertainties of the input parameters is performed 
by using the surrogate models instead of the actual code. In order to evaluate the performances of surrogate models we have 
decided to compare the following: 
• First three moments of the figure of merits: mean, sigma and skewness 
• Pearson coefficients of the input parameters 
• Sensitivity coefficients of the input parameters 

Figure 8 shows a plot of the response function for the PWR natural circulation loop using peak fuel temperature as the figure 
of merit. 

 
Fig. 8 – Comparsion of the response function of peak fuel temperature: original data from code (left) and the one obtained by using the 

ROM (right) 

Table 1 – Comparison of the first three statistical moments, sensitivity and Pearson coefficients of peak fuel temperature 

  Code ROM Relative Error 
mu 5.845 E+2 5.845 E+2 3.90 E-7 
sigma 3.469 E-1 3.472 E-1 -9.64 E-4 
skewness 3.446 E-1 3.434 E-1 3.72 E-3 
K sensitivity -6.663 E-1 -6.671 E-1 -1.15 E-3 
P sensitivity 7.231 E-3 7.234 E-3 -3.65 E-4 
K pearson -9.056 E-1 -9.057 E-1 -1.90 E-4 
P pearson -3.972 E-4 -3.972E-4 1.20 E-8 

 

 
Fig. 9 – Distribution of peak fuel temperature: code (left) and ROM (right) 

V.C. Temporal Predictors 
 
In the previous section we introduced the concept of response surface methods and surrogate models as tools to predict 

an approximated 𝚯(𝒔) (which represents, for example, a simulated system response under an accident scenario) for a set of 
conditions specified in 𝒔. The vector 𝒔 contains elements 𝑠!   such as timing and sequencing of events (e.g., recovery time of 
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AC power, failure time of core cooling injection). Note that the value 𝚯(𝒔) is a scalar and, thus, does not contain any 
temporal evolution type of information.  

We extend the concept of ROM in order to be able to handle time dependent  𝚯(𝒔): given 𝒔, 𝚯(𝒔, 𝑡) is a time dependent 
variable. In this case, the training consists of 𝑁 points: 

𝒔! ,𝓗(𝒔, 𝑡)!     𝑖 = 1,… ,𝑁 (8) 
Our approach is to start by dividing the temporal scale into intervals (assumed here to be of equal length but it is not 
required): 

𝑡 = 𝑡!,… , 𝑡!  (9) 
For each time point 𝑡!  (𝑘 = 1,… ,𝑇) we consider the subset of points: 

𝒔! ,𝓗(𝒔, 𝑡!)!     𝑖 = 1,… ,𝑁 (10) 
and we build the corresponding 𝚯 𝒔 ! . Thus, now we have a set of ROMs for each time point 𝑡!  (𝑘 = 1,… ,𝑇). The 
temporal predictor Ψ 𝒙, 𝑡  is simply the vector of: 

𝚿 𝒙, 𝑡 = 𝚯 𝒔 !,… ,𝚯 𝒔 ! ,… ,𝚯 𝒔 !  (11) 
In our applications, when each of the data points has been generated by safety analysis codes (e.g., RELAP5-3D): 
• 𝒔 is the configuration of the simulation (e.g., timing of events, values associated with uncertain parameters) 
• 𝚯(𝒔, 𝑡) is the simulation associated with 𝒔. 

We performed a few tests with different types of datasets in order to identify performances and limitations of this 
algorithm. Figure 10 (left) shows a set of 𝑛 = 20 simulations, i.e. 𝓗(𝒔, 𝑡)!   (  𝑖 = 1,… , 20), generated by sampling two 
stochastic parameters, i.e. 𝒔! = 𝑠!, 𝑠! . We initially divided the time scale uniformly [0,2500] into 𝑇 = 100 intervals and for 
each time point 𝑡!  (𝑘 = 1,… ,100) we considered the data points 𝒙! ,𝓗(𝒔, 𝑡!)!      𝑖 = 1,… , 20  and built the reduced order 
models 𝚯 𝒔 !  . We then tested the temporal predictor: 

𝚿 𝒔, 𝑡 = 𝚯 𝒔 !,… ,𝚯 𝒔 !""  (12) 
for several 𝒔!   (𝑗 ≠ 𝑖) and compared them with the simulated 𝚯(𝒔, 𝑡) . 

Figure 10 (right) shows the predicted scenario Ψ 𝒔, 𝑡  (green line) and the actual simulated scenario 𝓗(𝒔, 𝑡). For this 
particular case we built Ψ 𝒔, 𝑡  using Gaussian Process Models [14] as basic ROM. A useful feature is that these algorithms 
are also capable of providing the uncertainty associated with the predicted results. 
 

 
Fig. 10 – Initial protoype results of temporal surrogate model 

VII. CONCLUSIONS 
 
In this article we have given a fairly broad overview of the Reduced Order Modeling capabilities available in the RISMC 

toolkit and, in particular, in the RAVEN statistical framework. We have shown how Reduced Order Modeling can be applied 
in every step of a typical RISMC analysis: from the generation to the analysis and to visualization of data. We have shown 
how surrogate models can be used as substitute for actual code to speed up the statistical analysis required by the RISMC 
approach. We have indicated how it is possible to reduce the computational cost of such statistical analyses by smartly 
sampling the input space. The most important application of reduced order modeling techniques focuses on propagation of 
uncertainties and sensitivity analysis types of applications. In this respect we employed few thermo-hydraulic models of 
RELAP-7 and we showed how this process can be performed by using the RAVEN code. We have shown how reduced order 
modeling techniques can be also employed for data mining types of applications to visualize high dimensional data and 
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extract useful information from large amounts of data. We have in particular focused on surrogate models, both classifiers 
and regressors. We have tested their performances on a set of analyses that are of interest in the RISMC approach. We used 
not only analytical tests but also tests that involved RELAP-7 systems. The comparison allowed us to identify the pros and 
cons of each algorithm and identify the best surrogate model depending on the case under consideration. This overview was 
not however exhaustive since many more surrogate models are available in RAVEN. The set of algorithms we chose is a 
representative set of methods that most likely will be used within the RISMC project. 
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