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Abstract

Dynamic probabilistic risk assessment (DPRA) methodologies couple system
simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g.,
RAVEN, ADAPT). Whereas system simulator codes accurately model system
dynamics deterministically, simulation controller codes introduce both deter-
ministic (e.g., system control logic, operating procedures) and stochastic (e.g.,
component failures, parameter uncertainties) elements into the simulation. Typ-
ically, a DPRA is performed by sampling values of a set of parameters, and
simulating the system behavior for that specific set of parameter values. For
complex systems, a major challenge in using DPRA methodologies is to ana-
lyze the large number of scenarios generated, where clustering techniques are
typically employed to better organize and interpret the data. In this paper, we
focus on the analysis of two nuclear simulation datasets that are part of the risk-
informed safety margin characterization (RISMC) boiling water reactor (BWR)
station blackout (SBO) case study. We provide the domain experts a software
tool that encodes traditional and topological clustering techniques within an
interactive analysis and visualization environment, for understanding the struc-
tures of such high-dimensional nuclear simulation datasets. We demonstrate
through our case study that both types of clustering techniques complement
each other in bringing enhanced structural understanding of the data.

Keywords: probabilistic risk assessment, computational topology, clustering,
high-dimensional data analysis

1. Introduction

A recent trend in the nuclear engineering field is the implementation of
computationally-intensive codes to perform safety analysis of nuclear power
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plants. In particular, the new generation of system analysis codes aims to ad-
dress thermo-hydraulic phenomena, structural behaviors, system dynamics, etc.
Often these codes are coupled with stochastic analysis tools, such as dynamic
probabilistic risk assessment (DPRA) methodologies, to perform probabilistic
risk analysis, uncertainty quantification and sensitivity analysis.

DPRA methodologies account for possible coupling between triggered or
stochastic events through explicit consideration of the time element in system
evolution, often through the use of dynamic system simulators. Such method-
ologies are commonly needed when the system has multiple failure modes, con-
trol loops, processes, software/hardware components, or human interactions. A
DPRA is typically performed by 1) sampling values of a set of parameters from
the space of interest with uncertainty (using the simulation controller codes),
and 2) simulating the system behavior for that specific set of parameter values
(using the system simulator codes).

Due to the intrinsically high level of details within such a process, large
amounts of data are generated within the simulation [11]. In [9], we have pre-
sented a framework that visualizes high-dimensional scalar functions through
a topological segmentation of its input domain. The input of such a high-
dimensional function arises from the set of n uncertain parameters x1, x2, ..., xn,
whereas the output originates from some safety-related outcomes, such as max-
imum core temperature of each simulation. Our topological tools aim to recon-
struct the topological structure of such a function, i.e., the response surface, in
the high-dimensional space. We have further explored the topological cluster-
ings that lie beneath such a framework for DPRA datasets [8].

In this paper, we focus on the analysis of two particular nuclear simula-
tion datasets based upon our previously developed analysis and visualization
framework [8, 9]. The datasets are part of the risk-informed safety margin char-
acterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case
study [10]. We enrich our tool by combining traditional and topological clus-
terings, as well as dimensionality reduction (DR) techniques. We demonstrate
through our first example that both types of clustering techniques complement
each other in bringing enhanced structural understanding of the data. In par-
ticular, the topological clustering helps highlight key features of the data that
are otherwise hidden using the traditional techniques. In the second example,
we explore new ways of thinking about risk-informed data by incorporating
probability information into the topological analysis in order to characterize
the most probable area of the identified failure region, in addition to a well-
established analysis of the data’s observed output, namely, the maximum tem-
perature reached by the cladding.
BWR system. The system considered in both simulation datasets is a generic
BWR power plant with a Mark I containment as shown in Fig. 1. The three
main structures are: the reactor pressure vessel (RPV), a pressurized vessel that
contains the reactor core; the primary containment including the dry well (DW)
that houses the RPV and circulation pumps; and the pressure suppression pool
(PSP), also known as the wet well. The PSP is a large torus-shaped container
that contains a large amount of water (almost 1 million gallons of fresh water)
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Figure 1: BWR system considered.

and is used in specific situations as an ultimate heat sink. The BWR system
includes a large number of subsystems, but for the scope of this paper and for
the case study considered, we use a smaller subset of systems that includes the
RPV level control system, the RPV pressure control system, the cooling water
inventory and the AC power system. The AC power system consists of two
power grids, emergency diesel generators (DGs) and battery systems for the
instrumentation and control systems.

The RPV level control system provides manual and automatic control of the
water level within the RPV and consists of two components, the reactor core
isolation cooling (RCIC) and the high pressure core injection (HPCI). The RCIC
provides high-pressure injection of water from the CST to the RPV. Water flow
is provided by a turbine-driven pump that takes steam from the main steam
line and discharges it to the suppression pool. The HPCI functions similarly,
but allows a much greater water flow rate.

The RPV pressure control system provides manual and automatic control of
the RPV internal pressure and consists of a set of safety relief valves (SRVs),
safety valves, and the automatic depressurization system (ADS). The SRVs are
DC-powered valves that control and limit the RPV pressure, and the ADS is a
separate set of relief valves that are employed in order to depressurize the RPV.

The cooling water inventory includes the condensate storage tank (CST), the
PSP, and the fire water system. The CST in the considered plant is a 375 Kgal
fresh water reservoir that can be used to cool the reactor. The PSP contains a
large amount of fresh water that is relied upon as an ultimate heat sink when
AC power is lost. Water from the fire water system can be injected into the
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RPV when other water injection systems are disabled and when the RPV is
depressurized.
SBO scenario. The scenario considered in this paper is the loss of offsite
power (LOOP) event followed by the loss of the diesel generators (DGs), i.e.,
the station blackout (SBO) initiating event. In particular, at time t = 0, LOOP
condition occurs due to an external event. Therefore, the LOOP alarm triggers
the following events:

1. A successful scram of the reactor is performed by the operators;

2. Main steam isolation valves are successfully closed, isolating the primary
containment from the turbine building;

3. Emergency DGs start successfully to keep the AC power busses energized.

It is assumed that the DC systems (i.e., batteries) are functional and the decay
heat generated by the core is successfully removed from the RPV through the
residual heat removal system.

At some point in time, SBO condition may occur due to some internal failure,
where the set of DGs fails thus impeding the removal of decay heat. Reactor
operators then start the SBO emergency procedures and perform RPV level
control using RCIC or HPCI, RPV pressure control using SRVs, and contain-
ment monitoring (both dry well and PSP). At this point, plant staff members
start to bring the DGs back online while recovering the off-site power grid. Due
to heavy usage, battery power can be depleted. When this happens, all remain-
ing control systems become off-line, causing the reactor core to heat until the
maximum temperature limit for the clad is reached, where a core damage (CD)
condition occurs.

If DC power is still available and one of three conditions is met (i.e. failure
of both RCIC and HPCI; HCTL limits have been reached; and RPV water
level becomes too low), then the reactor operators activate the ADS in order
to depressurize the RPV and allow fire water injection when available. As an
emergency action, when RPV pressure is below 100 psi, plant staff can connect
the firewater system to the RPV in order to cool the core and maintain an
adequate water level. Such a task is, however, hard to complete since physical
connection between the firewater system and the RPV inlet has to be made
manually. When AC power is recovered, through successful restart/repair of
DGs or off-site power, residual heat removal system can be employed to keep
the reactor core cool.

2. Technical Background

Dimensionality reduction (DR) and traditional hierarchical clustering are
widely used techniques for high-dimensional data analysis. To extend the ex-
isting framework we have developed in [8, 9], we employ a visualization system
that utilizes both DR and clustering techniques, where DR constructs a map-
ping for the clustering results for intuitive visual analysis. We begin with a brief
description of DR and traditional hierarchical clustering techniques, and then
focus on the topological clustering, which may be unfamiliar to non-specialists.
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Dimensionality reduction. DR techniques [1], such as Principal Component
Analysis (PCA) [6], Multi-Dimensional Scaling (MDS) [7], and Isomap [12],
are common tools for analyzing high-dimensional data by constructing its low-
dimensional representation. Since direct visualization of high-dimensional data
is extremely challenging, we would like to obtain some intuition regarding the
structure of the data through its low-dimensional embedding. Such embeddings
are typically constructed in 2D or 3D spaces for visualization purposes. We
have integrated a number of DR techniques into our system. For the purpose of
our study, we use primarily PCA, a linear DR technique, due to its simplicity
and computational efficiency. However, using DR alone as a black box solution
in the analysis suffers a major limitation, that is, the results could be hard to
interpret as a certain amount of structural information could be lost during
the DR process. Therefore, we try to impose structural context onto the em-
beddings by combining DR results with clusterings obtained from the original
high-dimensional data.
Traditional hierarchical clustering. A clustering groups the data in such
a way that points are more similar to those in the same cluster than to those
outside the cluster. There are numerous criteria (based on density, distribution,
distance or connectivity, etc.) for defining what constitutes a cluster. In our
current analysis, we choose average-linkage hierarchical clustering [2] (among
others available in the system). Such a clustering technique is based on point-
wise connectivities where points are considered more related to nearby points
than points that are farther away. Starting from individual points as their
own clusters, this technique builds a dendrogram from the bottom up, merging
nearby clusters. In our system, the number of clusters does not need to be
specified a priori; instead, the user interactively expands or collapses different
levels of clustering in the hierarchy during the analysis.
Approximated Morse-Smale complex and topological hierarchical clus-
tering. We consider an alternative method for clustering high-dimensional
data based on the concept of the Morse-Smale complex (MSC). We give a brief
overview of these concepts, see [8, 9] for details. The MSC is a type of topo-
logical structure that serves as a structural summary of a given scalar function.
We consider a scalar function f : X → R defined over a finite set of points
X in Rn. The approximated MSC, at its finest level, partitions the points in
X based on their uniform gradient behavior. First, points in X are connected
with a neighborhood graph (e.g., k-nearest-neighbor (KNN) graph). Second,
the steepest ascending edge adjacent to a given point is used to estimate the
gradient flow at the point. All points with no neighbors of higher/lower values
are considered local maxima/minima. Finally, points are clustered based on the
unique minimum-maximum pair from which their gradient flows start and end.
A topological clustering at the finest level for a height function defined on a
2D domain is illustrated in Figure 2(a)-(b). We can then merge clusters based
on persistence simplification [3], where less (topologically) significant clusters
are merged into more significant ones. We avoid the technical details here but
simply illustrate such a process in Figure 2(d)-(e).
Topological skeleton obtained through DR. Given a topological clustering
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Figure 2: For a height function defined on a 2D domain (where maxima, minima, and saddles
are colored red, blue, and green, respectively): (a) For each point in the brown region, the
gradient flow (white arrow) ends at the same maxima x; (b) For each point in the green region,
the gradient flow starts at the same minimum y; (c) For each point in the blue region (i.e. a
cluster based on the MSC), the gradient flow begins and ends at the same maximum-minimum
(i.e., (x,y)) pair. To illustrate merging of clusters based on persistence simplification, in (d),
the left peak at the local maximum x is considered less topologically important than its nearby
peak at the local maximum z, since x is lower. Therefore, at a certain scale, we would like
to represent this feature as a single peak instead of two separate peaks, as shown in (e), by
redirecting gradient flow (white arrow) that originally terminates at x to terminate at z. In this
way, we simplify the function by removing (canceling) the local maximum x with its nearby
saddle y. On the cluster level, the clusters (i.e., decompositions of the domain separated
by edges connecting the saddles and extrema) surrounding the left peak x are merged into
clusters surrounding the right peak z. Figures are reproduced from [8].

Figure 3: An illustrative example of our visualization of a topological skeleton extracted from
a 2D height function: (a) the surface is first segmented into clusters of uniform gradient flow;
(b) then each level set (white line) is averaged to a single point and consecutive level sets are
connected to form a curve per cluster (orange curves); and (c) finally the resulting topological
skeleton is visualized. Each summary curve in the visual space corresponds to a cluster of
the original high-dimensional data. In the visualization, the color of each curve signifies the
average value of each level set, and a transparent region encloses a given curve, where its
width represents a direction-independent estimate of the spread of data and the luminance of
its boundary edges signifies the sampling density.

at a fixed scale, we further our analysis by computing a collection of summary
curves that serves as the topological skeleton of the data in the visual space. We
follow a three-step process, as detailed in [4]: 1) perform inverse linear regression
with data in each cluster and obtain a 1D curve embedded in Rn; 2) project
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the curves in Rn to a curve in the visual space using PCA [5], and 3) align
the curves in the visual space to meet at their shared extrema to maintain the
coherency of the extracted structure. The resulting topological skeleton serves
as a structural summary of the data, and it is visualized to encode structural
information, as illustrated in Figure 3. Finally, the topological skeleton can
also be visualized based on the cluster labels. In addition, we distinguish the
clusters based on configurations of their input dimensions through a collection
of inverse coordinate plots. Suppose we employ a point sampling of the same
2D height function in Figure 3, the above process is illustrated in Figure 4. For
more details of the visualization pipeline, see [4, 8, 9].

Figure 4: Left: topological skeleton colored by cluster labels. Right: inverse coordinate plots.
Data points are visualized by their cluster labels, and summary curves are projected. For
the inverse coordinate plots, the horizontal axis represents the output dimension (e.g., height
values), and each vertical axis represents an input dimension (e.g., x or y coordinates of the
domain). The projected summary curve in each inverse coordinate plot gives the average value
(of the input dimension of interest) at each level set and uses a dimension-specific standard
deviation for the width of the transparent region. Visualizations of the data points, summary
curves as well as their associated standard deviation could be enabled/disabled based on user
specifications.

3. Case Study Dataset 1: 7D Simulation Ensemble

3.1. Data Description

An ensemble of 4997 transient simulations has been generated using classical
Monte-Carlo sampling of 7 input parameters. Among these simulations, 833
scenarios resulted in system failure (where the core temperature reached the
clad failure temperature threshold of 2200◦F ≈ 1477 K), whereas the rest of the
4164 scenarios ended in system success (where AC power is recovered or the
firewater becomes available when the RPV is depressurized). Each simulation
includes information regarding the timing of various recovery attempts (e.g.,
cooling recovery, fire water, etc.) and component failures (e.g., battery life is
exhausted or a safety relief valve gets stuck open, etc.). The 7 input parameters
are listed below, as they are the only uncertain parameters under consideration.
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1. FailureTimeDG: Failure time of the DGs corresponding to the time of
the SBO event.

2. ACPowerRecoveryTime: The minimum between the recovery time of
DGs and the off-site power recovery time. The minimum of these two will
determine when the AC power is considered recovered.

3. SRVStuckOpenTime: The time when an SRV is stuck in the open
position.

4. CoolingFailtoRunTime: The maximum between the HPCI failure time
and the RCIC failure time. As long as one of the two high pressure cooling
systems (i.e. HPCI and RCIC) is functioning, the reactor is being actively
cooled, so it is important to understand when both systems have failed.

5. ADSactivationTimeDelay: The time when the operator manually de-
pressurizes the RPV by activating the ADS system. This parameter mea-
sures the time delay from when the PSP heat capacity limits are reached.

6. FirewaterTime: As an emergency action, when RPV pressure is below
150 psi (≈ 1.03 × 106 Pa), plant staff can connect the fire water system
to the RPV to cool the core and maintain an adequate water level. This
parameter indicates the time needed to recover FW.

7. ExtendedECCSOperation: Battery life combined with extended ECCS
operation. That is, operators may extend RCIC/HPCI and SRV con-
trol even after the batteries have been depleted. They manually control
RCIC/HPCI by acting on the steam inlet valve of the turbine and/or
supply DC power to the SRVs through spare batteries.

All of the above time-related parameters are measured from the time of the
SBO event (in seconds), which is the FailureTimeDG, with the exception of
FailureTimeDG, which is measured from the LOOP event, and the ADSactiva-
tionTimeDelay, which is measured from the time PSP reach its heat capacity
limits. The output parameters obtained from the simulations are:

1. maxCladTemp, which is the maximum clad temperature reached during
the entire course of the simulation;

2. simulationEndTime, which for failure cases represents the time to reach
the failure temperature of 2200◦F (≈ 1477 K).

We study the topology of scalar functions with each of these outputs as the
scalar value in isolation. The above data is pre-processed with a Z-score stan-

dardization, whereby values V of each dimension are recomputed as V−mean(V )
std(V ) ;

therefore all input parameters have the same mean (0) and standard deviation
(1) but may vary in their ranges.

In this study, we are interested in what combination of conditions (in the
form of input simulation parameters) can cause potential reactor failure (i.e., nu-
clear meltdown witnessed by maximum core temperature exceeding a threshold
value).

3.2. Results

We provide analysis under both traditional (Section 3.2.1) and topological
clustering (Section 3.2.2) using the 7D input data. For each subsection, we
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consider two separate cases. In the first case, referred to as the All Scenarios
Case, we analyze all 4997 simulations, using maximum clad temperature (max-
CladTemp) as the observed output parameter. Note that in this case, all failure
cases have the same output parameter of 2200◦F (≈ 1477 K). In the second
case, referred to as the Failure Scenarios Case, we focus on clustering of the
833 failure scenarios. Since the maximum clad temperature does not vary for
these cases, we treat the time of the failure (simulationEndTime) as the output
parameter. We give a comprehensive picture by providing comparisons among
the two clustering techniques and discuss the benefits and limitations inherent
in each approach.

3.2.1. Traditional Clustering

For traditional hierarchical clustering, we map the data into an 8D space
by considering the 7 input parameters and the output parameter, maximum
clad temperature (maxCladTemp). We start our analysis by applying PCA to
reduce the 8D data to its 2D embedding for direct visual analysis.

((a) ((b) ((c) ((d) ((e) ((f)

Figure 5: PCA embedding for the 8D dataset under the All Scenarios Case. The di-
mensions shown exhibit relatively strong correlation patterns within the embedding. We use
a spectral colormap (color bar on the left) where red/blue represents low/high value. (a)
ACPowerRecoveryTime; (b) maxCladTemp; (c) CoolingFailToRunTime; (d) FirewaterTime;
(e) SRVStuckOpenTime; (f) ExtendedECCSOperation.

All Scenarios Case. To study the distribution/variation of each dimension
with respect to the embedding, we first color the points according to each di-
mension, as illustrated in Figure 5. All the dimensions shown exhibit a certain
amount of visual correlation within the embedding. The two omitted dimen-
sions, ADSActivationTimeDelay and FailureTimeDG, on the other hand, show
little to no visual correlation indicating they account for the least amount of
variability in the data.

It is important to note that a vertical or horizontal pattern of variation
corresponds to the variance of the dimension. That is, a larger variance corre-
sponds to a more noticeable pattern, which is likely due to the fact that PCA is
inherently optimized for capturing dominant directions of maximum variance.

In Figure 5(b), there appear to be only a few data points with a moderate
maxCladTemp as the top portion of the embedding is dominated by success
scenarios characterized by low MaxCladTemp values (in red), and the bottom
portion of the data consists of mostly failure scenarios characterized by high
(constant) MaxCladTemp (in blue). It is therefore obvious that maxCladTemp
separates the success from failure scenarios in the embedding. This claim can
be further validated by coloring the points with known labels of success/failure.
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In Figure 5(a), ACPowerRecoveryTime varies smoothly within both the suc-
cess and failure scenarios, but it does not serve as a differentiating factor between
the successes and failures. Furthermore, in Figure 5(f), relatively high Extend-
edECCSOperation time can be observed among all the success scenarios, so we
suspect that a long extended ECCS operation time is a main contributing factor
for stable system recovery. However, ExtendedECCSOperation is likely not a
sufficient condition to separate successes from failures as there are a few points
with high ExtendedECCSOperation values within the lower half of the embed-
ding (i.e., failures scenarios). In Figure 5(c)-(e), the remaining three dimensions
vary orthogonally with respect to maxCladTemp. This observation implies that
these dimensions have less impact on the outcomes of the simulation, which are
characterized by variations in maxCladTemp.

�� �� ��

�� ��

��

Figure 6: (a) 2D embedding of the data colored by cluster labels. (b) In order to provide a
more clear view for the clusters,we provide a separate illustration of each individual cluster
and its summary statistics.

In addition, combined with traditional hierarchical clustering, our analysis
framework enables us to color the points in the embedding based on cluster
labels. Furthermore, the tool also visualizes the statistical summary of each
dimension for points within each cluster (enclosed in a box next to the clustered
points). In the statistical summary of a given cluster, each row represents a
dimension of the data, where the yellow bar corresponds to its min-max range
and the red marker indicates its mean value across all points in the cluster. With
these summaries across all clusters, we can quickly compare and investigate the
defining characteristics of each cluster at a glance (see Figure 6).

During the interactive exploration of the embedding, we apply cluster ex-
pansions recursively to study the data from coarse to fine resolutions. At the
coarsest level, the data is split into two clusters, where the upper cluster con-
tains exclusively success scenarios, and the lower cluster contains all failure
scenarios and a small number of successes (via validations by known labels of
success/failure). We subdivide these clusters by applying a few steps of cluster
expansion. We then arrive at a level in the clustering hierarchy that consists of
seven clusters, as shown in Figure 6.

Four of the top clusters decompose all of the success scenarios (top half
of the embedding). The extremely small purple cluster (#4) likely consists of
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outliers in the data, since its points share extremely low ACPowerRecoverTime
and maxCladTemp. These points correspond to the success scenarios where AC
power is recovered very quickly and clad temperature never increases drastically.
Although the blue (#2) and cyan (#1) clusters share similar statistical sum-
maries across most dimensions, ACPowerRecoveryTime seems to be the most
likely factor that differentiate these two clusters. The fact that the cyan (#1)
cluster has a late ACPowerRecoveryTime, but still records success scenarios
implies that this factor is not important for successful system recovery for this
cluster, but may be more involved in the blue (#2) cluster. The differentiating
factor between the red (#3) cluster and the blue (#2) and cyan (#1) clusters
is its late SRVStuckOpenTime.

The three bottom clusters partition primarily the failure cases. The dark
green cluster (#7) again contains the outliers and its points share extremely
late SRVStuckOpenTime and FirewaterTime. These correspond to the failure
scenarios where all SRVs operate correctly for a long time and the firewater is
injected very late, not in time to avoid the core damage from overheating. The
light green (#5) and pink (#6) clusters differ mostly in ExtendedECCSOpera-
tion and CoolingFailToRunTime. The light green (#5) cluster is concentrated
with data points exhibiting lower ExtendedECCSOperation and higher Cooling-
FailToRunTime compared to the pink (#6) cluster. Therefore, differentiating
clusters based on variations across different dimensions allows the user to or-
ganize and interpret the trends in scenario evolution and risk contributors for
each scenario.

((a) ((b) ((c) ((d) ((e)
Figure 7: PCA embedding for the 8D dataset under the Failure Scenarios Case. The dimen-
sions shown exhibit relatively strong correlation patterns within the embedding. (a) Cooling-
FailToRunTime; (b) ExtendedECCSOperation; (c) FirewaterTime; (d) simulationEndTime;
(e) SRVStuckOpenTime.

Failure Scenarios Case. Once again, we color the points in the PCA embed-
ding for all failure scenarios, as illustrated in Figure 7. There are clear variations
among points in the embedding under ExtendedECCSOperation, Firewater-
Time, and SRVStuckOpenTime. FirewaterTime and SRVstuckOpenTime vary
along the horizontal direction, whereas ExtendedECCSOperation varies verti-
cally. We also notice that very few points exist with a high simulationEndTime
among all the failure scenarios. Comparing this case with the All Scenarios
Case, it is much more difficult to obtain insights from the original data based
on this visualization alone.

Using clustering expansion, we arrive at a level of the hierarchy where five
clusters are presented in the data (Figure 8). In this focused analysis of all
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Figure 8: (a) 2D embedding of the data colored by cluster labels. (b) A separate illustration
of individual clusters and their summary statistics.

the failure scenarios (without the interference from the dominating dimension
MaxCladTemp), we obtain various insights regarding the separation of clusters
which can be used to identify the significant failure modes.

For example, the purple (#1) cluster contains outliers that share late ACPow-
erRecoveryTime and CoolingFailToRunTime. Both the green (#2) and red
(#3) clusters consist of early failure scenarios, but their reasons for failing early
are evident in their corresponding parameter settings. In particular, the differ-
entiating factors here are the CoolingFaillToRunTime and ExtendedECCSOp-
eration. In the green cluster (#2), we see that the cooling system fails early
and leads to an unfettered growth in heat; whereas in the red cluster (#3), the
cooling system is available for longer and instead the extended ECCS operation
time is very short.

3.2.2. Topological Clustering

For topological clustering, we map the data into a 7D scalar function, where
its input includes the 7 input parameters of the simulation, and its output corre-
sponds to maxCladTemp for the All Scenarios Case, and EndSimulationTime
for the Failure Scenarios Case.
All Scenarios Case. After careful analysis of the clustering hierarchy, we focus
on a level consisting of four clusters. Figures 9 and 10 summarize our results.
In Figure 9, three of the clusters share a common global maximum, whereas the
remaining cyan cluster (#2) consists of points exhibiting low MaxCladTemp
values, which correspond to success scenarios. Here we study the conditions
that lead to distinct local minima, that is, the different parameter settings that
yield stable success scenarios, by focusing on the behavior of the projected
summary curves in the inverse coordinate plots of Figure 9.

Recall the vertical axis of each inverse coordinate plot is labeled by one
input parameter, and the horizontal axis corresponds to maxCladTemp. Since
we study conditions that lead to minimal values of maxCladTemp, we focus on
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the left side of the horizontal axis of each plot, which corresponds to low values
of maxCladTemp.

In Figure 9 (right), the local minimum that belongs to the pink cluster (#3)
exhibits an early ACPowerRecoveryTime, a late FirewaterTime, and an early
ExtendedECCSOperation time. The local minimum of the blue cluster (#4), on
the other hand, has a late ACPowerRecoveryTime, a very early FirewaterTime,
an early ADSActivationTimeDelay, and a late ExtendedECCSOperation time.
The third local minimum, shared by the green (#1) and cyan (#2) clusters, has
a moderate FirewaterTime paired with an early ACPowerRecoveryTime and a
late ExtendedECCSOperation time.

The input parameters that seem to be irrelevant in differentiating these clus-
ters are the FailureTimeDG, the CoolingFailToRunTime, and the SRVStuck-
OpenTime. This last observation seems to be well aligned with the observations
we have made in the beginning of Section 3.2.1, where we see that there is no vi-
sual correlation between the maxCladTemp and the FailureTimeDG (therefore
we omitted the plot for FailureTimeDG in Figure 5), and that the CoolingFail-
ToRunTime and SRVStuckOpenTime are orthogonal in variation direction to
the maxCladTemp in the PCA embeddings.

The new information we obtain from topological clustering is that the Fire-
waterTime does play a role in differentiating the pink (#3), green (#1), and
blue (#4) clusters, as we see clear separation among the left end points of all
three summary curves in its inverse coordinate plot (Figure 9 (right)). There-
fore, from a safety analysis perspective, we observe that, in order to assure a low
value of maximum clad temperature, the high pressure injection system needs
to be available for a long time for scenarios to remain system successes. On the
other hand, the failure time of DGs (FailureTimeDG, initial time of the SBO
condition) does not play a relevant role in guaranteeing a low value of max clad
temperature.

For the pink cluster (#3) in (Figure 9 (right)), an early AC recovery time
guarantees system success even for early values of SRVstuckOpenTime, Extend-
edECCSoperation time, and late FirewaterTime. This means, even in the case
of an early RPV depressurization (i.e., SRV stuck open), the core heating rate
is slow enough that an early AC recovery time guarantees low values of max
clad temperature.

Failure Scenarios Case. In this case, we consider only failure scenarios and
use simulationEndTime, that is, the time to reach the failure temperature of
2200◦F (≈ 1477 K), as the output parameter. We obtain a topological clustering
that consists of four clusters. Results are shown in Figure 11 and Figure 12.
In Figure 11(left), four clusters share a global minimum, characterized by a
simulationEndTime of 434.82 seconds. There are four distinct local maxima.
One interpretation is to look at the local maxima as independent, near-success
scenarios, as they represent within their own cluster, the latest time to reach
the failure states (e.g., when the simulations terminate). In other words, the
temperature for each of these local maxima scenarios grows slowly during the
simulation, thereby allowing a longer simulation time.
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Figure 9: Left: the topological skeleton of all 4997 scenarios. Inverse coordinate plots with
(middle) and without (right) points projected. Points and summary curves are colored by
cluster labels.

Figure 10: Left: 2D embedding of the data colored by topological clustering labels. Right:
a separate illustration of individual clusters and their summary statistics with respect to the
input dimensions.

From a safety analysis perspective, we are interested in understanding the
conditions under which we have a late core damage event. Recall in the inverse
coordinate plots of Figure 11(right) that the horizontal axis corresponds to the
simulationEndTime. Therefore we focus our analysis on the right side of the
horizontal axis, where a long simulation corresponds to a late core damage event.

For the green cluster (#1) in Figure 11(right), as expected, a driving factor to
reach a late core damage is a high value of ECCS operation. This observation
implies that it is preferable to keep the RPV pressurized as long as possible
and maintain high pressure cooling, instead of activating the ADS system and
obtaining cooling through the FW system. Also note for this same cluster that
a late core damage is also correlated with a late ACPowerRecoveryTime.

For all scenarios contained in the purple cluster (#4), we notice that the lat-
est core damage within the cluster is reached for high values of FailureTimeDG,
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since a large quantity of heat has been discharged before reaching the SBO con-
dition. On the contrary, for the red cluster (#3), the latest core damage within
the cluster occurs when a small quantity of heat has been rejected from the core
following reactor scram (i.e., low value of FailureTimeDG) and late failure of the
high pressure core cooling system (i.e., high value of CoolingFailToRunTime).

In summary, for all clusters, a late failure of the high pressure core cooling
system and a late ACPowerRecoveryTime are always needed in order to guar-
antee a late core damage condition. In addition, FailureTimeDG when coupled
with the FirewaterTime also plays a relevant role in understanding the condi-
tions for reaching late core damage.

Figure 11: Left: topological skeleton of all failure scenarios. Inverse coordinate plots with
(middle) and without (right) points projection. Points and summary curves are colored by
cluster labels.

For comparison, as before, we color points in their 2D embedding based on
the topological clustering results, as shown in Figure 12. We are able to see how
the clusters differ in terms of the statistical summaries of the input dimensions.
However, the information regarding how the output parameter varies among
the clusters remains hidden. For example in Figure 12, ACPowerRecoveryTime
varies in its range and mean value across the four clusters; however, the inverse
coordinate plot in Figure 11 reveals that such an input parameter is not a
differentiating factor across the four clusters at the local maxima. As a matter
of fact, the summary curves of this parameter overlap significantly in its inverse
coordinate plot.

4. Case Study Dataset 2: 10D Simulation Ensemble

4.1. Data Description

A second dataset consists of 10000 station blackout simulation trials using
10 input parameters based on Monte Carlo sampling has also been investigated.
These input parameters are similar to the first dataset, and are explained below:

1. RCIC failTime: the time when the RCIC system fails to run.
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Figure 12: Left: 2D embedding of the data colored by topological clustering labels. Right: a
separate illustration of individual clusters and their summary statistics.

2. HPCI failTime: the time when the HPCI system fails to run.

3. SRV soTime: the time when a Safety Relief Valve (SRV) gets stuck in
the open position.

4. FW availTime: the time when the firewater is available for injection
into the RPV.

5. DG failTime: the time when the diesel generators (DGs) stop providing
power to the plant (i.e., the time when the SBO condition starts).

6. DG recTime: the time when the power provided by the DGs are restored
to the plant.

7. PG recTime: the time when the AC power provided by the external
power grid is restored to the plant.

8. BATT failTime: the time when the battery system fails and must be
repaired.

9. BATT recTime: the time when the battery system is recovered.

10. BATT life: the total uptime provided by the batteries before they be-
come expended.

In addition, each parameter comes with a pre-defined probability density
function (PDF), given in Table 1. This information can be used to compute
the probability of occurrence for each simulation trial. We assume that all 10
parameters are independent of one another, and the probability associated to a
given sample ~x = (x1, ..., x10) is given by the equation below:

P (~x) =

10∏
i=1

pi(xi), (1)

where pi is the one dimensional PDF associated with the i-th input parameter.
Therefore, for this dataset, the output parameters of interests are:

1. maxCladTemp: the maximum clad temperature reached during the en-
tire course of the simulation;
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2. occurenceProb: the probability of occurrence associated with each point
in the domain, as computed from Equation 1.

In this dataset, we set the clad failure temperature at 1800◦F (≈ 1255 K), and
have recorded 1243 (out of the 10000) sampled points that correspond to the
failure scenarios. Unlike in the first dataset, the simulations are not terminated
when they reach the threshold temperature, therefore we see more variations
in the range space for maxCladTemp. The data is again pre-processed with a
Z-score standardization.

Input name (units) Range Dist. type Parameters
RCIC failTime (h) (0, 8) Exponential λ = 4.43 ∗ 10−3

HPCI failTime (h) (0, 8) Exponential λ = 4.43 ∗ 10−3

SRV soTime (h) (0, 8) Bernoulli p = 8.56 ∗ 10−4

FW availTime (m) (0, 480) Lognormal µ = 45, σ = 30
DG failTime (h) (0, 8) Exponential λ = 1.09 ∗ 10−3

DG recTime (h) (0, 8) Weibull α = 0.745, β = 6.14
PG recTime (h) (0, 8) Lognormal µ = 0.793, σ = 1.982
BATT recTime (m) (0, 480) Lognormal µ = 45, σ = 15
BATT life (h) (4, 6) Triangular (4, 5, 6)
BATT failTime (h) (0, 8) Exponential λ = 3.5 ∗ 10−6

Table 1: The 10 input parameters from our simulation ensemble and their PDFs with associ-
ated parameters. For the SRV soTime, the probability is p if SRV soTime < ADS actTime -
DG failTime, otherwise the probability is 1 − p.

4.2. Results

We now apply traditional clustering to the above dataset followed by topo-
logical clustering. Recall the failure region is defined as all parameter settings in
the input domain whose corresponding clad temperature reach or exceed 1800◦F
(≈ 1255 K). We identify the failure region of the input domain and further ana-
lyze this region in detail. In particular, we study the topology of the probability
landscape over the failure region (i.e. Failure Scenarios Case). That is, we
construct a 10D scalar function based on the 10 simulation input parameters
based on the failure scenarios, and use occurenceProb as its scalar output. We
aim to characterize the failure region according to areas of high probabilities,
whereupon further efforts could be made to reduce the risks associated with
these areas.

4.2.1. Traditional Clustering

We map the data into a 11D space by considering the 10 input parameters
and the output parameter maxCladTemp. Similar to Section 3.2.1, we perform
agglomerative hierarchical clustering using average linkage on this 11D data.
All Scenarios Case. We illustrate the results for the hierarchical clustering
of the dataset into 14 clusters in Figure 13. We show PCA projections of the
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Figure 13: Results of traditional clustering of the 11D SBO data for all scenarios. The top
row shows the PCA projections of the 11D point cloud, colored by cluster labels (left), and
success (red) or failure (blue) conditions (right), respectively. The bottom row shows detailed
statistical analysis of the clusters containing failure scenarios.

data points colored by both cluster labels (Figure 13 top left) as well as their
success/failure conditions (Figure 13 top right). From a safety perspective, the
interesting cases occur near the failure region of the input domain, namely,
the regions that contain failure or near-failure cases. Therefore, we remove the
clusters that contain only success scenarios, and focus our statistical analysis on
the remaining 8 clusters (Figure 13 bottom), where we analyze the mean and
range of each input parameter.
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In Figure 13 (bottom), two data points (#2 and #6, respectively), both cor-
responding to failure scenarios, exist as their own clusters. The purple cluster
(#2) exhibits late failure times for the RCIC, HPCI, DG, and battery sys-
tems (i.e. late RCIC failtime, late HPCI failTim, late DG failTime and late
BATT failTime), as well as late recovery times for DG and PG systems (i.e.
late DG recTime and late PG recTime), leading to overheating of the cladding
due to a prolonged growth of heat in the system as there is not sufficient time
for recovery. The red cluster (#6) characterizes a scenario with early failures
of the HPCI, SRV, DG and battery systems (i.e. early HPCI failTime, early
SRV soTime, early DG failTime and early BATT failTime) as well as a short
battery life even with fast recovery of the battery system (i.e. early BATT life
and early BATT recTime). Even though such a scenario has an early firewater
available time, loss of battery system impedes the cooling of the core. In addi-
tion, an early SRV failure allows an RPV depressurization but not fast enough
to be able to use the firewater injection before clad max temperature reaches its
own maximum limit. Further analysis on these two scenarios could be conducted
to verify these hypotheses.

A slightly bigger cluster in light green (#3) consists of exclusively failure
scenarios. These cases exhibit early fail times for the RCIC, HPCI, DG and
battery systems, even though firewater is available fairly early. Among the larger
clusters, the blue cluster (#5) consists of mainly failure scenarios most likely
due to the late recovery times of both the DG and PG systems. The cyan cluster
(#4) also consists of mainly failure cases. Analysis of the mean values of all
input parameters shows mostly moderate values except for a late recovery time
of the PG system and an early failure time of the battery system. Meanwhile, the
brown (#8), dark green (#7), and orange (#1) clusters contain mainly success
scenarios, where the failure scenarios within these clusters typically have low
cladMaxTemp, making them less interesting for further analysis.

4.2.2. Topological Clustering

We map the data into a 10D scalar function, where its input includes the 10
input parameters of the simulation, and its output corresponds to maxCladTemp
for all scenarios and occurenceProb for the failure scenarios.
All Scenarios Case. At an appropriately chosen scale, topological clustering
of the data results in a clustering consisting of three clusters whose topology
is characterized by a shared global minimum and three distinct local maxima
within its topological skeleton (Figure 14 left). As illustrated in Figure 14 (mid-
dle), the data points are sampled at varying densities within the range space.
That is, relatively dense samples are obtained within the range [750◦F, 1000◦F]
(≈ [672 K, 811 K]) of the maxCladTemp (which responds to a large number
of success scenarios that have safely recovered from the failures of various sys-
tems), and within the failure region, that is, on or above 1800◦F (≈ 1255 K).
It has also revealed that data points within the green cluster (#1) represent
the smallest span of the range space, between 585◦F (≈ 580 K) and 2378◦F
(≈ 1576 K).
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Within the failure region, the blue (#2) and green (#1) clusters combined
account for less than 1% of the observed failure scenarios while the red cluster
(#3) contains the majority of the failure scenarios. Two input parameters stand
out in the inverse coordinate plot. As shown in Figure 14 (middle), an early
PG recTime is the most likely parameter setting to avoid reaching failure condi-
tions, as evidenced by an area with low sample density within the failure region.
Meanwhile, a large number of failure cases share an early BATT failTime, as
witnessed by an area with high sample density within the failure region.

We focus our visual sensitivity analysis surrounding the failure region to
understand how different input parameters influence the observed output pa-
rameter, maxCladTemp, by further exploration of the inverse coordinate plots
highlighting the summary curves in Figure 14 (right). Within the failure region
in Figure 14 (right), the defining characteristics of the green cluster (#1) are its
distinctly late FW availTime, late DG recTime and late BATT failTime. The
blue cluster (#2) shares several similar behaviors with the green cluster (#1)
within the failure region, namely, a late HPCI failTime, an early SRV soTime,
a late DG failTime as well as an early BATT recTime. However, it differenti-
ates itself from the green cluster (#1) by having an early RCIC failTime, an
early FW availTime, an early PG recTime, an early DG recTime and an early
BATT failTime. The DG recTime and BATT failTime are the most relevant
input parameters that distinguish all three clusters in the failure region.

[750, 1000] > 1800

Failure region

> 1800

Failure region
Figure 14: Left: the topological skeleton of all scenarios. Middle: inverse coordinate plots
highlighting the point samples colored by cluster labels. Right: inverse coordinate plots
showing only the summary curves associated with each cluster.

Failure Scenarios Case. We focus on studying areas within the failure re-
gion that have a high probability of occurrence (i.e. high values of occuren-
ceProb). Based on a topological clustering Figure 15 (left), we obtain three
clusters that have a shared global minimum and three distinct local maxima
valued at 7.39 × 10−5, 2.79 × 10−5 and 9.75 × 10−4 for the red (#1), blue
(#3), and green (#2) clusters, respectively. Figure 15 (middle) illustrates a
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very sparse sampling within the range space as most samples are concentrated
towards the low probability regions. The green cluster (#2) contains the most
interesting failure scenario, that is, the global maximum, which corresponds to
the data point with the highest probability of occurrence. Such a global max-
imum corresponds to a FW availTime valued at 22.9 s (near its lower bound
of 0, see Table 1) and a BATT recTime valued at 2.82 × 104 s (≈ 470 m, near
its upper bound of 480 m, see Table 1). Further sampling of the input pa-
rameter space surrounding such a global maxima could potentially reveal more
structures associated with the failure region in highly-probable areas.

Figure 15: Left: the topological skeleton of the failure scenarios. Middle: inverse coordinate
plots that highlight the point samples colored by cluster labels. Right: inverse coordinate
plots that highlight the summary curves associated with each cluster.

5. Conclusion

We apply both traditional and topological clusterings in conjunction with
dimensionality reduction techniques on DPRA datasets. We provide the domain
scientist with an analysis and visualization tool for obtaining insights with re-
spect to system responses under the simulated accident scenarios. We focus on
two datasets simulating the response of a BWR system during an SBO accident
scenario. We obtain such datasets by performing a series of simulations where,
for each simulation run, we randomly change timing and sequencing of a speci-
fied set of events. We aim to identify how timing or sequencing of these events
affects the maximum core temperature.

We have observed that a traditional clustering combined with dimensionality
reduction is adequate to distinguish failure scenarios with success scenarios, and
to group points with similar parameter settings. On the other hand, topological
clustering captures information regarding how input parameters are correlated
with the output, and how input parameter settings help differentiate local ex-
trema of the output. Topological clustering takes the dependencies among the
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input and output parameters into consideration, and performs global analysis
that highlight topological structures encoded within these dependencies. In ad-
dition, it leads to novel visualizations. We believe that pairwise comparisons
and validations of both types of clustering techniques complement each other
in bringing enhanced structural understanding of the data.
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