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Abstract – The existing fleet of nuclear power plants is in the process of extending its lifetime and 

increasing the power generated from these plants via power uprates. In order to evaluate the 

impact of these two factors on the safety of the plant, the RISMC Pathway aims to develop 

simulation-based tools and methods to assess risks for existing nuclear power plants in order to 

optimize safety. This pathway, by developing new methods, is extending the state-of-the-practice 

methods that have been traditionally based on logic structures such as Event-Trees and Fault-

Trees. These static types of models mimic system response in an inductive and deductive way 

respectively, yet are restrictive in the ways they can represent spatial and temporal constructs. 

RISMC analyses are performed by using a combination of thermal-hydraulic codes and a 

stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. 

RAVEN. This paper presents a case study in order to show the capabilities of the RISMC 

methodology to assess impact of power uprate of a boiling water reactor system during a station 

blackout accident scenario. We employ the system simulator code, RELAP5-3D, coupled with 

RAVEN which perform the stochastic analysis. Our analysis is in fact performed by: 1) sampling 

values of a set of parameters from the uncertainty space of interest, 2) simulating the system 

behavior for that specific set of parameter values and 3) analyzing the set of simulation runs.  

Results obtained give a detailed investigation of the issues associated with a plant power uprate 

including the effects of station blackout accident scenarios. We are able to quantify how the timing 

of specific events was impacted by a higher nominal reactor core power. Such safety insights can 

provide useful information to the decision makers to perform risk informed margins management.  

 
 

I. INTRODUCTION 

 

In the RISMC [1,2] approach, under the Light Water 

Reactor Sustainability Program (LWRS) LWRS campaign 

[3], what we want to understand is not just the frequency of 

an event like core damage, but how close we are (or not) to 

key safety-related events and how might we increase our 

safety margin through proper application of Risk Informed 

Margin Management. In general terms, a “margin” is 

usually characterized in one of two ways: 

 A deterministic margin, typically defined by the 

ratio (or, alternatively, the difference) of a capacity 

(i.e., strength) over the load. 

 A probabilistic margin, defined by the probability 

that the load exceeds the capacity. 

A probabilistic safety margin is a numerical value 

quantifying the probability that a safety metric (e.g., for an 

important process observable such as clad temperature) is 

exceeded under accident conditions. 

The RISMC Pathway uses the probabilistic margin 

approach to quantify impacts to reliability and safety. As 

part of the quantification, we use both probabilistic (via 

risk simulation) and mechanistic (via physics models) 

approaches. Probabilistic analysis is represented by the 

stochastic risk analysis while mechanistic analysis is 

represented by the plant physics calculations. Safety 

margin and uncertainty quantification rely on plant physics 

(e.g., thermal-hydraulics and reactor kinetics) coupled with 

probabilistic risk simulation (see Fig. 1). The coupling, 

which we call Computational PRA (CPRA), also know as 

Dynamic PRA [4], takes place through the interchange of 

physical parameters (e.g., pressures and temperatures) and 

operational or accident scenarios (e.g., the series of 

successes and/or failures representing a sequence of 

events). 
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This paper presents a case study in order to show the 

capabilities of the RISMC methodology [5] to assess 

limitations and performances of a Boiling Water Reactor 

(BWR) system during a Station Black Out (SBO) accident 

scenario using a simulation-based environment also known 

as dynamic PRA [4]. Such assessment cannot be naturally 

performed in a classical Event Tree/Fault Tree (ET/FT) 

based environment.  

We employ a system simulator code, one of the 

RELAP series of codes [6], coupled with a CPRA code, 

RAVEN [7,8], that monitors and controls the simulation. 

The latter code, in particular, introduces both deterministic 

(e.g., system control logic, operating procedures) and 

stochastic (e.g., component failures, variable uncertainties, 

human actions) elements into the simulation. 

 

 
Fig. 1. Overview of the RISMC approach [5]. 

 

II. THE RISMC APPROACH 

 

In Section I we have shown the main reasons behind 

the choice of moving from an ET-FT logic structure and 

employing directly system simulator codes to perform PRA 

analyses. A simulator code is, per se, a tool that can be 

represented as [9,10]: 

 
𝜕𝜽(𝑡)

𝜕𝑡
= 𝓗(𝜽, 𝒑, 𝒔, 𝑡) (1) 

where: 

 𝜽 = 𝜽(𝑡) represents the status of the system as 

function of time 𝑡, i.e., 𝜽(𝑡) represents a single 

simulation  

 𝓗 is the actual simulator code that describes how 𝜽 

evolves in time 

 𝒑 is the set of parameters internal to the simulator 

code (e.g., pipe friction coefficients, pump flow rate, 

reactor power) 

 𝒔 = 𝒔(𝑡) represents the status of components and 

systems of the simulator (e.g., status of emergency 

core cooling system, AC system) 

By using the RISMC approach, the PRA is performed by 

following these steps: 

1. Associating a probabilistic distribution function 

(pdf) to the set of parameters 𝒑 and 𝒔 (e.g., timing 

of events) 

2. Performing sampling of the pdfs defined in Step 1 

3. Performing a simulation run given the 𝒑 and 𝒔 

sampled in Step 2 

4. Repeating Steps 2 and 3 N times and evaluate user 

defined stochastic parameters such core damage 

(CD) probability (𝑃𝐶𝐷) as the ratio between the 

number of simulations that lead to CD divided by N 

(the total number of simulations). 

Strictly speaking, the sampling associated to the vector 

of parameters 𝒑 is usually defined as uncertainty 

quantification while sampling the timing of events 𝒔 is 

usually called PRA. In our applications, we include in the 

definition of PRA the sampling of both 𝒑 and 𝒔. 

 

III. RISMC TOOLKIT 

 

In order to perform advanced safety analysis, the RISMC 

Pathway has a toolkit that was developed internally at INL 

using MOOSE [11] as the underlying numerical solver 

framework. This toolkit consists of the following software 

tools: 

 RELAP (both RELAP5-3D [6] and RELAP-7 [12]): 

the code responsible for simulating the thermal-

hydraulic dynamics of the plant. 

 RAVEN [7,8]: it has two main functions: 1) act as a 

controller of the RELAP-7 simulation and 2) 

generate multiple scenarios (i.e., a sampler) by 

stochastically changing the order and/or timing of 

events. 

 PEACOCK: the Graphical User Interface (GUI) that 

allows the user to create/modify input files of both 

RAVEN and RELAP-7 [13] and to monitor the 

simulation in real time while it is running. 

 GRIZZLY: the code that simulates the thermal-

mechanical behavior of components in order to 

model component aging and degradation.  Note that 

for the analysis described in this article, aging was 

not considered in the accident scenarios. 

For the scope of this article, we used RELAP5-3D and 

RAVEN to show advanced PRA analyses. 

 

III.A. RAVEN 

 

The RAVEN statistical framework is a recent add-on 

of the RAVEN package that allows the user to perform 
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generic statistical analysis. By statistical analysis we 

include: 

 Sampling of codes: either stochastic (e.g., Monte-

Carlo [14] and Latin Hypercube Sampling [15]) or 

deterministic (e.g., Dynamic Event Tree [16]) 

 Generation of Reduced Order Models (ROMs) [17] 

also known as surrogate models or emulators 

 Post-processing of the sampled data and generation 

of statistical parameters (e.g., mean, variance, 

covariance matrix) 

Figure 2 shows an overview of the elements that comprise 

the RAVEN statistical framework: 

 Model: it represents the pipeline between the input 

and output spaces. It is comprised of both 

mechanistic codes (e.g., RELAP-7) and ROMs 

 Sampler: it is the driver for any specific sampling 

strategy (e.g., Monte-Carlo [18], Latin Hypercube 

Sampling [19], dynamic event trees [20]) 

 Database: the data storing entity 

 Post-processing: module that perform statistical 

analyses and visualizes results 

 

 
Fig. 2. Structure of RAVEN statistical framework components. 

 

III. BWR SBO TEST CASE  

 

As mentioned in the introduction, the test case chosen 

to show the RISMC approach is a SBO accident scenario 

for a BWR system. In Section III.A we describe the BWR 

model that we implemented while Section III.B shows the 

accident progression. 

 

III.A. BWR Model 

 

The system considered in this test case is a generic 

BWR power plant with a Mark I containment as shown in 

Fig. 3 [5]. The three main structures are the following: 

1) Reactor Pressure Vessel (RPV), it is the pressurized 

vessel that contains the reactor core. 

2) Primary containment includes: 

a. Drywell (DW): it contains the RPV and 

circulation pumps 

b. Pressure Suppression Pool (PSP) also known as 

wetwell: a large torus shaped container that 

contains a large amount of water; it is used as 

ultimate heat sink. 

c. Reactor circulation pumps 

While the original BWR Mark I includes a large number of 

systems, we consider a subset of it: 

 RPV level control systems: provide manual and 

automatic control of the RPV water level: 

1. Reactor Core Isolation Cooling System (RCIC): 

Provide high-pressure injection of water from 

the CST to the RPV. Water flow is provided by 

a turbine driven pump that takes steam from the 

main steam line and discharges it to the 

suppression pool. Alternatively, the water 

source can be shifted from the CST to the PSP.  

2. High Pressure Coolant Injection (HPCI): 

similar to RCIC, it allows greater water flow 

rates  

 Safety Relief Valves (SRVs): DC powered valves 

that control and limit the RPV pressure. 

 Automatic Depressurization System (ADS): 

separate set of relief valves that are employed in 

order to depressurize the RPV.  

 Cooling water inventory: 

1. Condensate Storage Tank (CST) that contains 

fresh water that can be used to cool the reactor 

core.  

2. PSP water: PSP contains a large amount of fresh 

water that is used to provide ultimate heat sink 

when AC power is lost. 

3. Firewater system: water contained in the 

firewater system can be injected into the RPV 

when other water injection systems are disabled 

and when RPV is depressurized. 

 Power systems (see Fig. 4): 

1. Two independent power grids that are 

connected to the plant station thorough two 

independent switchyards. Loss of power from 

both switchyards disables the operability of all 

system except: ADS, SRV, RCIC and HPCI 

(which require only DC battery). 
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2. Diesel generators (DGs) which provide 

emergency AC power  

3. Battery systems: instrumentation and control 

systems need DC power. 

 

 
Fig. 3. RELAP-5 nodalization scheme for the BWR system. 

III.B. SBO Scenario 

 

The accident scenario under consideration is a loss of 

off-site power followed by loss of the DGs, i.e. SBO 

initiating event [5]. In more details, at time t = 0 LOOP 

condition occurs due to external events (i.e., power grid 

related) which triggers the following actions: 

 Operators successfully scram the reactor and put it 

in sub-critical conditions by fully inserting the 

control rods in the core 

 Emergency DGs successfully start, i.e., AC power is 

available 

 Core decay heat is removed from the RPV through 

the RHR system 

 DC systems (i.e., batteries) are functional 

At a certain time, SBO condition occurs: due to 

internal failure, the set of DGs fails, thus removal of decay 

heat is impeded. Reactor operators start the SBO 

emergency operating procedures and perform: 

 RPV level control using RCIC or HPCI 

 RPV pressure control using SRVs 

 Containment monitoring (both drywell and PSP) 

Plant operators start recovery operations to bring back on-

line the DGs while the recovery of the power grid is 

underway by the grid owner emergency staff. 

Due to the limited life of the battery system and 

depending on the use of DC power, battery power can 

deplete. When this happens, all remaining control systems 

are offline causing the reactor core to heat until clad failure 

temperature is reached, i.e., core damage (CD). 

 

 
Fig. 4. BWR AC/DC power system schematics. 

 

If DC power is still available and one of these 

conditions are reached: 

 Failure of both RCIC and HPCI 

 HCTL limits reached 

 Low RPV water level 

then the reactor operators activate the ADS system in order 

to depressurize the RPV . 

As an emergency action, when RPV pressure is below 

100 psi plant staff can connect the firewater system to the 

RPV in order to cool the core and maintain an adequate 

water level. Such task is, however, hard to complete since 

physical connection between the firewater system and the 

RPV inlet has to made manually. 

When AC power is recovered, through successful re-

start/repair of DGs or off-site power, RHR can be now 

employed to keep the reactor core cool 
 

V. STOCHASTIC ANALYSIS 

 

For this analysis we considered several uncertain 

parameters: 

 Failure time of DGs: regarding the time at which 

the DGs fail to run we chose an exponential 

distribution with a value of lambda equal to 1.09 10
-

3
 h

-1
 as indicated by NRC published data [21]. 

 Recovery time of DGs: Regarding time needed to 

recover the DGs, we used as a reference the 

NUREG/CR-6890 vol.1 [22]. This document uses a 
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Weibull distribution
1
 with α = 0.745 and β = 6.14 h 

(mean = 7.4 h and median = 3.8 h). Such 

distribution represents the pdf of repair of one of the 

two DGs (choosing the one easiest to repair). 

 Offsite AC power recovery: For the time needed to 

recover the off-site power grid, we used as reference 

NUREG/CR-6890 vol.2 [22] (data collection was 

performed between 1986 and 2004). Given the four 

possible LOOP categories (plant centered, 

switchyard centered, grid related or weather 

related), severe/extreme events (such as earthquake) 

are assumed to be similar to these events found in 

the weather category (these are typically long-term 

types of recoveries). This category is represented 

with a lognormal distribution (from NUREG/CR-

6890 [22]) with 𝜇 = 0.793 and 𝜎 = 1.982. 

 Battery life: For the amount of DC power available, 

when AC power is not obtainable, we chose to limit 

battery life between 4 and 6 hours using a triangular 

distribution (see NUREG/CR-6890 vol.2 [22]). 

 Battery failure time: As basic event in the PRA 

model, the probability value associated with battery 

failure is equal to 1.4 10
-5

 for an expected life of 4 

hours. We have assumed an exponential distribution 

for the battery failure time distribution. The value of 

𝜆 for this distribution has been calculated by 

imposing that the CDF of this distribution (1 −
𝑒−𝜆𝑡) at 4 hours (i.e., the probability that battery 

fails within 4 hours is 1.4 10
-5

): 

∫ 𝜆 𝑒−𝜆𝑡  𝑑𝑡
4

0

= [1 − 𝑒−𝜆𝑡]
0

4
= 1.4 10−5  

  This leads to a value of 𝜆 = 3.5 10−6/hr. 

 SRVs fails open time: the SPAR model indicates a 

probability value of 8.56 10
-4

. 

 Clad Fail temperature: Uncertainty in failure 

temperature for the clad is characterized by a 

triangular distribution [23] having:  

o Lower limit = 1800 F (982 C): PRA success 

criterion 

o Upper limit = 2600 F (1427 C): Urbanic-

Heidrick transition temperature 

o Mode = 2200 F (1204 C): 10 CFR regulatory 

limit 

 RCIC fails to run: Regarding the distribution of 

RCIC to fail to run we assumed an exponential 

                                                           
1 Weibull distribution 𝑝𝑑𝑓(𝑥) is here defined as: 𝑝𝑑𝑓(𝑥) =

𝛼

𝛽𝛼
𝑥𝛼−1𝑒

−(
𝑥

𝛽
)

𝛼

 

distribution with 𝜆 =  4.43 10−3ℎ−1 
as indicated in 

the SPAR model. 

 HPCI fails to run: Identical distribution for RCIC 

fails to run distribution (see above) 

 Firewater flow rate: The value of firewater flow 

rate is between 150 and 300 gpm [5]. For the scope 

of this article we also considered the possibility of 

very low firewater flow rates. Thus we assumed a 

triangular distribution defined in the interval 
[0,300] gpm with mode at 200 gpm. 

Regarding the pdfs related to human related actions we 

looked into the SPAR-H [24] model contained in 

SAPHIRE. SPAR-H characterizes each operator action 

through eight parameters – for this study we focused on the 

two important factors: 

 Stress/stressors level 

 Task complexity 

These two parameters are used to compute the 

probability that such action will happen or not; these 

probability values are then inserted into the ETs that 

contain these events. However, from a simulation point of 

view we are not seeking if an action is performed but 

rather when such action is performed. Thus, we need a 

probability distribution function that defines the probability 

that such action will occur as function of time. 
 

Table 1. Correspondence table between task complexity and 

stress/stressor level and time values 

Complexity  𝜇 (min)  Stress/stressors 𝜎 (min) 

High 45  Extreme 30 

Moderate 15  High 15 

Nominal 5  Nominal 5 

 

Since modeling of human actions is often performed 

using lognormal distributions [5], we chose such a 

distribution where its characters parameters (i.e., 𝜇 and 𝜎) 

that are dependent on the two factors listed above 

(Stress/stressors level and Task complexity). We used Table 

1 [5] to convert the three possible values of the two factors 

into numerical values for 𝜇 and 𝜎. 

For our specific case we modeled two human related 

actions as indicated below: 

 Battery repair time: DC battery system restoration 

is performed by recovering batteries from nearby 

vehicles and connecting them to the plant DC 

system. We assumed that this task has high 

complexity with extreme stress/stressors level. This 

leads to 𝜇 = 45 𝑚𝑖𝑛 and 𝜎 = 15 𝑚𝑖𝑛  

 Firewater availability time: The operations to align 

the firewater system to the RPV are considered a 

very complex operation. This time is measured after 
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the ADS has been activated, i.e., after the RPV has 

been depressurized. Also for this case we assumed 

that this task has a high complexity with extreme 

stress/stressors level. This leads to 𝜇 = 45 𝑚𝑖𝑛 and 

𝜎 = 30 . 

A summary of the uncertain parameters and their 

associated distribution is listed in Table 2.  

 
Table 2. Summary of the uncertain parameters considered and 

their associated distribution 

Stochastic variable* Distribution  Distribution parameters 

DGs Failure time (h) Exponential  𝜆 =  1.09 10−3 

DGs Recovery time (h) Weibull  𝛼 = 0.745, 𝛽 = 6.14  
Battery life (h) Triangular  (4, 5, 6) 

SRV1 failure Bernoulli 𝑝 =  8.56 10−4 

PG recovery (h) Lognormal  𝜇 = 0.793, 𝜎 = 1.982  

Clad Fail temp. (F) Triangular  (1800, 2200, 2600) 

HPCI fails to run (h) Exponential  𝜆 =  4.43 10−3  
RCIC fails to run (h) Exponential 𝜆 =  4.43 10−3 

Battery failure time (h) Exponential 𝜆 =  3.5 10−6 
Batt. rec. time (min) Lognormal  𝜇 = 45 , 𝜎 = 15  
FW avail. time (min) Lognormal  𝜇 = 45 , 𝜎 = 30  
FW flow rate (gpm) Uniform (0, 200, 300) 

 

VI. RESULTS 

 

In [25] we presented several analyses which included 

limit surface [26] evaluations and uncertainty 

quantifications using advanced data analysis and data 

visualization techniques. In this article we focused more on 

the probabilistic side of the analysis.  

We performed two series of Latin Hypercube 

Sampling analysis for the two levels of reactor power 

(100% and 120%) using 10,000 samples for each case. The 

scope of this analysis is to evaluate how core damage (CD) 

probability changes when reactor power is increased by 

20%. We also performed this comparison by identifying 

importance of specific events by performing the following 

for each case: 

1. Building an ET based logic structure that queries the 

following events: SRV status, DG, PG and FW 

recovery (see Fig. 5) 

2. Associate each of the 10,000 simulations to a 

specific branch of the ET by querying the status of 

the SRV, PG, DG and FW components in the 

simulation run 

3. Evaluate the probability and the outcome associated 

to each branch 

A summary of the core damage probability for the 

cases is shown in Table 3: the probability value almost 

doubled for a 20% power increase. The summary of the 

branch probabilities represented in Fig. 5 is shown in Table 

4. As expected, all branches that lead to CD have a 

probability increase while the ones leading to OK decrease. 

Table 3. Core damage probability for two different power levels 

(100% and 120%). 

Outcome 100% 120% 

OK 0.9902 0.9804 

CD 9.82 E-3 1.95 E-2 

 

 

 
Fig. 5. Simplified ET logic structure for a BWR SBO. 

 

 
Table 4. Branch probabilities associated to the ET shown in Fig. 5 

for both cases (100% and 120% power level). 

Branch Out 
100% 120% ∆P  

(%) Count Prob. Count Prob. 

1  OK 3146 0.375 3238 0.353  -6 

2 OK 4549 0.618 4440 0.606 -2 

3 OK 847 0.00931 985 0.00926 -0.6 

4 CD 557 0.00982 691 0.0196 +99 

5 OK 333 7.32E-6 223 6.29E-6 -14 

6 OK 254 1.53E-5 189 3.96E-6 -74 

7 OK 251 5.92E-6 175 2.39E-6 -60 

8 CD 63 2.12E-6 59 2.54E-6 +20 

 

Regarding the FW flow rate, we were able to 

determine that a minimum value of 50 gpm is enough to 

assure an OK outcome. Note that branches 4 and 8 (in Fig. 

5) include also the simulations characterized by FW align 

before core damage condition is met but with FW flow rate 

insufficient to keep the core cooled. 

 

IV.A. Impact of auxiliary AC power systems (FLEX system) 

 

In addition to the analysis reported above we evaluated 

the impact of auxiliary AC system generators as additional 

sources of AC power. The U.S. nuclear industry, as a 

measure after the Fukushima accident [28], developed a 

FLEX system to counterattack the risks associated with 

external events (e.g., earthquakes or flooding). Such a 

system employs portable AC and DC emergency 

generators located not only within the plant perimeter but 

also at strategic locations within the US borders in order to 

quickly supply affected NPPs with both AC and DC power. 

For our case, we assumed a new distribution associated 

with the AC recovery time within the plant instead of the 

DG recovery time distribution. Since FLEX operations can 

be considered as human-related events, we followed the 
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same approach described in Section V for human related 

events. In fact, we assumed that the AC recovery can be 

considered to be of moderate complexity and high levels of 

stress/stressors. Note that this model may not be indicative 

of any actual NPP FLEX strategies – for an actual FLEX 

evaluation, plant specific information would need to be 

considered.  The new AC recovery distribution that 

replaces the DG recovery distribution is then a lognormal 

having a mean and a standard deviation values as follows:  

 mean   =  15.0  

 standard deviation =  15.0 

We then performed a new Latin Hypercube Sampling 

analysis in order to estimate the new core damage 

probability value (see Table 5) and the branch probabilities 

associated with the ET structure shown in Fig. 5 as shown 

in Table 6. Note that from Table 6 it is possible to evaluate 

the impact of the FLEX system using a familiar ET 

structure. In particular, it is possible to note that Brach 1 in 

largely impact by the FLEX system (via a new AC 

recovery strategy). 

 
Table 5. Core damage probability for two different test cases 

(120% with and without FLEX system) 

Outcome 120% w/o FLEX 120% w/ FLEX 

OK 0.981 0.995 

CD 1.95 E-2 4.59 E-3 

 

 
Table 6. Branch probabilities associated to the ET shown in Fig. 5 

for two different test cases (120% with and without FLEX 

system) 

Branch Outcome 
Probability (120%)  

∆P (%) 
w/o FLEX w/ FLEX 

1  OK 0.353 0.505 43 

2 OK 0.606 0.490 -21 

3 OK 0.00926 3.49E-05 -100 

4 CD 0.0196 0.00459 -77 

5 OK 6.29E-06 2.87E-06 -54 

6 OK 3.96E-06 1.79E-09 -100 

7 OK 2.39E-06 6.77E-10 -100 

8 CD 2.54E-06 1.09E-09 -100 

 

As second step in the analysis, we focused on the 

concept of limit surfaces [26]: the boundaries in the space 

of the sample parameters that separate failure from 

success. The advantage of limit surfaces is that they allow 

us to physically visualize how system performances are 

reduced due to, for example, a power uprate. By system 

performance, we mainly refer to both reduction in recovery 

timings (e.g., AC power recovery) and time reduction to 

perform steps in reactor operating procedures (e.g., time to 

reach HCTL). 

For the scope of this article, we focused on a safety 

relevant case: DG failure time vs. DG recovery time as 

shown in Fig. 6. These limit surfaces are obtained using 

Support Vector Machines (SVM) [27] based. 

As expected the failure region (red area) is expanding 

when reactor power is increased by 20%. This power 

increase on average reduces AC recovery time by about 

one hour. 

 
 (a)      (b) 

Fig. 6. Limit surface obtained in a two dimensional space (DG 

failure time vs. AC recovery time) for two different power level: 

100% (left) and 120% (right). 

 

VII. CONCLUSIONS 

 

In this article we have shown the RISMC approach in 

order to evaluate the impact of power uprate on a BWR 

SBO accident scenario. We have employed RELAP5-3D as 

system simulator code and the RAVEN code to perform the 

accident sequence generation and statistical analysis. The 

BWR system, the system control logic and the accident 

scenario have been directly implemented in the RELAP5-

3D input file. We evaluate the increase of CD probability 

of such power uprate and its decrease due to the 

implementation of FLEX system to provide emergency 

power to the plant. In particular, we have shown how the 

RISMC approach to perform PRA analyses can overcome 

limitations of classical ET-FT based methodologies and 
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provide the user to a much larger amount of information 

such as time reduction for plant recovery strategies.  

 

NOMENCLATURE 

 

AC   Alternating Current 

ADS   Automatic Depressurization System 

BWR  Boiling Water Reactor 

CDF   Cumulative Distribution Function 

DC   Direct Current 

DG   Diesel generator 

DW   Drywell 

EOP   Emergency Operating Procedures 

ET   Event-Tree 

FT   Fault-Tree 

FW   Firewater 

HPCI  High Pressure Core Injection 

IE   Initiating Event 

LOOP Loss Of Offsite Power 

NPP  Nuclear Power Plant 

PDF  Probability Distribution Function 

PG   Power Grid 

PRA  Probabilistic Risk Assessment 

PSP  Pressure Suppression Pool 

RCIC  Reactor Core Isolation Cooling  

RPV   Reactor Pressure Vessel 

SRV   Safety Relief Valve 
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