
RAVEN: A TOOL FOR PROBABILISTIC RISK ASSESSMENT

A. Alfonsi, C. Rabiti , D. Mandelli , J.J. Cogliati, R.A. Kinoshita

Idaho National Laboratory

{andrea.alfonsi, cristian.rabiti, diego.mandelli, joshua.cogliati, robert.kinoshita}@inl.gov

INTRODUCTION

RAVEN (Reactor Analysis and Virtual control
ENviroment) [1, 2] is a software framework that acts
as the control logic driver for the Thermo-Hydraylic code
RELAP-7, a newly developed software at Idaho National
Laboratory. The aim of this paper is to provide an overview
of the software structure and its utilization in conjunction
with RELAP-7/MOOSE [3, 4]. RAVEN is a multi-purpose
Probabilistic Risk Assement (PRA) code that allows
dispatching different functionalities. It is designed to derive
and actuate the control logic required to simulate the plant
control system and operator actions (guided procedures) and
to perform both Monte-Carlo sampling of random distributed
events and dynamic event tree based analysis [5]. In order to
assist the user in the input/output handling, a Graphical User
Interface (GUI) and a post-processing data mining module,
based on dimensionality and cardinality reduction [6], are
available. This paper wants to point up the link between the
software layout and the mathematical framework from which
its structure is derived. In order to show some capabilities, a
demo of a Station Black Out (SBO) analysis of a simplified
Pressurized Water Reactor (PWR) model is reported.

MATHEMATICAL FRAMEWORK

Let be θ̄(t) a vector describing the plant status in the phase
space; the dynamic of both plant and control system can be
summarized by the following equation:

∂θ̄

∂t
= H̄(θ(t), t) (1)

In the above equation it is assumed the time differentiability in
the phase space. Performing an arbitrary decomposition of the
phase space, it is obatined the following statement:

θ̄ =

(
x̄
v̄

)
(2)

The decomposition is made in such a way that x̄ represents
the unknowns solved by RELAP-7, while v̄ are the variables
directly controlled by the control system (i.e., RAVEN).
Equation 1 can now be rewritten as follows:

∂x̄
∂t

= F̄(x̄, v̄, t)
∂v̄
∂t

= V̄(x̄, v̄, t)
(3)

It is possible to note that the function V̄(x̄, v̄, t) representing
the control system, does not depend on the knowledge of the
complete status of the system but on a restricted subset (i.e.
control variables) C̄: 

∂x̄
∂t

= F̄(x̄, v̄, t)

C̄ = Ḡ(x̄, t)
∂v̄
∂t

= V̄(x̄, v̄, t)

(4)

The system of equations in Eq. 4 is fully coupled and has
always been solved with an operator splitting approach. The
reasons for this choice are several:

• Control system reacts with an intrinsic delay

• The reaction of the control system might move the
system between two different discrete states and therefore
numerical errors will be always of first order unless the
discontinuity is treated explicitly.

Thus, RAVEN is using this approach to solve Eq. 4 which
becomes: 

∂x̄
∂t

= F̄(x̄, v̄ti−1, t)

C̄ = Ḡ(x̄, t)
∂v̄
∂t

= V̄(x̄, v̄ti−1, t)

(5)

Even if all information needed is contained in x̄ and v̄, it is not
a practical and efficient way to implement the control system.
Hence, a system of auxiliary variables has been introduced.

The auxiliary variables are those that in statistical analysis
are artificially added to non-Markovian systems into the space
phase to obtain a Markovian behavior back, so that only the
information of the previous time step is needed to determine the
future status of the system. These variables can be classified
into two types:

• Global status auxiliary control variables (e.g., SCRAM
status, etc.)

• Component status auxiliary variables (e.g., correct
operating status, etc.)

Thus, the introduction of the auxiliary system into the
mathematical framework leads to the following formulation



!

!

!

!

!

!

MOOSE%

%RELAP'7!
! !̅
!" = !!!! ̅ , !̅!!!! , !!!
! ̅ = ! !̅(!̅, !)!

RAVEN!
(RELAP'7!Interface)!

!

!! !

RAVEN!
(Control!Logic)!

!!̅
!" = !!!!̅, !̅!!!! , !!!

!! ! !!! !

!!! !

Fig. 1. Monte-Carlo sampling scheme.

of the Eq. 5: 

∂x̄
∂t

= F̄(x̄, v̄ti−1, t)

C̄ = Ḡ(x̄, t)
∂ā
∂t

= Ā(x̄, C̄, ā, v̄ti−1, t)
∂v̄
∂t

= V̄(x̄, v̄ti−1, t)

(6)

SOFTWARE STRUCTURE

RAVEN, is plugged with the software enviroment
MOOSE [3]. MOOSE is a computer simulation framework,
developed at Idaho National Laboratory (INL), that simplifies
the process for predicting the behavior of complex systems and
developing non-linear, multi-physics simulation tools.Other
than providing the algorithms for the solution of the differential
equation, MOOSE also provides all the manipulation tools for
the C++ classes containing the solution vector. This framework
has been used to construct and develop the Thermo-Hydraulic
code RELAP-7, giving an enormous flexibility in the coupling
procedure with RAVEN.

RELAP-7 is the next generation nuclear reactor system
safety analysis. It will become the main reactor systems
simulation toolkit for RISMC (Risk Informed Safety Margin
Characterization) [7] project and the next generation tool
in the RELAP reactor safety/systems analysis application
series. RAVEN has been developed in a high modular and
pluggable way in order to enable easy integration of different
programming languages (i.e., C++, Python) and coupling with
other applications including the ones based on MOOSE. The
code consists of four main modules:

• RAVEN/RELAP-7 interface

• Python Control Logic

• Python Calculation Driver

• Graphical User Interface

The RAVEN/RELAP-7 interface, coded in C++, is
the container of all the tools needed to interact with
RELAP-7/MOOSE. It has been designed in order to be general

and pluggable with different solvers simultaneously in order to
allow an easier and faster development of the control logic/PRA
capabilities for multi-physics applications. The interface
provides all the capabilities to control, monitor, and process the
parameters/quantities in order to drive the RELAP-7/MOOSE
calculation. In addition, it contains the tools to communicate to
the MOOSE input parser whose information, i.e. input syntax,
must be received as input in order to run a RAVEN calculation.
The control logic module is used to drive a RAVEN/RELAP-7
calculation. Up to now it is implemented by the user via
Python scripting. The reason of this choice is to try to
preserve generality of the approach in the initial phases of the
project so that further specialization is possible and inexpensive.
The implementation of the control logic via Python is rater
convenient and flexible. The user only needs to know few
Python syntax rules in order to build an input. Although
this extreme simplicity, it will be part of the GUI task to
automatize the construction of the control logic scripting in
order to minimize user effort.

The core of PRA analysis is contained in the module
called "Raven Runner". It consists in a Python driver in
which Monte-Carlo based algorithm has been implemented.
It calls RAVEN multiple times, changes initial conditions and
seeds the random generator for the distributions. The multiple
calculations, required by the employment of these algorithms,
can be run in parallel, using queues/sub-process/Python
systems. The analysis of dynamic stochastic systems through
Monte-Carlo algorithm can be summarized as follows:

1. Initial Sampling of:

(a) Static and dynamic uncertainty values of physical
parameters

(b) Initial conditions

(c) Transition conditions, i.e. time instant in which
transition events occur (e.g., time in which a reactor
scram occurs, etc.)

2. Run the system simulator using the values previously
sampled and eventually applying a random noise to some
parameters at each time step

3. Stop the simulation when a transition condition occurs,
and move from the actual status of the system to the new
one

4. Run the simulation as performed in step 3 starting from the
new coordinates and stop when a new transition condition
occurs;

5. Repeat steps 3 and 4 until a stopping condition is reached

6. Repeat 1 through 4 for a large number of calculations (user
input)



Fig. 2. PWR model scheme.

The "runner" basically performs a different seeding of the
random number generator and interact, through RAVEN, with
the Python control logic input in order to sample the variables
specified by the user.

As previously mentioned, a Graphical User Interface (GUI)
is not required to run RAVEN, but it represents an added
value to the whole code. The GUI is compatible with all
the capabilities actually present in RAVEN (control logic,
Monte-Carlo, etc.). Its development is performed using QtPy,
which is a Python interface for a C++ based library (C++)
for GUI implementation. The GUI is based on a software
named Peacock, which is a GUI interface for MOOSE based
application and, in its base implementation, is only able to
assist the user in the creation of the input. In order to make it
fit all the RAVEN needs, the GUI has been specialized and is
in continuous evolution.

DEMO FOR A PWR PRA ANALYSIS

In order to show the capabilities of RAVEN coupled with
RELAP-7/MOOSE, a PRA analysis on a simplified PWR model
(Fig. 2) has been employed.
Since RELAP-7 still has limitations for the component
controllable parameters and models, it has been necessary to
act on unconventional factors (i.e. inlet/outlet friction).

Fig. 3. Comparison between max reached clad temperature and
clad failure temperature distributions: Probability distribution
functions.

Fig. 4. Limit Surface for the SBO analysis of a simplified PWR
model

The Probabilistic Risk Assessment analysis has been
performed simulating a Station Black Out accident, running
Monte-Carlo samplings (400 simulations) on the recovery time
of the diesel generators t1 (Normal distribution, mu = 120 s,
sigma = 20 s) and the clad failure temperature TC f (Triangular
distribution, xPeak = 1477.59 K, xMin = 1255.37 K, xMax
= 1699.82 K). Since the scope of this demo is to show the
functionalities contained in RAVEN and RELAP-7 capabilities
are not optimized for long simulation times, the transient
has been accelerated in order to simulate a maximum of 300
seconds. Figure 3 shows the distribution of the maximum
temperature reached by the clad in the core channels (blue
histogram) and compares it with the distribution of clad failure
temperature (red histogram). As already mentioned, the
transient has been accelerated, since the scope of the analysis
was just to show RAVEN capabilities to perform stochastic
analysis of relatively complex systems. That can explain the
large overlapping of the two distributions, which indicates a
high failure probability of the system considered.

Figure 4 shows the limit surface, i.e. the boundaries
between system failure (red points) and system success (green
points), obtained by the 400 Monte-Carlo simulations. Since
only two uncertain parameters have been considered (i.e., DG
recovery time and clad fail temperature), this boundary lies in a
2-dimensional space. The slope of the limit surface pictured in
Fig. 4 also shows, in this particular demo, how the DG recovery
time has a greater impact on the system dynamics then the clad
failure temperature.

CONCLUSIONS

In this paper it has been presented RAVEN as a tool
to perform dynamic PRA through Monte-Carlo sampling.
In particular, the software structure and all the components
that are involved in the computation have been presented,
including system simulator (i.e., RELAP-7) and the control
logic, characterized by monitor system dynamics and on-line



control of selected parameters. An example of PRA analysis
has been also presented for a SBO-like case for a simplified
PWR loop. The description of the implementation for
such case demonstrates how the flexibility of the software
framework provides the basic tools to perform Dynamic
PRA, uncertainty quantification and plant control. Next
capabilities, to be implemented to RAVEN and that are
currently under development, include dynamic event tree
generation [5], adaptive sampling [8] and more advanced data
mining algorithms [6].

REFERENCES

1. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI,
and R. KINOSHITA, “REACTOR ANALYSIS AND
VIRTUAL CONTROL ENVIRONMENT (RAVEN) FY12
REPORT,” Tech. Rep. INL/EXT-12-27351, Idaho National
Laboratory (INL) (2012).

2. C. RABITI, A. ALFONSI, D. MANDELLI, J. COGLIATI,
and R. MARTINEAU, “RAVEN as Control Logic and
Probabilistic Risk Assessment Driver for RELAP-7,” in
“Proceeding of American Nuclear Society (ANS), San Diego
(CA),” (2012), vol. 107, pp. 333–335.

3. D. GASTON, G. HANSEN, S. KADIOGLU, D. A.
KNOLL, C. NEWMAN, H. PARK, C. PERMANN, and
W. TAITANO, “Parallel multiphysics algorithms and
software for computational nuclear engineering,” Journal of
Physics: Conference Series, 180, 1, 012012 (2009).

4. D. ANDERS, R. BERRY, D. GASTON, R. MARTINEAU,
J. PETERSON, H. ZHANG, H. ZHAO, and L. ZOU,
“RELAP-7 Level 2 Milestone Report: Demonstration of a
Steady State Single Phase PWR Simulation with RELAP-7,”
Tech. Rep. INL/EXT-12-25924, Idaho National Laboratory
(INL) (2012).

5. A. HAKOBYAN, T. ALDEMIR, R. DENNING,
S. DUNAGAN, D. KUNSMAN, B. RUTT, and
U. CATALYUREK, “Dynamic generation of accident
progression event trees,” Nuclear Engineering and Design,
238, 12, 3457 – 3467 (2008).

6. D. MANDELLI, A. YILMAZ, and T. ALDEMIR, “Scenario
Analysis and PRA: Overview and Lessons Learned,” in
“Proceedings of European Safety and Reliability Conference
(ESREL 2011), Troyes (France),” (2011).

7. D. MANDELLI and C. SMITH, “Integrating Safety
Assessment Methods Using the Risk Informed Safety
Margins Characterization (RISMC) Approach,” in
“Proceeding of American Nuclear Society (ANS), San
Diego (CA),” (2012), vol. 107, pp. 883–885.

8. D. MANDELLI and C. SMITH, “Adaptive Sampling Using
Support Vector Machines,” in “Proceeding of American
Nuclear Society (ANS), San Diego (CA),” (2012), vol. 107,
pp. 736–738.


