
RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework

C. Rabiti, D. Mandelli, A. Alfonsi, J. Cogliati, R. Kinoshita, D. Gaston, R. Martineau, C. Smith

Idaho National Laboratory, 2525 North Fremont Street, Idaho Falls (ID)
{CristianRabiti, Diego.Mandelli, Andrea.Alfonsi, Joshua.Cogliati, Robert.Kinoshita}@inl.gov

{Derek Gaston, Richard.Martineau, Curtis.Smith}@inl.gov

INTRODUCTION

Increases in computational power and pressure for
more accurate simulations and estimations of accident
scenario consequences are driving the need for Dynamic
Probabilistic Risk Assessment (PRA) [1] of very complex
models. While more sophisticated algorithms and
computational power address the back end of this
challenge, the front end is still handled by engineers that
need to extract meaningful information from the large
amount of data and build these complex models.
Compounding this problem is the difficulty in knowledge
transfer and retention, and the increasing speed of
software development.

The above-described issues would have negatively
impacted deployment of the new high fidelity plant
simulator RELAP-7 (Reactor Excursion and Leak
Analysis Program) at Idaho National Laboratory.
Therefore, RAVEN that was initially focused to be the
plant controller for RELAP-7 will help mitigate future
RELAP-7 software engineering risks.

In order to accomplish such a task Reactor Analysis
and Virtual Control Environment (RAVEN) has been
designed to provide an easy to use Graphical User
Interface (GUI) for building plant models and to leverage
artificial intelligence algorithms to reduce computational
time, improve results, and help the user to identify the
behavioral pattern of the Nuclear Power Plants NPPs.

In this paper we will present the GUI implementation
and its current capability status. We will also introduce
the support vector machine algorithms and show our
evaluation of their potentiality in increasing the accuracy
and reducing the computational costs of PRA analysis. In
this evaluation we will refer to preliminary studies
performed under the Risk Informed Safety Margins
Characterization (RISMC) project of the Light Water
Reactors Sustainability (LWRS) campaign [3]. RISMC
simulation needs and algorithm testing are currently used
as a guidance to prioritize RAVEN developments relevant
to PRA.

GUI OVERVIEW

The RAVEN GUI for RELAP-7 is based on Peacock,
a general GUI for Multiphysics Object Oriented

Simulation Environment (MOOSE) [4] applications.
MOOSE is a scientific simulation library on which
RELAP-7 and RAVEN are built. Every component of the
plant, in software terms, is a C++ class (object) registered
with a factory owned by MOOSE. As part of this
registration process, MOOSE knows all the needed
parameters to generate the numerical model of the plant
components. RAVEN also uses this approach for any
other C++ classes describing control logic action.

One of the many capabilities of the MOOSE factory
is to dump the parameters needed to define the instance of
one object in a structured format file in Yet Another
Markup Language (YAML) format. This standard format
of the information needed to construct all the components
and initialize all functions needed to run a RAVEN
RELAP-7 simulation allows Peacock to use a generic
interface and mold itself to the given application.

Through Application Programming Interfaces (API)s,
Peacock can be specialized for both RELAP-7 and
RAVEN applications so that it is able to build a visual
model of the components immediately after the user
generates them. The user can in fact see the plant design
while he is building it.

Figure 1: Input/Plant Layout visualization tab.

Figure 1 shows the input tab of Peacock-RAVEN.
The list of the possible objects that could be added to the
simulation input is on the left, while on the right we have
one of the sub-tabs allowing construction of a specific
component. Also in Figure 1 in background we have a 3D
layout of the plant being built. On the top and the bottom
of the 3D layout there are several functions that allow
searching for specific components (which are highlighted
when found) and manipulating the view. To ease
inspection of the plant layout the 3D visualization is

active and visually searchable. Clicking one of the
components will open a corresponding property tab.

Figure 2 shows the projection of the solution field for
the pressure into the plant layout during a transient
analysis. In fact, Peacock can read the file produced by
the MOOSE platform at each time step and thus displays
the simulation while running.

Figure 2: Pressure solution during transient analysis.

ARTIFICIAL INTELLIGENCE ALGORITHMS

Construction of Limit Surfaces Using Support Vector
Machines to Investigate Failure Probability

Correct estimation of the failure probability in a
complex system such as a nuclear power plant is an
almost overwhelming challenge. The very low likelihood
of a failure scenario adds to the difficulty of building
sampling strategies that produce trustable statistics of
these events.

To fix the ideas we can consider:
• An input space

Ω =
p = p1,.., pi()∈Ω{ } i =1,....,Dim Ω[]

(All the parameters used to define the RELAP-7
and RAVEN simulation)

• A feature space 
f ∈O

(The set of variable of our output that we decide
to be relevant, e.g. the success, failure of the
plant)

• A kernel function

ϕ
r, t, p() =


f ∈O

(The numerical model of the NPP solved by
RELAP-7 and RAVEN projected to the feature
space O)

If, as in most of the cases, the inputs parameters are
subject to probabilistic behavior, the values of


f are also

characterized by a probabilistic distribution.
Usually in reliability analysis the feature space is just

a Boolean variable (Success/Failure).

The problem of determining the probability of failure
Pf is then equivalent to finding the probability to be in the
input space leading to a failure:

Pf = Pb
p ∈Ω '()

Ω ' = p |ϕ r, t, p() = Failure{ }
Pf = dp 'Pb p '()

Ω '
∫

Clearly, the challenge is in the definition of the input

subspace Ω ' since the probability distribution of the input
parameters Pb p() is a known function (at least so it is
assumed).

The deterministic solution of the problem would
require the direct solution of ϕ r, t, p() = Failure . This is
in most of the time impractical and ill-posed; therefore,
Monte Carlo approaches are used to evaluate the integral
Pf . Unfortunately, when Pf is very low and the input
space has a large dimensionality the number of forward
simulation ϕ r, t, p() =


f needed to achieve a reasonable

confidence in the estimation of Pf is overwhelming, even
using large computational clusters.

Exactly in this situation Support Vector Machines
come in handy [4].

Without going into the details, also because several
different algorithms are available, the process is the
following:

• A training set of sampling of the function ϕ is
generated

• The training set is than used to define
hyperplanes in the input parameter space that
separate, according to a given criteria, the feature
space (in our case success/failure)

• Sampling points, estimated laying on such
hyperplanes, are than chosen for sub-sequential
evaluation of ϕ r, t, p() =


f

• The outcome of these newly generated sampling
points is then used to refine the definition of the
hyperplanes

• The process is repeated until a proper
convergence criteria on the hyperplane definition
is achieved

• After convergence, the algorithm locating an
input in the Ω space with respect the hyperplane
is now classifier

The classifier is essentially a set of equations that will
determine where an input point lays with respect to the
hyperplanes (if it will leads to Success or Failure).

The evaluation of the classifier is very fast; therefore,
more convenient than to evaluate the kernel function


ϕ .

At this point, the evaluation of the integral Pf is
feasible using the classifier rather than the evaluation of
the kernel, and given its speed, the number of sample
could be so high that is easy to achieve a satisfactory
statistic.

The drawback of this approach is that hyper-surfaces
surrounding small hyper-volumes (e.g. a small region
leading to failure in a large region leading to success)
could be missed in the initial training set; therefore, the
classifier will never become aware of these.

Several strategies are available for the generation of
the initial training set that range from standard Monte
Carlo (MC), Latin Hypercube (LH), and Centroidal
Voronoi Tessellation (CVT) or search patterns gradient
based and many more.

As a part of a synergy effort the investigation of these
algorithms has been started last year by the RISMC
project where Matlab® has been used to build pilot tests.
Figure 1 shows the limit surface build in one of these tests
after the initial evaluation of the training set, while figure
2 shows the final form of the limit surface when the
classifier has converged to the final hyper-surface.

RAVEN already has a Monte Carlo sampling
capability, and it is currently used to sample the RELAP-7
input space. We are in the process of implementing a limit
surface approach based on the present Monte Carlo to
generate the training set and the SVM algorithm for
generation of the classifier.

In the future the introduction of the more general
structured SVMs [5] could be also tested to generate
surrogate models for plant emulator purpose.

We are also investigating the possibility of extending
this approach to generate limit surfaces classifiers starting
from adaptive branching tree.

Figure 3: Initial limit surface after a very small training set

(failure red, success green) [4].

Figure 4: Final limit surface [4].

CONCLUSION

We have presented the advancements in the design

and implementation of the RAVEN-Peacock GUI meant
to ease the analyst work necessary to generate complex
plant models and also to enhance the understanding of
plant behavior in accident scenarios. This is realized via a
graphical tool that both assists the user generating the
plant layout and allows performing an online monitoring
of the simulation results.

Another step forward in the development of the
RAVEN project has been presented here. The preliminary
analysis of SVM has revealed a great potentiality in
reducing of computational time and increasing the
accuracy of failure probability estimation.

The implementation of this technique is currently
ongoing, and we are planning to illustrate preliminary
results during the ANS meeting.

ENDNOTES

 This work is supported by the U.S. Department of
Energy, under DOE Idaho Operations Office Contract
DE-AC07-05ID14517. Accordingly, the U.S.
Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S.
Government purposes.

REFERENCES

1. N. SIU, “Risk assessment for dynamic systems: an
overview,” Reliability Engineering and System Safety, 43,
1, 43–73 (1994).
2. C. RABITI, A. ALFONSI, D. MANDELLI, J.
COGLIATI, and R. MARTINEAU, “RAVEN as Control
Logic and Probabilistic Risk Assessment Driver for

RELAP-7,” in Proceeding of American Nuclear Society
(ANS), San Diego (CA),” (2012), vol. 107, pp. 333–335.
3. IDAHO NATIONAL LABORATORY, “Light Water
Reactor Sustainability Research and Development
Program Plan (Fiscal Years 2009-2013)”, INL/MIS-
08-14918, Rev. 1 (2009).
4. D. Gaston, C. Newman, G. Hansen, D. Lebrun-
Grandié, “MOOSE: A parallel computational framework
for coupled systems of nonlinear equations”, Nuclear
Engineering and Design, Vol. 239, Issue 10, pp. 1768-
1778 (2009).
5. D. MANDELLI and C. SMITH, “Adaptive Sampling
Using Support Vector Machines,” in “Proceeding of
American Nuclear Society (ANS), San Diego (CA),”
(2012), vol. 107, pp. 736–738.

