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INTRODUCTION 
 

Increases in computational power and pressure for 
more accurate simulations and estimations of accident 
scenario consequences are driving the need for Dynamic 
Probabilistic Risk Assessment (PRA) [1] of very complex 
models. While more sophisticated algorithms and 
computational power address the back end of this 
challenge, the front end is still handled by engineers that 
need to extract meaningful information from the large 
amount of data and build these complex models. 
Compounding this problem is the difficulty in knowledge 
transfer and retention, and the increasing speed of 
software development. 

The above-described issues would have negatively 
impacted deployment of the new high fidelity plant 
simulator RELAP-7 (Reactor Excursion and Leak 
Analysis Program) at Idaho National Laboratory.  
Therefore, RAVEN that was initially focused to be the 
plant controller for RELAP-7 will help mitigate future 
RELAP-7 software engineering risks. 

In order to accomplish such a task Reactor Analysis 
and Virtual Control Environment (RAVEN) has been 
designed to provide an easy to use Graphical User 
Interface (GUI) for building plant models and to leverage 
artificial intelligence algorithms to reduce computational 
time, improve results, and help the user to identify the 
behavioral pattern of the Nuclear Power Plants NPPs. 

In this paper we will present the GUI implementation 
and its current capability status. We will also introduce 
the support vector machine algorithms and show our 
evaluation of their potentiality in increasing the accuracy 
and reducing the computational costs of PRA analysis. In 
this evaluation we will refer to preliminary studies 
performed under the Risk Informed Safety Margins 
Characterization (RISMC) project of the Light Water 
Reactors Sustainability (LWRS) campaign [3]. RISMC 
simulation needs and algorithm testing are currently used 
as a guidance to prioritize RAVEN developments relevant 
to PRA. 

 
 

GUI OVERVIEW 
 

The RAVEN GUI for RELAP-7 is based on Peacock, 
a general GUI for Multiphysics Object Oriented 

Simulation Environment (MOOSE) [4] applications.  
MOOSE is a scientific simulation library on which 
RELAP-7 and RAVEN are built. Every component of the 
plant, in software terms, is a C++ class (object) registered 
with a factory owned by MOOSE. As part of this 
registration process, MOOSE knows all the needed 
parameters to generate the numerical model of the plant 
components. RAVEN also uses this approach for any 
other C++ classes describing control logic action. 

One of the many capabilities of the MOOSE factory 
is to dump the parameters needed to define the instance of 
one object in a structured format file in Yet Another 
Markup Language (YAML) format. This standard format 
of the information needed to construct all the components 
and initialize all functions needed to run a RAVEN 
RELAP-7 simulation allows Peacock to use a generic 
interface and mold itself to the given application.  

Through Application Programming Interfaces (API)s, 
Peacock can be specialized for both RELAP-7 and 
RAVEN applications so that it is able to build a visual 
model of the components immediately after the user 
generates them. The user can in fact see the plant design 
while he is building it. 

 

 
Figure 1: Input/Plant Layout visualization tab. 

Figure 1 shows the input tab of Peacock-RAVEN. 
The list of the possible objects that could be added to the 
simulation input is on the left, while on the right we have 
one of the sub-tabs allowing construction of a specific 
component. Also in Figure 1 in background we have a 3D 
layout of the plant being built. On the top and the bottom 
of the 3D layout there are several functions that allow 
searching for specific components (which are highlighted 
when found) and manipulating the view. To ease 
inspection of the plant layout the 3D visualization is 



active and visually searchable. Clicking one of the 
components will open a corresponding property tab. 

Figure 2 shows the projection of the solution field for 
the pressure into the plant layout during a transient 
analysis. In fact, Peacock can read the file produced by 
the MOOSE platform at each time step and thus displays 
the simulation while running. 

 

 
Figure 2: Pressure solution during transient analysis. 

 
ARTIFICIAL INTELLIGENCE ALGORITHMS 

 
Construction of Limit Surfaces Using Support Vector 
Machines to Investigate Failure Probability 

Correct estimation of the failure probability in a 
complex system such as a nuclear power plant is an 
almost overwhelming challenge. The very low likelihood 
of a failure scenario adds to the difficulty of building 
sampling strategies that produce trustable statistics of 
these events. 

To fix the ideas we can consider: 
• An input space  

Ω =
p = p1,.., pi( )∈Ω{ }     i =1,....,Dim Ω[ ]  

(All the parameters used to define the RELAP-7 
and RAVEN simulation) 

• A feature space 
f ∈O  

(The set of variable of our output that we decide 
to be relevant, e.g. the success, failure of the 
plant) 

• A kernel function  

ϕ
r, t, p( ) =


f ∈O  

(The numerical model of the NPP solved by 
RELAP-7 and RAVEN projected to the feature 
space O ) 

If, as in most of the cases, the inputs parameters are 
subject to probabilistic behavior, the values of 


f  are also 

characterized by a probabilistic distribution. 
Usually in reliability analysis the feature space is just 

a Boolean variable (Success/Failure). 

The problem of determining the probability of failure 
Pf is then equivalent to finding the probability to be in the 
input space leading to a failure: 

Pf = Pb
p ∈Ω '( )

Ω ' = p |ϕ r, t, p( ) = Failure{ }
Pf = dp 'Pb p '( )

Ω '
∫

 

 
Clearly, the challenge is in the definition of the input 

subspace Ω '  since the probability distribution of the input 
parameters Pb p( )  is a known function (at least so it is 
assumed). 

The deterministic solution of the problem would 
require the direct solution of ϕ r, t, p( ) = Failure . This is 
in most of the time impractical and ill-posed; therefore, 
Monte Carlo approaches are used to evaluate the integral 
Pf . Unfortunately, when Pf  is very low and the input 
space has a large dimensionality the number of forward 
simulation ϕ r, t, p( ) =


f  needed to achieve a reasonable 

confidence in the estimation of Pf  is overwhelming, even 
using large computational clusters. 

Exactly in this situation Support Vector Machines 
come in handy [4]. 

Without going into the details, also because several 
different algorithms are available, the process is the 
following: 

• A training set of sampling of the function ϕ  is 
generated 

• The training set is than used to define 
hyperplanes in the input parameter space that 
separate, according to a given criteria, the feature 
space (in our case success/failure) 

• Sampling points, estimated laying on such 
hyperplanes, are than chosen for sub-sequential 
evaluation of ϕ r, t, p( ) =


f  

• The outcome of these newly generated sampling 
points is then used to refine the definition of the 
hyperplanes 

• The process is repeated until a proper 
convergence criteria on the hyperplane definition 
is achieved 

• After convergence, the algorithm locating an 
input in the Ω  space with respect the hyperplane 
is now classifier  

The classifier is essentially a set of equations that will 
determine where an input point lays with respect to the 
hyperplanes (if it will leads to Success or Failure). 

The evaluation of the classifier is very fast; therefore, 
more convenient than to evaluate the kernel function 


ϕ . 



At this point, the evaluation of the integral Pf  is 
feasible using the classifier rather than the evaluation of 
the kernel, and given its speed, the number of sample 
could be so high that is easy to achieve a satisfactory 
statistic. 

The drawback of this approach is that hyper-surfaces 
surrounding small hyper-volumes (e.g. a small region 
leading to failure in a large region leading to success) 
could be missed in the initial training set; therefore, the 
classifier will never become aware of these. 

Several strategies are available for the generation of 
the initial training set that range from standard Monte 
Carlo (MC), Latin Hypercube (LH), and Centroidal 
Voronoi Tessellation (CVT) or search patterns gradient 
based and many more. 

As a part of a synergy effort the investigation of these 
algorithms has been started last year by the RISMC 
project where Matlab® has been used to build pilot tests. 
Figure 1 shows the limit surface build in one of these tests 
after the initial evaluation of the training set, while figure 
2 shows the final form of the limit surface when the 
classifier has converged to the final hyper-surface. 

RAVEN already has a Monte Carlo sampling 
capability, and it is currently used to sample the RELAP-7 
input space. We are in the process of implementing a limit 
surface approach based on the present Monte Carlo to 
generate the training set and the SVM algorithm for 
generation of the classifier. 

In the future the introduction of the more general 
structured SVMs [5] could be also tested to generate 
surrogate models for plant emulator purpose. 

We are also investigating the possibility of extending 
this approach to generate limit surfaces classifiers starting 
from adaptive branching tree. 

 

 
Figure 3: Initial limit surface after a very small training set 

(failure red, success green) [4]. 

 
Figure 4: Final limit surface [4]. 

 
CONCLUSION 

 
We have presented the advancements in the design 

and implementation of the RAVEN-Peacock GUI meant 
to ease the analyst work necessary to generate complex 
plant models and also to enhance the understanding of 
plant behavior in accident scenarios. This is realized via a 
graphical tool that both assists the user generating the 
plant layout and allows performing an online monitoring 
of the simulation results.  

Another step forward in the development of the 
RAVEN project has been presented here. The preliminary 
analysis of SVM has revealed a great potentiality in 
reducing of computational time and increasing the 
accuracy of failure probability estimation. 

The implementation of this technique is currently 
ongoing, and we are planning to illustrate preliminary 
results during the ANS meeting. 
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