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ABSTRACT 

Identification of faults is an important task in system safety analysis. The large number of 
system scenarios considered in a realistic safety assessment need to be post-processed to identify 
the system critical states. The task can be quite complex when the dynamic aspects of the system 
behavior and its control play a relevant role in the analysis. For example, a fault event may lead to 
different scenario evolutions depending on the time of failure occurrence and the corresponding 
state of the controlled process variables. In this work, a Fuzzy C-Means clustering algorithm is 
applied for the classification of the fault scenarios of a level control system. The classification is 
based on information from both the stochastic events sequence and the patterns of the process 
variables evolution. 

Key Words: dynamic reliability, fault scenarios classification, fuzzy clustering, Fuzzy C-
Means, level control system. 

1  INTRODUCTION 

The accident behavior of control dynamic systems cannot be completely captured by the 
classical Probabilistic Risk Assessment (PRA) modeling tools like Event-Trees (ETs) and Fault-
Trees (FTs), because they typically do not take into account neither the timing nor the sequencing 
of failures [1]. However, the sequential order of the failure events and the timing of their 
occurrence along a stochastic accident scenario may affect its evolution [2-3]. 

Dynamic reliability approaches have been developed to explicitly take into account the 
interactions among the physical parameters of the process (temperature, pressure, speed, etc.), 
the human operators actions and the times and sequencing of the failures of the components [4-6] 
as well as the presence of software [7-10]. These methods include for example the Events 
Sequence Diagrams (ESDs) [11], Petri Nets [12], Dynamic Flowgraph Methodology (DFM) [13-
14], Discrete Dynamic Event Trees (DDET) [15], DYnamic Logical Analytical Methodology 
(DYLAM) [16-17] and the Dynamic Event Tree Analysis Method (DETAM) [18]. The main 
challenge with these techniques is their computational complexity: the number of dynamic 
scenario branches increases by a power law with the number of occurring events (branch points) 
[5]. A consequence of such an increase is that the analysis of the results becomes difficult 
without assisting software tools. 
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In this work, a supervised evolutionary procedure for the optimization of the Fuzzy C-
Means clustering algorithm [19-20] is applied for identifying the classes of scenario evolution 
corresponding to different end states of a Level Control Dynamic System (LCDS) of a liquid 
holdup tank [21]. The clustering is based on the timing and magnitude of the components failure 
events and leads to substantial reduction in the number of dynamic event trees to be analyzed. 

The structure of the paper is as follows. In Section 2, the dynamic model of the LCDS is 
described and the inadequacy of its reliability computation from a purely static viewpoint is 
highlighted. In Section 3, the scenario classification by fuzzy-clustering is illustrated. The results 
of the application of the approach to the scenarios of the LCDS are given in Section 4. 
Conclusions and remarks are given in Section 5. 

2 RELIABILITY ANALYSIS OF THE LCDS MODEL 

2.1 The Model 

The system under analysis is the level controlled tank described in detail in [21]. The liquid 
level is actively controlled through the actuation of three components (Figure 1): two inlet pumps 
and one outlet valve, hereafter called Unit 1, 2 and 3, respectively.  

 
Figure 1. The heated holdup tank [21] 

 
Each unit is a multi-state component operating either correctly ON or OFF (0), stuck ON (1) 

or stuck OFF (2). At t=0, the system is assumed to be in its nominal state (ON,OFF,ON), with 
equilibrium values of 30.93 °C of the liquid temperature and 7 [m] of the level. The temperature 
of the liquid is assumed to directly affect the failure rates of the components [21]. A thermal 
power source heats up the fluid to keep it almost equal to the nominal temperature, in spite of the 
level fluctuations. The control laws reported in Table I act upon the state of the components to 
keep the liquid level h between 4 and 10 [m], the lower and upper safety thresholds, respectively: 
thus, two possible Top Events need to be considered, i.e. dryout (level ≤ 4 [m]) and overflow 
(level ≥ 10 [m]). 

 

 



IDENTIFICATION OF FAULTS IN A LEVEL CONTROL DYNAMIC SYSTEM 

 

 Page 3 of 12 
 

Table I. The control laws [21] 

 Control laws 

1 

 

2 

If the liquid level h drops under 6 [m], the units 1, 2, 3 are put respectively in state 
ON, ON and OFF (if they are not stuck ON or OFF) 
 
If the liquid level h rises above 8 [m], the units 1, 2, 3 are put respectively in state 
OFF, OFF and ON (if they are not stuck ON or OFF) 

 

2.2 The system simulation 

The simulation of the dynamic system scenarios has been performed using the Markov/Cell-
to-Cell Mapping Technique (CCMT) methodology [21], which describes probabilistically the 
dynamics of the level and temperature process variables and of the process controller. Each one 
of the three multi-state system components (the two inlet pumps and the outlet valve) is modeled 
by a Markov process; the CCMT describes the dynamics of the system in discrete time, in terms 
of transitions between computational cells in the discretized system state space [22]. 

The evolution of the dynamic system depends on: 

• the deterministic process equations governing the evolution of the level and temperature 
variables; 

• the laws of the control system (i.e., Table I); 

• the stochastic process governing the transport (i.e. configuration change) of the 
components among their different reachable states. 

The dynamics is modeled as transitions between cells Vj (j = 1,…, J) that partition the 
complete state space describing both the values of the process variables and the configuration of 
the system; the transitions occur with probabilities g(j|j',n',k) for the controlled variables and 
h(n|n',j'→ j) for the system configurations. 

The cell-to-cell transition probabilities g(j|j',n',k) are conditional probabilities that the 
controlled variables are in the cell Vj at time t=(k+1)∆t given that: 

• the controlled variables are in the cell Vj' at time t=k∆t and, 

• the system configuration is n(k)=n' at time t. 

These probabilities are determined from the simulation of system behavior during ∆t under 
the assumption that the components do not change states within ∆t as described in [21]. 

The stochastic transport of the system state is described by h(n|n',j'→j), which is the 
probability that the system configuration at time t=(k+1)∆t is n, given that: 

• n(k)=n' at t=k∆t and 

• the controlled variables transit from cell Vj' to cell Vj during k∆t≤t<(k+1)∆t. 

Starting from given initial conditions, the Markov/CCMT algorithm leads to the 
computation of the probability ( ),n jp k that the system is in cell j with configuration n at time 

t=k∆t from 
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The ( ),n jp k  can then be converted into dynamic event trees for specified initial and end 

states [23]. 

2.3 The reliability analysis 

The three possible states of each of the three components (Unit 1, 2 and 3) combine into a 
total of 27 possible system configurations (Table II). To identify the corresponding system end 
states, a large number of simulations of the Markov/CCMT has been run for each of the 27 
configurations, with different orderings in the sequence of events for the multiple failure 
configurations. In the simulations, the faults are conservatively considered to occur at the 
beginning of the scenarios and those system configurations that lead into overflow or dryout 
failure mode are identified as minimal cut sets (MCS) for the respective system end state. 

Table II. System configurations: 0 = safe component, 1 = stuck ON component, 2 = stuck OFF 
component 

System state Unit 1 state Unit 2 state Unit 3 state 
Failure mode 

Overflow Dryout 
0 0 0 0 no no 
1 0 0 1 no no 
2 0 0 2 no no 
3 0 1 0 no no 
4 0 1 1 no no 
5 0 1 2 yes no 
6 0 2 0 no no 
7 0 2 1 no no 
8 0 2 2 no no 
9 1 0 0 no no 

10 1 0 1 no no 
11 1 0 2 yes no 
12 1 1 0 yes no 
13 1 1 1 yes No 
14 1 1 2 yes No 
15 1 2 0 no No 
16 1 2 1 no no 
17 1 2 2 yes no 
18 2 0 0 no no 
19 2 0 1 no no 
20 2 0 2 no no 
21 2 1 0 no no 
22 2 1 1 no no 
23 2 1 2 yes no 
24 2 2 0 no no 
25 2 2 1 no yes 
26 2 2 2 no no 

 

Three second-order MCS are found for the overflow end state (Figure 2). Figures 3-5 show 
the liquid level evolution resulting from the MCS 1, 2, 3 occurrence at time t=0 (i.e., system 
configurations 5, 11, 12 in Table II). In all three cases, the overflow is shown to occur within 5 
hours. 
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Figure 2. FT for the overflow failure mode 

 

 
Figure 3. Overflow failure mode: liquid level evolution resulting from the MCS 1 occurrence at time t=0 

 

 
Figure 4. Overflow failure mode: liquid level evolution resulting from the MCS 2 occurrence at time t=0 
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Figure 5. Overflow failure mode: liquid level evolution resulting from MCS 3 occurrence at time t=0 

 

For the dryout failure mode of the system, only one third-order MCS is identified, 
corresponding to system configuration 25 in Table II (Figure 6). 

 

 

 

 

 

 

 

Figure 6. FT for the dryout failure mode 

Figure 7 shows the liquid level evolution arising from the occurrence of the MCS of the 
dryout at time t=0, i.e. the units 1 and 2 stuck OFF and unit 3 stuck ON, at time t=0. Dryout 
conditions are reached within 5 hours. 

 
Figure 7. Dryout failure mode: liquid level evolution resulting from the MCS occurrence at time t=0 
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The system failure analysis performed is based on the conservative assumption that the units 
failure events occur at t=0; this hides the role of the ordering and timing of the failure events 
occurrence in determining the time at which the system reaches a faulty end state. The 
information on the system time of failure is an important parameter for determining the available 
time of recovery of the different accident situations. 

The empirical probability density functions (pdfs) of the times of system overflow and 
dryout, obtained from a total number of 76556 Markov/CCMT simulations of system evolutions 
with different component failures ordering and timing, actually show that the time and order of 
the failures of the components affect the system failure time. 

The proposed approach illustrated in the following Sections provides a method for analyzing 
the large number of dynamic accident scenarios which need to be considered to identify the 
system end state, including the identification of the system failure time (i.e., the time in which 
the system safety parameters exceed pre-defined safety thresholds). 

3 CLUSTERING DYNAMIC SCENARIOS 

The processing of the dynamic scenarios of the LCDS aims at identifying classes of 
behavioral similarity in the scenario evolutions and at relating these with characteristic features 
of the accident sequence, e.g. its end state and timing. The classification approach is based on 
combining information from the stochastic timing and magnitude of the component failure 
events along the sequence. 

The uncertainties and overlaps in the definition of the different classes of accident sequences 
can be modeled within a fuzzy clustering paradigm for classification. The scheme here adopted is 
founded on a supervised evolutionary optimization of a Fuzzy-C-Means (FCM) clustering 
algorithm developed by the Laboratorio di Analisi di Segnale ed Analisi di Rischio (LASAR, 
Laboratory of Analysis of Signals and of Analysis of Risk, http://lasar.cesnef.polimi.it) of the 
Department of Energy of the Polytechnic of Milan, Italy [24]. Clustering in a predefined feature 
space is performed based on a Mahalanobis metric which is iteratively optimized so that the 
obtained clusters are close to the actual scenario classes [24]. 

The basic steps of the scenario classification approach are sketched in Figure 8. The first 
step is the selection of the relevant classification features. The successive steps of the procedure 
are typical of a supervised classification scheme: training of the classifier on patterns of known 
classes and testing of the classifier on new patterns. 

3.1 The supervised evolutionary clustering classifier 

In general, the task of pattern classification may be viewed as a problem of partitioning of 
objects (hereafter also called data, patterns) into classes. The traditional unsupervised clustering 
algorithm based on a Euclidean metric to measure the similarity among the patterns of features 
leads to spherical clusters that rarely are adequate to represent the actual features data partition in 
practice. On the contrary, using specific Mahalanobis metrics for defining the different clusters 
allows obtaining different ellipsoidal shapes and orientations of the clusters that can more 
adequately fit the actual data partition [25]. 

Furthermore, the information on the membership of the patterns kx
�

, k=1,…, N, to the c a 

priori known classes, can be used to supervise the clustering algorithm for finding the optimal 
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Mahalanobis metrics such as to achieve geometric clusters as close as possible to the a priori 
known physical classes. 

The supervised training procedure for the optimization of the Mahalanobis metrics defining 
the clusters is carried out via an evolutionary procedure, presented in the literature within a 
supervised fuzzy clustering scheme [19] and further extended to diagnostic applications [25]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The steps of the scenario classification approach 
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  is the a priori known membership of the k-th pattern to the i-th 

physical class (possibly not known with absolute precision, in which case it has a membership 

less than one) and ( )*0 1
ki xµ≤ ≤�

 is the membership to the corresponding geometric cluster in 

the feature space. 
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When fed with a new pattern of features x
�

 characteristic of a given dynamic scenario, the 
classification algorithm provides the values of the membership functions ( ) cixi ,...,2,1, =∗ �µ , to 

the different clusters which represent the scenario classes in the stochastic and process variable 
feature space. 

4 LCDS SCENARIO CLASSIFICATION BY FUZZY CLUSTERING 

For the fault scenarios of the LCDS, seven classes (c=7) have been identified for classifying 
the accident scenarios with respect to the end state of the accident sequence (overflow, safe and 
dryout) and with sufficient practical resolution in terms of its time of occurrence (in [0,8] h, in 
[9,16] h, in [17,24] h): 

Class 1: Overflow failure in [0,8] [h]. 
Class 2: Overflow failure in [9,16] [h]. 
Class 3: Overflow failure in [17,24] [h]. 
Class 4: Safe transient. 
Class 5: Dryout failure in [0,8] [h]. 
Class 6: Dryout failure in [9,16] [h]. 
Class 7: Dryout failure in [17,24] [h]. 
 

The features selected as relevant for the characteristics of the accident sequence evolutions are: 

Feature 1:    s1: Unit 1 state s1 ∈ {0,1,2}; 
Feature 2:    t1: Unit 1 failure time t1 ∈ [0,24]; 
Feature 3:    s2: Unit 2 state s2 ∈ {0,1,2}; 
Feature 4:    t2: Unit 2 failure time t2 ∈ [0,24]; 
Feature 5:    s3: Unit 3 state s3 ∈ {0,1,2}; 
Feature 6:    t3: Unit 3 failure time t3 ∈ [0,24]; 
 

The evolutionary training of the FCM classifier has been performed on the basis of a set of 
N=500 class-labeled patterns randomly extracted from the 76556 total scenario simulations, each 
one constituted by an input vector of 6 values for the 6 features (times t1, t2, t3,  states s1, s2, s3) 
and one output value (the class label 1, 2,…,7).  

Once the classifier has been constructed, it needs to be tested before it can be used to 
classify any pattern of dynamic scenario. In the present work, the classifier has been cross-
validated by feeding it with 10 different batches of input/output samples of M=250 different 
scenario simulations random drawn from the 76556-N available for test. The mean values of the 
performances of the classifiers and the ±1σ uncertainty bandwidths are shown in Figure 9. 

The upper subplot of Figure 9 shows the fraction of patterns that have been correctly 
classified into a class with a membership value to such class larger than the threshold in abscissa; 
the second subplot shows the fraction of patterns that have been incorrectly classified into a class 
with a membership value to such class larger than the threshold in abscissa; the lower subplot 
shows the fraction of patterns that, due to the insufficient membership to all of the classes, with 
respect to the threshold value in abscissa, have not been classified as belonging to anyone of the 
predefined classes. The threshold value in abscissa is an arbitrary choice: the optimum value is 
that which maximizes the fraction of correct classifications and minimizes that of incorrect ones. 
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In Table III, numerical results are reported with a threshold value equal to 0.7, which has been 
found to provide satisfactory classification performances for the purpose of the present work. 

In alternative, patterns can be simply assigned to the class for which the membership value 
of the pattern is the highest, independently of whether this value is above a given threshold; in 
this case, none of the patterns can be classified as ambiguous (Table III). 
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Figure 9. Classifier performance with respect to 10 sets of 250 test patterns: fraction of patterns 

correctly (top), incorrectly (middle) and not (bottom) classified, as function of the membership threshold 
value in abscissa 

 

Table III. Numerical results of the classifier performance on test patterns 
 

Assignment strategy 
Class assignment 

Correct Error Ambiguous 
Membership threshold (=0.7) 73.24 ± 3.47% 20.28 ± 3.64% 6.48 ± 1.49% 
Maximum membership 75.76 ± 3.48% 24.24 ± 3.48% 0 

 

5 CONCLUSIONS 

Dynamic safety and reliability analyses of realistic systems inevitably lead to the evaluation 
of a large number of different time-dependent scenarios, which need to be post-processed to 
identify critical states. This work has treated the post-processing of accident scenarios for 
identifying system fault classes. 
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Dynamic scenarios have been simulated for the LCDS of an heated holdup tank. The safety 
parameter of interest is the level of liquid contained in the heated tank which cannot drop under 
the value of 4 [m] (dryout failure mode) nor exceed the value of 10 [m] (overflow failure mode). 
The timing of component failures has been shown to impact the system failure time, which is in 
turn a relevant parameter for determining the available time of recovery of the different accident 
situations. A partition of the system failure time into three intervals has been considered 
practically sufficient for the purpose of the work; this gives rise to seven classes, defined based 
on safe/faulty end states and corresponding system failure times. 

Classification of the dynamic scenarios of system evolution with similar characteristics has 
been carried out on the basis of the features of the occurred stochastic events, i.e. the components 
failure times and modes, by an optimized fuzzy clustering scheme. The classification 
performance achieved is of approximately 75%, which demonstrates the feasibility of the 
approach. 
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