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ABSTRACT

Identification of faults is an important task irsggm safety analysis. The large number of
system scenarios considered in a realistic safstgssment need to be post-processed to identify
the system critical states. The task can be qoitgptex when the dynamic aspects of the system
behavior and its control play a relevant role ia #malysis. For example, a fault event may lead to
different scenario evolutions depending on the tohfailure occurrence and the corresponding
state of the controlled process variables. Inwiisk, a Fuzzy C-Means clustering algorithm is
applied for the classification of the fault scepnarof a level control system. The classification is
based on information from both the stochastic esseatjuence and the patterns of the process
variables evolution.

Key Wordsdynamic reliability, fault scenarios classifiaati fuzzy clustering, Fuzzy C-
Means, level control system.

1 INTRODUCTION

The accident behavior of control dynamic systenrmnhotibe completely captured by the
classical Probabilistic Risk Assessment (PRA) miaddbols like Event-Trees (ETs) and Fault-
Trees (FTs), because they typically do not take amicount neither the timing nor the sequencing
of failures [1]. However, the sequential orderlod failure events and the timing of their
occurrence along a stochastic accident scenarioaffest its evolution [2-3].

Dynamic reliability approaches have been develdpexkplicitly take into account the
interactions among the physical parameters of tbegss (temperature, pressure, speed, etc.),
the human operators actions and the times and seiggeof the failures of the components [4-6]
as well as the presence of software [7-10]. Thesthoads include for example the Events
Sequence Diagrams (ESDs) [11], Petri Nets [12],dDyic Flowgraph Methodology (DFM) [13-
14], Discrete Dynamic Event Trees (DDET) [15], DYima Logical Analytical Methodology
(DYLAM) [16-17] and the Dynamic Event Tree Analy$itethod (DETAM) [18]. The main
challenge with these techniques is their computatioomplexity: the number of dynamic
scenario branches increases by a power law withah#er of occurring events (branch points)
[5]. A consequence of such an increase is thaamiadysis of the results becomes difficult
without assisting software tools.
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In this work, a supervised evolutionary proceduretiie optimization of the Fuzzy C-
Means clustering algorithm [19-20] is applied fdemtifying the classes of scenario evolution
corresponding to different end states of a Leveit@d Dynamic System (LCDS) of a liquid
holdup tank [21]. The clustering is based on thertg and magnitude of the components failure
events and leads to substantial reduction in timebew of dynamic event trees to be analyzed.

The structure of the paper is as follows. In Sec#pthe dynamic model of the LCDS is
described and the inadequacy of its reliability patation from a purely static viewpoint is
highlighted. In Section 3, the scenario classifaraby fuzzy-clustering is illustrated. The results
of the application of the approach to the scenarfdbe LCDS are given in Section 4.
Conclusions and remarks are given in Section 5.

2 RELIABILITY ANALYSISOF THE LCDSMODEL

2.1 TheModel

The system under analysis is the level controbed described in detail in [21]. The liquid
level is actively controlled through the actuatairthree components (Figure 1): two inlet pumps
and one outlet valve, hereafter called Unit 1, @ 3yrespectively.

Level signal Level signal
v v
iquid . .
supply Unit 1 Unit 2
Normally on ormally off
Level signal Liquid level (h)
Inflow Inflow L 10m
L8 m
1 1
Outflow | -6 m
] L4 m
~<—Unit 3
Normally on Tank

Figure 1. The heated holdup tank [21]

Each unit is a multi-state component operatingegitorrectly ON or OFF (0), stuck ON (1)
or stuck OFF (2). At=0, the system is assumed to be in its nominad $@N,OFF,ON), with
equilibrium values of 30.93 °C of the liquid tematerre and 7 [m] of the level. The temperature
of the liquid is assumed to directly affect thduee rates of the components [21]. A thermal
power source heats up the fluid to keep it almgstéto the nominal temperature, in spite of the
level fluctuations. The control laws reported irblEal act upon the state of the components to
keep the liquid leveh between 4 and 10 [m], the lower and upper safeBsholds, respectively:
thus, two possible Top Events need to be consideediryout (levek 4 [m]) and overflow
(level> 10 [m]).
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Tablel. Thecontrol laws[21]

Control laws

1 If the liquid levelh drops under 6 [m], the units 1, 2, 3 are put respely in state
ON, ON and OFF (if they are not stuck ON or OFF)

2 If the liquid levelh rises above 8 [m], the units 1, 2, 3 are put retbpay in state
OFF, OFF and ON (if they are not stuck ON or OFF)

2.2 Thesystem simulation

The simulation of the dynamic system scenariosieas performed using the Markov/Cell-
to-Cell Mapping Technique (CCMT) methodology [24hich describes probabilistically the
dynamics of the level and temperature processhlasaand of the process controller. Each one
of the three multi-state system components (theimhad pumps and the outlet valve) is modeled
by a Markov process; the CCMT describes the dynawfithe system in discrete time, in terms
of transitions between computational cells in tleemrktized system state space [22].

The evolution of the dynamic system depends on:

» the deterministic process equations governingetizdution of the level and temperature
variables;

» the laws of the control system (i.e., Table I);

 the stochastic process governing the transpertdonfiguration change) of the
components among their different reachable states.

The dynamics is modeled as transitions between\¢efj = 1,...,J) that partition the
complete state space describing both the valutsegirocess variables and the configuration of

h(n|n',j'— j) for the system configurations.

The cell-to-cell transition probabilitiegj|j',n',k) are conditional probabilities that the
controlled variables are in the c¥|lat timet=(k+1)4t given that:

 the controlled variables are in the dégllat timet=k4t and,
» the system configuration igk)=n" at timet.

These probabilities are determined from the sinutabf system behavior durinty under
the assumption that the components do not chaatesstithindt as described in [21].

The stochastic transport of the system state isritbesl byh(n|n',j'—j]), which is the
probability that the system configuration at titaék+1)At isn, given that:

e n(k)=n" att=k4t and
* the controlled variables transit from ceflto cellV; duringk4t<t<(k+1)4t.

Starting from given initial conditions, the Mark@CMT algorithm leads to the
computation of the probability, | (k) that the system is in cglwith configurationn at time

t=kA4t from
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o, (k+D)=3"3 g(jInt j"kh(n = k)R, (K

n'=1j*=1

The p, (k) can then be converted into dynamic event treesdecified initial and end
states [23].

2.3 Theréeliability analysis

The three possible states of each of the three eoemts (Unit 1, 2 and 3) combine into a
total of 27 possible system configurations (TableTo identify the corresponding system end
states, a large number of simulations of the Mal®R@MT has been run for each of the 27
configurations, with different orderings in the geqce of events for the multiple failure
configurations. In the simulations, the faults emeservatively considered to occur at the
beginning of the scenarios and those system caaflignms that lead into overflow or dryout
failure mode are identified as minimal cut sets @ @r the respective system end state.

Tablell. System configurations: 0 = safe component, 1 = stuck ON component, 2 = stuck OFF

Component
System state Unit 1 state Unit 2 state Unit 3 state Failuremode
Overflow Dryout

0 0 0 0 no no
1 0 0 1 no no
2 0 0 2 no no
3 0 1 0 no no
4 0 1 1 no no
5 0 1 2 yes no
6 0 2 0 no no
7 0 2 1 no no
8 0 2 2 no no
9 1 0 0 no no
10 1 0 1 no no
11 1 0 2 yes no
12 1 1 0 yes no
13 1 1 1 yes No
14 1 1 2 yes No
15 1 2 0 no No
16 1 2 1 no no
17 1 2 2 yes no
18 2 0 0 no no
19 2 0 1 no no
20 2 0 2 no no
21 2 1 0 no no
22 2 1 1 no no
23 2 1 2 yes no
24 2 2 0 no no
25 2 2 1 ne yes
26 2 2 2 ng ng

Three second-order MCS are found for the overflod gtate (Figure 2). Figures 3-5 show
the liquid level evolution resulting from the MCS2, 3 occurrence at tinteO (i.e., system
configurations 5, 11, 12 in Table II). In all thregses, the overflow is shown to occur within 5
hours.
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Overflow

MCS 1 MCS 2 MCS 3

Figure 2. FT for the overflow failure mode

14 ‘ . ‘
121 ; 2 stuck ON and 3 stuck OFF @t=0]| |
_ ! —— — upper threshold (overflow)
E 10 } — lower threshold (dryout) o
o gl 1 1 : 1 4
[0 | | | |
| | | 1 |
o 6f : : | : -
g_ | | | |
g 4 : : : :
2 | | | | -
0 1 1 I 1
0 5 10 15 20
Time [h]

Figure 3. Overflow failure mode: liquid level evolution resulting from the M CS 1 occurrence at time t=0

14
12

= 1 stuck ON and 3 stuck OFF @t=0
—— — upper threshold (overflow)

\

I
l
E 10 1 — lower threshold(dryout) =
v i i -
2 | | | |
T 6 ! | : ! |
8_ ! | | |
5 4 : : : :
2 | | | -
0 i | ‘r :
0 5 10 15 20
Time [h]

Figure 4. Overflow failure mode: liquid level evolution resulting from the M CS 2 occurrence at time t=0
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14 I I r :
12 : ! — Tand 2stuck ON @t=0| |
_ ! ! —— — upper threshold (overflow)
£ 10 —— —— —— —— /| — — lower threshold(dryout) N
J— | | T T
S 8 | | | | i
9 | | | |
T 6 1 : l l 7
8_ | I I I
54— —— | — | :
| | | |
2f | | | | 7
0 : : ; :
0 5 10 15 20
Time [h]

Figure 5. Overflow failure mode: liquid level evolution resulting from M CS 3 occurrence at time t=0

For the dryout failure mode of the system, only tmed-order MCS is identified,

corresponding to system configuration 25 in Tabl&igure 6).

Figure 6. FT for the dryout failure mode

Dryout

Figure 7 shows the liquid level evolution arisimgrh the occurrence of the MCS of the
dryout at timeg=0, i.e. the units 1 and 2 stuck OFF and unit 8ks@N, at time=0. Dryout
conditions are reached within 5 hours.

14 ‘ I I I

121 1 — 1and 2stuck OFF and 3 stuck ON @t=0 |
| —— — upper threshold (overflow)

10— — — — 7

— — lower threshold (dryout)

Liquid level [m]

|
|
|
|
I
|
1
|
|
|
|
|
[

5

10

Time [h]

15

Figure 7. Dryout failure mode: liquid level evolution resulting from the M CS occurrence at time t=0
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The system failure analysis performed is basedhertonservative assumption that the units
failure events occur &t0; this hides the role of the ordering and timifighe failure events
occurrence in determining the time at which theéesysreaches a faulty end state. The
information on the system time of failure is an ortant parameter for determining the available
time of recovery of the different accident situato

The empirical probability density functions (pdéd)the times of system overflow and
dryout, obtained from a total number of 76556 Ma&rACMT simulations of system evolutions
with different component failures ordering and tagni actually show that the time and order of
the failures of the components affect the systahartatime.

The proposed approach illustrated in the followsegtions provides a method for analyzing
the large number of dynamic accident scenarioswhéed to be considered to identify the
system end state, including the identificationhef system failure time (i.e., the time in which
the system safety parameters exceed pre-definetyshfesholds).

3 CLUSTERING DYNAMIC SCENARIOS

The processing of the dynamic scenarios of the LED® at identifying classes of
behavioral similarity in the scenario evolutionslat relating these with characteristic features
of the accident sequence, e.g. its end state amagti The classification approach is based on
combining information from the stochastic timingdlanagnitude of the component failure
events along the sequence.

The uncertainties and overlaps in the definitiothef different classes of accident sequences
can be modeled within a fuzzy clustering paradigncfassification. The scheme here adopted is
founded on a supervised evolutionary optimizatiba Buzzy-C-Means (FCM) clustering
algorithm developed by the Laboratorio di AnalisBeggnale ed Analisi di Rischio (LASAR,
Laboratory of Analysis of Signals and of AnalysiRisk, http://lasar.cesnef.polimi.it) of the
Department of Energy of the Polytechnic of MilaaJy [24]. Clustering in a predefined feature
space is performed based on a Mahalanobis metiaghviditeratively optimized so that the
obtained clusters are close to the actual scenksses [24].

The basic steps of the scenario classificationagur are sketched in Figure 8. The first
step is the selection of the relevant classificafeatures. The successive steps of the procedure
are typical of a supervised classification schetnagning of the classifier on patterns of known
classes and testing of the classifier on new pedter

3.1 Thesupervised evolutionary clustering classifier

In general, the task of pattern classification aywiewed as a problem of partitioning of
objects (hereafter also called data, patterns)diateses. The traditional unsupervised clustering
algorithm based on a Euclidean metric to measwsithilarity among the patterns of features
leads to spherical clusters that rarely are adedoatepresent the actual features data partition i
practice. On the contrary, using specific Mahalasofetrics for defining the different clusters
allows obtaining different ellipsoidal shapes anémtations of the clusters that can more
adequately fit the actual data partition [25].

Furthermore, the information on the membershihefgatternsx, , k=1,...,N, to thec a
priori known classes, can be used to superviselttstering algorithm for finding the optimal
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Mahalanobis metrics such as to achieve geometistarls as close as possible to the a priori
known physical classes.

The supervised training procedure for the optinnraof the Mahalanobis metrics defining
the clusters is carried out via an evolutionarycprure, presented in the literature within a
supervised fuzzy clustering scheme [19] and furéx¢ended to diagnostic applications [25].

DYNAMIC SCENARIO SIMULATIONS

A 4

RELEVANT FEATURES SELECTION

N feature patterns labeled b
their classes of membershiy
\ 4
M feature] TRAINING
patterns
Optimal cluste Optimal Mahalanobis
centers Metrics
v \ 4
TEST

CLASSIFICATION

Figure 8. The steps of the scenario classification approach

The target of the supervised optimization is ta firoptimal Mahalanobis metrics which
definec geometric clusters of the available data set smichinimize the distancé)(l’t,l')

between the a priori known physical class partitiore (r;,r;, ...,F‘C) and the obtained
geometric cluster partitiorl” = (rl,rz,...,rc):

D(T,F )= ZD(FC N Cilﬂ'( L_[ﬁ(x“)l

Where0< g (X ( )< 1 is the a priori known membership of tkéh pattern to theth

physical class (possibly not known with absolutecgsion, in which case it has a membership
less than one) and< y (Xk ) <1is the membership to the corresponding geometrgter in

the feature space.
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When fed with a new pattern of featurescharacteristic of a given dynamic scenario, the
classification algorithm provides the values of thembership function;s/iD(Y(),i =12...c,to

the different clusters which represent the scerdasses in the stochastic and process variable
feature space.

4 LCDSSCENARIO CLASSIFICATION BY FUZZY CLUSTERING

For the fault scenarios of the LCDS, seven clagsed have been identified for classifying
the accident scenarios with respect to the end sfahe accident sequence (overflow, safe and
dryout) and with sufficient practical resolutiontarms of its time of occurrence (in [0,8] h, in
[9,16] h, in [17,24] h):

Class1: Overflow failure in [0,8] [h].
Class2: Overflow failure in [9,16] [h].
Class3: Overflow failure in [17,24] [h].
Class4: Safe transient.

Class5: Dryout failure in [0,8] [h].
Class6: Dryout failure in [9,16] [h].
Class7: Dryout failure in [17,24] [h].

The features selected as relevant for the charsiiterof the accident sequence evolutions are:

Featurel: s;: Unit 1 states; (1 {0,1,2};
Feature2: t;: Unit 1 failure timet; O [0,24];
Feature3: s, Unit 2 states, (1 {0,1,2};
Feature4: t,: Unit 2 failure timet; O [0,24];
Feature5: sz Unit 3 states; [ {0,1,2};
Feature6: ts: Unit 3 failure timet; [ [0,24];

The evolutionary training of the FCM classifier Heeen performed on the basis of a set of
N=500 class-labeled patterns randomly extracted thenv6556 total scenario simulations, each
one constituted by an input vector of 6 valuedlier6 features (times, t, t3, States;, S, Ss)
and one output value (the class label 1, 2,...,7).

Once the classifier has been constructed, it nieels tested before it can be used to
classify any pattern of dynamic scenario. In thesspnt work, the classifier has been cross-
validated by feeding it with 10 different batchdsmput/output samples dfl=250 different
scenario simulations random drawn from the 76858+ailable for test. The mean values of the
performances of the classifiers and the sihcertainty bandwidths are shown in Figure 9.

The upper subplot of Figure 9 shows the fractiopaiferns that have been correctly
classified into a class with a membership valuguich class larger than the threshold in abscissa;
the second subplot shows the fraction of pattdrastave been incorrectly classified into a class
with a membership value to such class larger tharthreshold in abscissa; the lower subplot
shows the fraction of patterns that, due to theffitsent membership to all of the classes, with
respect to the threshold value in abscissa, hawvba®n classified as belonging to anyone of the
predefined classes. The threshold value in absssaarbitrary choice: the optimum value is
that which maximizes the fraction of correct clésations and minimizes that of incorrect ones.
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In Table Ill, numerical results are reported wittheeshold value equal to 0.7, which has been
found to provide satisfactory classification penfiances for the purpose of the present work.

In alternative, patterns can be simply assignatiéalass for which the membership value
of the pattern is the highest, independently oftivbiethis value is above a given threshold; in
this case, none of the patterns can be classifiesdiguous (Table IlI).

fraction of points correctly assigned to the right class

Fraction (%)
3

|

|

|

HL

|

|

1 0.9 0.8 0.7 0.6 0.5

Fraction (%)
o
(6)]

1 0.9 0.8 0.7 0.6 0.5

X Mean value

N—r

_5 — — Mean g

‘5’ -

©

I —_— ]
0.6 0.5

Membership threshold value

Figure 9. Classifier performance with respect to 10 sets of 250 test patterns: fraction of patterns
correctly (top), incorrectly (middle) and not (bottom) classified, asfunction of the member ship threshold
valuein abscissa

Tablelll. Numerical results of the classifier performance on test patterns

. Class assignment
Assignment strategy Correct Error Ambiguous
Membership threshold (=0.7 73.24 £3.4706  20.2864% | 6.48 + 1.49%
Maximum membership 75.76 +3.48%  24.24 + 3.48% 0

5 CONCLUSIONS

Dynamic safety and reliability analyses of reatistystems inevitably lead to the evaluation
of a large number of different time-dependent sdesawhich need to be post-processed to
identify critical states. This work has treated plost-processing of accident scenarios for
identifying system fault classes.
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Dynamic scenarios have been simulated for the LG heated holdup tank. The safety
parameter of interest is the level of liquid con&al in the heated tank which cannot drop under
the value of 4 [m] (dryout failure mode) nor excéled value of 10 [m] (overflow failure mode).
The timing of component failures has been showmpmact the system failure time, which is in
turn a relevant parameter for determining the atbéal time of recovery of the different accident
situations. A partition of the system failure timéo three intervals has been considered
practically sufficient for the purpose of the wotkis gives rise to seven classes, defined based
on safe/faulty end states and corresponding syftidume times.

Classification of the dynamic scenarios of systewlgion with similar characteristics has
been carried out on the basis of the featureseobticurred stochastic events, i.e. the components
failure times and modes, by an optimized fuzzytelusg scheme. The classification
performance achieved is of approximately 75%, wiiemonstrates the feasibility of the
approach.
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