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A challenging aspect of dynamic methodologies for probabilistic risk assessment (PRA), such as the

Dynamic Event Tree (DET) methodology, is the large number of scenarios generated for a single

initiating event. Such large amounts of information can be difficult to organize for extracting useful

information. Furthermore, it is not often sufficient to merely calculate a quantitative value for the risk

and its associated uncertainties. The development of risk insights that can increase system safety and

improve system performance requires the interpretation of scenario evolutions and the principal

characteristics of the events that contribute to the risk. For a given scenario dataset, it can be useful to

identify the scenarios that have similar behaviors (i.e., identify the most evident classes), and decide for

each event sequence, to which class it belongs (i.e., classification). It is shown how it is possible to

accomplish these two objectives using the Mean-Shift Methodology (MSM). The MSM is a kernel-based,

non-parametric density estimation technique that is used to find the modes of an unknown data

distribution. The algorithm developed finds the modes of the data distribution in the state space

corresponding to regions with highest data density as well as grouping the scenarios generated into

clusters based on scenario temporal similarities. The MSM is illustrated using the data generated by a

DET algorithm for the analysis of a simple level/temperature controller and reactor vessel auxiliary

cooling system.

Published by Elsevier Ltd.
1. Introduction

Dynamic methodologies for probabilistic risk assessment (PRA)
are those that account for possible coupling between triggered or
stochastic events through explicit consideration of the time ele-
ment in the system evolution. They are usually needed when the
system has more than one failure mode, control loops, and/or
hardware/process/software/human interaction [1]. Dynamic
methodologies are also capable of modeling the impacts of both
the epistemic1 and aleatory2 uncertainties on the system figure-
of-merit within a phenomenologically consistent framework.

Dynamic PRA methods include Dynamic Logical Analytical
Methodology (DYLAM) [2], Dynamic Event Tree Analysis Method
(DETAM) [3], ADS [4], ADAPT [5], Sequence Diagrams (ESDs) [6],
Petri Nets [7], Dynamic Flowgraph Methodology (DFM) [8],
Discrete Dynamic Event Trees (DDETs) [9], Markov/Cell-to-Cell
Mapping Technique [10] and Monte Carlo Dynamic Event Tree
(MCDET) [11]. The list is not exhaustive and only provides some
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ut and/or model parameters.
samples of dynamic PRA methods. A more comprehensive dis-
cussion of dynamic methods is given in [1].

The DYLAM, DETAM, ADS and ADAPT are among methodologies
that use dynamic event trees (DETs) to account for aleatory
uncertainties. ADAPT can also account for epistemic uncertainties
within the DET framework. A DET is an expansion on traditional
static event trees (ETs), and seeks to incorporate timing and process
relationships into the stochastic system model. Static ETs have a
fixed and predetermined event sequence defined by the analyst,
determined after a series of review processes and thermal hydraulic
calculations. Fig. 1 shows a simplified ET for a large break loss of
cooling accident (LOCA). In order to reach a safe state of the plant,
the reactor protection system trips the reactor and performs the
cooling of the reactor through the emergency cooling system (ECCS).
A failure in any of these two systems will cause core damage (CD).

The DETs are generated by the direct coupling between the
dynamic model of the plant and the stochastic behavior of system
components (including software/firmware) and human actions. The
branching conditions in a DET are generated by user specified rules,
such as activation/non-activation upon demand of components,
correct/faulty crew action depending on specific plant conditions
or when state variables reach predefined setpoints during the
simulation. Process and modeling uncertainties (which can affect
the ordering of the events [5]) are also taken into account in terms
of branching conditions. The dynamic model of the plant is built
using system analysis codes (e.g., RELAP [12] or MELCOR [13])
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Fig. 1. Example of an event tree.
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which evaluate its temporal behavior and determine the timing and
nature of each branch. Subsequently, the use of DETs allows a more
systematic and mechanistic search of the uncertainty space and also
allows consideration of both the epistemic and aleatory uncertain-
ties in a consistent phenomenological framework.

The major challenges in using DETs (as well as other dynamic
methodologies) are the heavier computational and memory require-
ments compared to the classical ET analysis. This is due to the fact
that each branch generated can contain time evolutions of a large
number of variables (about 50,000 variables (or data channels) are
present in MELCOR) and thus a much larger number of scenarios can
be generated (on the order of several thousands) compared to the
traditional ET/fault-tree (FT) approach. Such large amounts of
information are very difficult to organize and interpret in regard
to the main trends in scenario evolutions and the main risk
contributors for each initiating event [14]. A solution to this problem
is to partition the set of scenarios into groups, called clusters, and
analyze each group individually rather than all the scenarios
simultaneously. The partition is performed by identifying simila-
rities among scenarios and grouping them according to a predefined
similarity criteria. Once the partition is obtained, the user can
analyze each group and identify differences among groups.

When dealing with nuclear transients, it is possible to analyze
the set of scenarios in two modes:
�
 End State Analysis classifies the scenarios into clusters based on
the end state of the scenarios.

�
 Transient Analysis classifies the scenarios into clusters based on

time evolution of the scenarios.

While the first mode has been widely used in the classic fault
tree/event tree analysis [15], the second one is starting to be
considered in the recent years [16]. From a safety point of view,
for example, it might be useful to group scenarios based on their
temporal behavior and identify how sequence and timing of
events affect the overall system dynamics other than focusing
only on the end result of the simulation.

This paper presents a scenario clustering algorithm which can
simplify the organization and analysis of the large dataset
generated by a DET. By scenario clustering we mean two actions:
1.
 Identify the scenarios that have a similar behavior (i.e., identify
the most evident clusters).
2.
Fig. 2. Example of clustering process.
Associate each scenario with a unique cluster.

When clusters are determined, the user can then identify simila-
rities among the scenarios in each cluster (e.g., timing and
sequence of events) and compare them among different clusters.
For example, clustering applied to dynamic PRA helps the user to
understand how small changes in sequence/timing of events
impact the overall system dynamics (see Section 4.3). A metric
of success is, thus, the ability to determine a set of clusters that
can help the user to identify such effects.

In Sections 2 and 3, the notions of clustering and classification
are introduced along with the need and the approach to pre-
processing of the raw data. In Section 4, we introduce the MSM
using the dataset generated by DET for the level controller presented
in [17] as an example (Section 4.2). In Section 4.3, we apply the
Mean Shift Methodology (MSM) to the reactor vessel auxiliary
cooling system (RVACS) of a conceptual design for a sodium-
cooled fast reactor. Section 5 presents the conclusions of the study.
2. Clustering: an overview

Clustering is the process of organizing objects into groups
whose members are in some way similar. A cluster is therefore a
collection of objects which are similar to each other and are
dissimilar to the objects belonging to the other clusters [18].

Fig. 2 shows an elementary example of partitional clustering
[19] applied to a two-dimensional data. Here, we easily identify
the 3 clusters into which the data can be divided. The similarity
criterion is the distance measure: two or more objects belong to
the same cluster if they are ‘‘close’’ according to a specified
distance measure. The approach of using distance metrics to
clustering is called distance-based clustering and will be used in
this work by employing the Euclidean distance as a measure of
the similarity between two D-dimensional data points xi

!
and xj
!

dðxi
!

, xj
!
Þ¼

XD

k ¼ 1

9xik�xjk9
2

 !1=2

: ð1Þ

where data point xi
!

represents a scenario in the D-dimensional
space of the data channels or variables of interest.

More formally, the concept of clustering [18] that we aim is to
find a partition C¼ fC1, . . . ,Cl, . . . ,CLg of the set of I scenarios
X¼ fx1

!
, . . . , xi
!

, . . . , xI
!
g Each Cl ðl¼ 1, . . . ,LÞ is called a cluster. The

partition C of X is given as follows:

Cla|,l¼ 1, . . . ,L[L
l ¼ 1

Cl ¼X

8>><
>>: ð2Þ

Clustering algorithms can be divided into two classes [18]:
�
 Hierarchical algorithms

�
 Partitional algorithms



D. Mandelli et al. / Reliability Engineering and System Safety 115 (2013) 146–160148
Given a set of data points xi
!

, hierarchical algorithms build a
hierarchical tree from the individual point (leaf) by progressively
merging them into clusters until all points are inside a single
cluster (root). Partitional clustering, on the other hand, seeks a
single partition of the data sets instead of a nested sequence of
partitions obtained by hierarchical methodologies. Under this
category it is possible to classify methodologies under five main
sub-categories: Squared Error (e.g., K-Means [20]), Fuzzy cluster-
ing (e.g., Fuzzy C-Means [21]), Mode Seeking (e.g., Mean-Shift
[22]), Graph Theoretical [23] and Neural Network based [24].

We initially investigated hierarchical algorithms as well as
partitional algorithms including [25]:
�
 Squared Error

�
 Fuzzy C-Means

�
 Mode-Seeking
Hierarchical algorithms [26] organize data into a hierarchical
structure accordingly to a proximity matrix in which an entry ða,bÞ
is some measure of the similarity (or distance) between the items to
which row a and column b corresponds. Usually, the final result of
these algorithms is a binary tree, also called dendrogram, in which
the root of the tree represents the whole dataset and each leaf is a
data point. Squared Error [26] algorithms assign each point to a
cluster whose center (also called centroid) is nearest. The cluster
center is the average of all the points in the cluster, that is, its
coordinates are the arithmetic mean of each dimension indepen-
dently over all the points in the same cluster. The most famous and
used methodology is the K-Means algorithm [20], where the user
specifies a priori the number of clusters to be determined. Fuzzy C-
Means [21] clustering is very similar to K-Means but it assigns a
degree of belonging coefficient for each point to each cluster, as in
fuzzy logic, rather than assigning it to a single cluster. Mode-Seeking
[27] is based on the assumption that the distribution of the points in
the state space can be described through an unknown probability
density function (pdf). The goal is to find the modes with highest
probability, i.e., the regions in the state space with higher data
densities. In this case, the number of clusters obtained is dependent
on the local density functions that are used.

A particular mode seeking approach the MSM [22], which has
been used for a number of applications in different fields. For our
purpose, we identified the MSM as the most promising approach
for the following reasons:
�
 Hierarchical, K-Means and Fuzzy C-Means algorithms are able to
identify clusters of points having only spherical or ellipsoidal shape
while MSM can identify clusters having any arbitrary geometry.

�
 Hierarchical, K-Means and Fuzzy C-Means algorithms have

difficulty identifying outliers, i.e., clusters having a very small
number of points in it. On the other hard, the MSM can easily
identify scenarios that are considerably distant from the others.

�
 The level of discrimination among the clusters can be specified

using the bandwidth parameter of the MSM. In that way, the
appropriate number of clusters is determined by the algorithm
itself instead of specifying the number of clusters that are
going to be determined as required by K-Means and Fuzzy C-
Means algorithms.

Once the clustering algorithm is chosen, the clustering process
consists of the following steps [26]:
1.
 Variable selection: This first step is the identification of the
variables that are considered useful for characterization of the
data. For a transient in a nuclear plant, these variables may be
both process variables such as temperature, pressure or level
at specific points of the system and hardware/software/firm-
ware states. The choice of the variables of interest therefore
specifies the dimension of the state space.
2.
 Transient representation format: The chosen variables may be
different in both nature (e.g., temperature and pressure) and
scale (i.e., the range of these variables might differ in terms of
order of magnitude). Hence, it may be necessary to perform a
scaling operation on the chosen variables. In this work, we use
the Principal Component Analysis (PCA) [28] as a tool to
process the data before clustering is performed. The PCA also
allows reducing the dimensionality of the state space for the
clustering process.
3.
 Clustering algorithm design: In this phase, the distance measure
(metric) along with other parameters of the algorithm is
chosen.
4.
 Clustering: The clustering algorithm is applied to the dataset
and clusters along with cluster centers are determined.
5.
 Post-processing: The cluster centers are converted back into the
original format of the data.
6.
 Interpretation of the results: Given the cluster centers obtained
in the previous step, the goal is to provide the user with
meaningful insight of the original dataset. Further classifica-
tion analysis may be required in order to gain such a mean-
ingful insight (see Section 4.3). For example, clustering
provides the user with a representative scenario in the cluster
but understanding how small changes in sequence/timing of
events impact the overall system dynamics may require
further analysis as indicated in Section 1 (also see Section 4).
Clustering analysis also allows identification of set of scenarios
that have temporal profiles considerable different from the
majority of the rest of scenarios (i.e., outlier identification).

3. Data representation

Since the temporal evolution of each scenario is typically
described by the time evolution of all system state variables
(e.g., pressure and temperature at a computational node), we
chose to represent each scenario xi

!
(i¼ 1, . . . ,I) by M state

variables xim (m¼ 1, . . . ,M) plus time t (ranging from 0 to T) as
the state vector:

xi
!
¼ ½xi1ðt1Þ, . . . ,xiMðt1Þ, . . . ,xi1ðtK Þ, . . . ,xiMðtK Þ�, ð3Þ

where ximðtkÞ corresponds to the value of the variable xm (e.g.,
temperature, pressure at a computational node) sampled at time
tk (e.g., t1 ¼ 0 and tK ¼ T) for scenario i. Note that the dimension-
ality of each scenario is M � K and can be extremely high for
complex systems (i.e., large number of state variables and large
number of samples). When dealing with transient codes such as
RELAP [12] or MELCOR [13], the state space would theoretically
include all the variables of all the discretization nodes (on the
order of tens of thousands). Thus, a smaller set of variables of
interests need to be chosen (e.g., by expert judgment).

At this point it should be noted that the dynamic behavior of
variables that change rapidly in time can be captured by increas-
ing the number of time points tk or the sampling frequency.
However, this may considerably increase the dimensionality of xi

!

and thus negatively affect the computational time in the cluster-
ing process.

The expression of dðxi
!

, xj
!
Þ in (1) assumes that each data point

(or scenario) xi
!

(see 3) is lying in a multidimensional space
characterized by a set of orthogonal axes. However, due to the
possible correlation of the chosen variables xim, the assumption of
orthogonality is not often justified. We addressed this problem by
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transforming the dataset using PCA [28]. PCA aims to transform
the original set of possible oblique coordinate axes into a new set
of orthogonal axes allowing the use of any type of metrics. This
new set of orthogonal axes can be obtained by finding the
eigenvectors of the covariance matrix of the dataset and the data
points can be projected into the new coordinate system.

Another issue that arises when dealing with nuclear transients
is the fact that the variables of interest may differ in nature (e.g.,
pressure, level or temperature) and, thus, have different ranges.
Hence, each variable needs to be normalized before the clustering
process. A common procedure [26] is to obtain the normalized
variable xim by scaling xim into the [0,1] interval as follows:

xim ¼
xim�minðximÞ

maxðximÞ�minðximÞ
: ð4Þ
4. Mean-Shift Methodology

The MSM [22] is a non-parametric iterative procedure that
assigns each data point to one cluster center through a set of local
averaging operations. The local averaging operations provide the
empirical cluster centers in the locality and define the vector
which denotes the direction of increase for the underlying
unknown density function.

The basic idea is to treat each data point, or scenario, xi
!

ði¼ 1, . . . ,IÞ of the dataset as an empirical probability distribution
function, or kernel Kð x

!
Þ : RM�K-R (see Fig. 3 where each of

the 7 data points represented by circles is associated with a
probability density function). This kernel density resides in a
multidimensional space where regions with high data density
(i.e., modes) correspond to local maxima of the density estimate
f Ið x
!
Þ [29] (represented by the trimodal upper curve in Fig. 3)

defined by

f Ið x
!
Þ¼

1

Ihd

XI

i ¼ 1

K
x
!
�xi
!

h

 !
, ð5Þ

where x
!ARM�K and h is often referred as the bandwidth of the

kernel.
The kernel serves as a weighting function [29] associated with

each data point and can be expressed as

Kð x
!
Þ¼ ckkðJ x

!2
JÞ, ð6Þ
Fig. 3. An example density function.
where kðxÞ : ½0,1�-R is referred as the profile and ck is a normal-
ization constant. The profile satisfies the following properties:
1.
 k(x) is non-negative,

2.
 k(x) is non-increasing (i.e., kðaÞZkðbÞ if aob),R

3.
 k(x) is piecewise continuous and

1

0 kðxÞ dxo1.
In order to estimate the data points with highest probability
from an initial estimate (i.e., the modes of f Ið x

!
Þ), consider the

situation rxf Ið x
!
Þ¼ 0 [22], where

rxf Ið x
!
Þ¼

2ck

Ihdþ2

XI

i ¼ 1

ð x
!
�xi
!
Þk0

x
!
�xi
!

h

�����
�����

2
0
@

1
A

¼
2ck

Ihdþ2

XI

i ¼ 1

g
x
!
�xi
!

h

�����
�����

2
0
@

1
A

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

PI
i ¼ 1 x
!

g x
!
�xi
!

h

����
����2

 !

PI
i ¼ 1 g x

!
�xi
!

h

����
����2

 ! � x
!

0
BBBBB@

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

ð7Þ

points in the direction of the increase in kernel density estimate.
The kernel Kð x

!
Þ is also referred to as the shadow of

Gð x
!
Þ¼ cggðJ x

!
J2
Þ [30] where cg, similar to ck, is a normalization

constant and g(x) is the derivative of k(x) with respect to x, i.e.,
gðxÞ ¼ k0ðxÞ. In (7) the first term denoted as A is a scalar propor-
tional to the density estimate computed with the kernel Gð x

!
Þ and

does not provide information regarding the mode position. Unlike
A, the vector quantity B, which is the second term in (7), is the
difference between the weighted mean:

mð x
!
Þ¼

PI
i ¼ 1 x
!

g
x
!
�xi
!

h

�����
�����

2
0
@

1
A

PI
i ¼ 1 g x

!
�xi
!

h

����
����2

 ! , ð8Þ

and the initial estimate x
!

. This term points in the direction of
local increase in density using kernel Gð x

!
Þ, hence provides a

means to find the mode of the density. In other words, each
scenario or data point xi

!
is ‘‘shifted’’ toward the mean defined by

Eq. (8) which is the reason why the methodology is called ‘‘mean-
shift’’. Note that all data points used to compute a particular mode
are considered to reside in the same cluster.

Since each data point xi
!

(or scenario) is considered as an
empirical probability distribution function, the probability asso-
ciated with each scenario as obtained from the DET can be
accounted for in the clustering analysis.

The choice of the value of bandwidth greatly affects the
number of cluster that can be obtained. For the 7 data points
shown in Fig. 3, a small value of bandwidth would generate a
f Ið x
!
Þ with 7 local maxima as shown in Fig. 3 (i.e., a number of

local maxima equal to the number of data points). On the other
hand, a large value of bandwidth would generate a f Ið x

!
Þ with

only one local maxima (i.e., one cluster).
Section 4.1 presents the algorithm that we have developed to

implement the MSM. Sections 4.2 and 4.3 show, respectively, an
application of the MSM applied to the dataset generated by a DET
for a simple level controller [10] and to the dataset generated for
a more complex system such as the behavior of conceptual design
for a sodium-cooled fast reactor during an aircraft crash scenario.



Fig. 4. Representation of example scenarios generated by a DET in a three-dimensional space.

Fig. 5. Determination of a cluster center in a two-dimensional space using the

Mean-Shift algorithm on the S(t) plane.
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4.1. The algorithm

In order to illustrate how the algorithm works, let us consider
a system whose dynamics can be described by 3 variables con-
sisting of time t, pressure p and temperature T as an example. Let
us assume that a DET analysis quantifying the impact of the
uncertainties in the system yields the trajectories shown in Fig. 4.
The S(t) plane in Fig. 4 represents the state of these scenarios at
time t.

Note that the new dataset on the S(t) plane consists of data
points distributed in a two-dimensional space R2. Starting from
an arbitrary data point (e.g., point SA in Fig. 5), the algorithm
associates a circle (or a ball, in general, depending on the number
of dimensions of the state space) centered at that data point.

The radius of this circle (ball) is equal to the bandwidth h of
the chosen kernel. The objective is to consider the weighted
average of the data points residing in the circle (ball) which
corresponds to their center of mass (point mðSAÞ in Fig. 5) where

mðSAÞ ¼

PI
i ¼ 1 xi
!

g
SA�xi
!

h

�����
�����

2
0
@

1
A

PI
i ¼ 1 g

SA�xi
!

h

�����
�����

2
0
@

1
A

: ð9Þ

The weighted average or the center of mass mðsAÞ is used as the
new position for SA for the next iteration, such that the density in
the new center of mass is always higher than its previous
position. Convergence is reached when the distance between
the new center of mass and the old one is below a fixed thresh-
old3 (point SC in Fig. 5). Upon reaching the stopping condition,
point SC is considered the center of a cluster and the original point
SA is uniquely associated to the cluster centered by point SC.

This procedure is performed for each data point xi
!

. When the
data set is characterized by a single cluster (see Fig. 5), the cluster
center SC is associated with all the data points. However, when
the data set is characterized by multiple regions having high data
densities, the MSM determines multiple cluster centers as shown
in Fig. 6. Each data point is associated with a specific cluster
according to its Mean-Shift path.
3 Usually the threshold is a fixed value chosen to be a small fraction of h

(typically h=100 or h=1000)
During this process, several derivative kernels Gð x
!
Þ can be

used as indicated in [27]. Given data with unknown distribution,
Epanechnikov and Gaussian kernels provide the optimal mean
integrated squared error. Among the two, coding of the Gaussian
kernel eliminates the requirement of choosing a user-defined
discriminatory threshold. Hence, we chose the Gaussian kernel in
our implementation (see Fig. 7):

Gð x
!
Þ¼ e�J x

!
J2=h2

: ð10Þ

When this iterative procedure is repeated for all the points in
the dataset, it is possible to obtain the center of all the clusters
and the list of all the points that belong to that specific cluster, as
well as, the cluster to which each point belongs (as mentioned
earlier, each point belongs to one cluster only).

Fig. 8 shows the flow diagram of the proposed approach. Starting
from a dataset generated by the DET tool, the user selects variables
of interest (Feature Selection in Fig. 8) based on their physical
relevance to the process under consideration or possibly as a result
of dimensionality reduction process (e.g., based on PCA). Following
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the choice of bandwidth, type of kernel, and the distance metric
(possibly random initially), the clustering is iteratively performed
(Classification in Fig. 8). Sensitivity of the grouping of scenarios can
Fig. 6. Determination of multiple cluster centers in a two-dimensional space using

the Mean-Shift algorithm.

-1.0
-0.5

Fig. 7. Graphical representation of the

Fig. 8. General flow of the Mean-
be then examined for different types of kernels, values of bandwidth
and metrics (Post-Processing in Fig. 8).

Besides the choice of the distance, the geometry of the clusters
plays a vital role in the point-to-cluster decision process. Fig. 9
illustrates the results of MSM when it is applied to a set of points
-1.0 -0.5 0.0 0.5 1.0

0.0 0.5 1.0
0.0

0.5

1.0

two-dimensional Gaussian kernel.

Shift Methodology algorithm.

Fig. 9. Mean-Shift analysis applied to a set of data distributed over two rings.

Different colors denote different clusters.



Table 1
Water level controller control laws.

Case Controller 1 Controller 2 Controller 3

6 mrLr8 m ON OFF ON

Lr6 m ON ON OFF

LZ8 m OFF OFF ON
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distributed normally along two rings. In the region where the two
rings are very close, points that belong to different clusters have
different memberships despite being close to each other com-
pared to the other points belonging to the same cluster. As shown
in Fig. 9, the data lying on two rings have been clustered using the
MSM algorithm described above into two clusters denoted by red
and green colors even some points lying on different clusters are
very close to each other. Hence, methodologies such as K-Means
[20] or Fuzzy C-Means [21] that consider distance as the only
criteria to establish cluster memberships are not able to cluster
the datasets pictured in Fig. 9 correctly.

4.2. Analysis of the water level controller

As a simple system to illustrate the deployment of the
algorithm shown in Fig. 8, we use the heated tank example
presented in [31] and shown in Fig. 10. In this system, the liquid
level L is actively controlled through the actuation of three
components: two inlet pumps and one outlet valve, hereafter
called Units 1, 2 and 3, respectively. Each unit is a multi-state
component operating either correctly ON or OFF, stuck ON or
stuck OFF. At time t¼0, the system is assumed to be in its
nominal state (ON,OFF,ON), with nominal values of T¼30.93 1C
of the liquid temperature and L¼ 7 m. The temperature T is
assumed to directly affect the failure rates l of the components
as given by [31]

lðTÞ ¼
b1e�bc ðT�20Þ þb2e�bdðT�20Þ

b1þb2
lðiÞ, i� 1,2,3ð Þ ð11Þ

where b1 ¼ 3:0295, b2 ¼ 0:7578, bc ¼ 0:05756, bd ¼ 0:2301.
Furthermore: lð1Þ ¼ 2:2831� 10�3 h�1, lð2Þ ¼ 2:857� 10�3 h�1,
lð3Þ ¼ 1:5625� 10�3 h�1. A power source heats up the fluid to
keep it at the nominal temperature. The liquid level is kept
between 6 and 8 m through the control laws reported in [10]
(also see Table 1). Two possible Top Events that need to be
considered are Low Level (Lo4 m) and High Level (L410 m).

For testing the algorithm described in Section 4.1, the variables
that describe the evolution of each scenario were chosen to be the
temperature T, level L and time t. Thus the state space is three-
dimensional.
Fig. 10. Schema of the
In the DET analysis, the branching is dictated by the failure of
the three active components (i.e., Units 1, 2 and 3 in Fig. 10). We
applied the MSM to the set of transients generated in [32]. Each
transient contains information about the time evolution of tem-
perature and level and the status of the three controllers as well.
We converted each transient into a vector xi

!
as shown in (3) with
�

wat
M¼2 (i.e., 2 state variables: temperature and level),

�
 time is ranging from 0 to 5 h (i.e., T¼5), and,

�
 level, temperature sampled every hour (i.e., K¼5): t1 ¼ 0,

t2 ¼ 1, t3 ¼ 2, t4 ¼ 3, t5 ¼ 4 and t6 ¼ 5.

Thus, each scenario is characterized by a vector having dimen-
sionality equal to 10 (M � K ¼ 10).

We performed the clustering for the scenarios leading to Low
Level and High Level separately, with 105 scenarios leading to
High Level and 23 leading to Low Level. Figs. 11–13 show the
cluster centers (i.e., the representative scenarios) for the data
generated by the DET for these Top Events. As can be seen from
the figures, the clustering process becomes more refined by
decreasing the value of the bandwidth and the number of clusters
obtained increases. Asymptotically, the number of clusters equals
the number of scenarios with decreasing bandwidth. Also note
the different behavior in terms of cluster centers obtained for the
two Top Events: the number of clusters obtained for High Level
increases as h increases while, for Low Level, same clusters have
been obtained for h¼9 and h¼11. This indicates that different
values of h may be needed when clustering is performed for
scenarios leading to different Top Events. For this data set,
however, comparison of Figs. 11–13 indicates that while going
er heated tank.



Fig. 11. Cluster centers for high level (top) and low level (bottom): h¼11.
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from h¼11 to h¼9 introduces a new pattern in the temperature
profile for High Level (compare Figs. 11 and 12), there are no
fundamental differences in the profiles in going from h¼9 to h¼7
(compare Figs. 12 and 13). In that respect, h¼9 provides the best
bandwidth for the date set under consideration. In should be also
indicated that there is always some subjectivity on the choice of
the bandwidth, depending on the objective of the clustering
process and the granularity desired.

4.3. Analysis of an aircraft crash scenario

A more complex system used for the illustration of the
proposed clustering methodology is the analysis of recovery from
an aircraft crash into an RVACS of a conceptual design for a
sodium-cooled fast reactor as schematically shown in Fig. 14. The
RVACS is a passive decay-heat removal system that removes heat
by natural circulation of air in the gap between the vessel and a
duct surrounding the vessel. RVACS has been considered for use
in some conceptual design studies of advanced reactors. With this
system, the reactor decay heat is released to the atmosphere
through four towers or stacks.

The Analysis of Dynamic Accident Progression Trees (ADAPT)
tool [5] was used in this study as the DET generator tool while the
system dynamics was modeled using RELAP5 [12]. The RVACS
RELAP5 model is shown in Fig. 15 [33]. The analysis was
performed on a three-node cluster. Run time was 3.19 days and
the output data size was 40 GB.

At time zero with the plant operating at 100% power, an
aircraft crashes into the plant. Three of the four towers are
assumed to be destroyed, producing debris that blocks the air
passages (hence, impeding the possibility to remove the decay
heat). The reactor trips, off-site power is lost, the pump trips and
coasts down. A recovery crew and heavy equipment are used to
remove the debris. Fig. 16 illustrates the strategy that is followed
by the crew in reestablishing the capability of the RVACS to
remove the decay heat. Crew arrival and tower recovery times are
stochastic variables and can have any value within the specified
bands. Several assumptions have been made for the purpose of
the analysis:
�
 A tower is assumed to have no heat removal capacity until the
rubble has been removed. At that point it is assumed to regain
full capacity;

�
 There is a 1 h dead period (see the red bars in Fig. 16)

following the crash in which a fire is being extinguished;



Fig. 12. Cluster centers for high level (top) and low level (bottom): h¼9.
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�
 There is a uniform probability of work being initiated between
one and 9 h after the crash;

�
 The workers remove debris from one tower at a time;

�
 After work begins on a tower there is a minimum time of 2 h

to recover the tower;

�
 There is a uniform distribution of recovery between two and

10 h. The team then moves on to the next tower;

�

4 In the original dataset, scenarios that reach a core temperature of 1000 K are

stopped even though they did not reach 2� 105 s. Consequently, the time length

of scenarios may change depending if they have reached 1000 K or not. For those

scenarios that reach 1000 K before 2� 105 s, it was decided to extend in time

these scenario up to 2� 105 s with the last value simulated.
The recovery time of each tower is assumed to be independent
of the other towers.

While the numerical values chosen do not reflect actual data,
effort has been made to inject realism into the analysis by the use
of dead time and minimum and maximum times.

As indicated above, the uncertainties in crew arrival time and
tower recovery have been modeled by assigning to each one a
uniform probability distribution function [33]. Example branching
times were chosen for ADAPT to correspond to the probabilities
0.001, 0.25, 0.5, 0.75, and 1.0 on the corresponding cumulative
distribution function. When one of these branching times is reached
in the RELAP simulation, ADAPT generates a bifurcation in the system
evolution occurs in which one branch represents the realization of the
specific event (e.g., crew arrival) and the other branch represents non-
realization of the specific event. The latter branch then continues until
the time corresponding to the next branching point is reached on the
cumulative distribution function. This type of branching scheme used
in ADAPT is explained in more detail in [5].

Only one Top Event has been considered: temperature T of the
core reaches the limit of 1000 K, associated with clad failure by
eutectic formation. Fig. 17 shows the temporal behavior of the
temperature of the core for all the 610 scenarios generated by ADAPT.
Mission time for this system analysis has been fixed to 2� 105 s.4

Each transient includes information about:
�
 Time profile of core temperature,

�
 Crew arrival time,

�
 Recovery time of tower i (i¼1, 2, 3).
We performed the clustering analysis of the dataset pictured
in Fig. 17 using the values of the core temperature sampled at



Fig. 13. Cluster centers for high level (top) and low level (bottom): h¼7.
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specific time instants. Each scenario was represented by K¼68
time points sampled uniformly over a time horizon of
T ¼ 2� 105 s.

Table 2 shows the number of clusters obtained for different
values of bandwidth h. For very large values of h (e.g., h¼4) the
algorithm determines a single cluster which contains all the 610
scenarios. On the other hand, for very small values of h (e.g.,
h¼0.001) the algorithm determines 610 clusters; each of them
contains a single scenario. For both of these cases no additional
information can be extracted from the clusters since the clusters
reflect exactly the original dataset.

As indicated earlier, the choice of the optimal value of
bandwidth h is case dependent. For this data set, h is chosen
such that each cluster can identify specific safety insights such as
correlations between timing of events and temporal profiles of
the state variables. For the RVACS data set, these correlations
emerged for a value of bandwidth h¼1.5 as described below.

Fig. 18 shows the cluster centers obtained for h¼1.5. Fig. 18
also shows, for each of the 8 cluster centers, the cluster prob-
ability and the fraction of scenarios that belong to that cluster.
Cluster probability is determined by summing all the probabilities
of the scenarios contained in that cluster. Fig. 19 shows the
cluster centers (i.e., the representative scenarios) in black lines
and the scenarios belonging to that cluster in red lines.

At this point, it is possible to analyze the properties of the
clusters individually instead of the full dataset. In this respect, a
second analysis is performed for each of the eight obtained
clusters by evaluating the distribution of the crew arrival time
towers 1-3 as function of time for the scenarios belonging to each
cluster. Fig. 20 shows the distribution of the crew arrival time and
tower recovery time for all the scenarios belonging to each of the
8 clusters. Note that the vertical scales are not similar in Fig. 19
due to the difference of duration of the scenarios in different
clusters.

Figs. 19 and 20 indicate the following:
�
 Scenarios contained in Clusters 1 and 4 are characterized by
very early crew arrival (bars in Fig. 20 located at 2:5� 104 s)
and a rapid sequence of towers recovery which allow to cool
the core rapidly (all towers are recovered before 8:5� 104 s for
all scenarios contained). As shown in Fig. 19, the scenarios
included in both clusters lead to adequate core cooling (i.e., the
maximum core temperature do not reach 1000 K) and, as
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expected, a rapid recovery of the towers is sufficient condition
for the safety of the plant.

�
 Scenarios contained in Cluster 2 are characterized as well by

an early crew arrival (bar in Fig. 20 located at 2:5� 104 s) and
a rapid recovery of the first tower (blue bars in Fig. 20 located
between 3:5� 104 s and 4:5� 104 s). However, the recovery of
the remaining two towers is not as rapid (green and purple
bars in Fig. 20). Since this cluster contains scenarios that lead
Fig. 14. RVACS system.

Fig. 15. RELAP RVACS model including the primary system
to both adequate core cooling and core damage (see Fig. 19
where some scenarios reach the limit of 1000 K and others are
below it), it is possible to conclude that early crew arrival and
recovery of the first tower is not sufficient condition to reach
the safe state of the plant.

�
 Scenarios contained in Clusters 3 and 5 lead to both sufficient

core cooling and core damage (see Fig. 19 where some
scenarios reach the limit of 1000 K and so are below it). This
is due to the fact that crew arrives on the field considerably
late (bars in Fig. 20 located between 3:0� 104 s and
4:5� 104 s) followed by a rapid recovery of the three towers.
However, the rapid recovery is not sufficient to avoid core
damage.

�
 Cluster 6 is composed exclusively of scenarios that lead to core

damage (see Fig. 19 where all scenarios reach the limit of 1000 K).
Moreover, it also contains all the scenarios characterized
of the example sodium-cooled fast reactor.

Fig. 16. Crew recovery strategy for the aircraft crash scenario.



Fig. 17. Graphical representation of the scenarios generated by ADAPT for the

aircraft crash scenario.

Table 2
Number of clusters obtained for different values of

bandwidth h.

h Number of clusters

4.0 1

3.0 2

2.0 4

1.5 8

1.0 22

0.5 96

0.1 300

0.01 308

0.001 610

Fig. 18. Cluster centers for the RVACS system for h¼1.5. The numbers in the

legend indicate the cluster probability and, in parenthesis, the number of

scenarios that fall in each cluster.
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by the non-recovery of the third tower (bar located at 0 s
in Fig. 20). As observed for Clusters 3 and 5, crew arrives
very late on site (bars in Fig. 20 located between 3:0� 104 s
and 4:5� 104 s) and hence the tower recovery strategy is not
sufficient for adequate core cooling.

�
 Clusters 7 and 8 contain a very small number of scenarios (i.e.,

2 and 1 scenario respectively). Scenarios included in Cluster
7 are characterized by a late crew arrival (see crew arrival time
bars in Fig. 20), a late recovery of the first tower and a fast
recovery of the following towers. This action allows to suffi-
ciently cool the core but temperature profile for these scenar-
ios is very close to the limit temperature (i.e., max
temperature of the core for the scenarios in Fig. 19 is 999 K).
However, the scenario included in Cluster 8 is characterized by
an early crew arrival and recovery of the first tower (see crew
arrival time and tower 1 bars in Fig. 20). The recovery of the
remaining towers is not particularly fast but it avoids excee-
dance of the limit temperature.

The mixed nature of Clusters 2, 3 and 5 (i.e., some scenarios
leading to core damage and some to adequate core cooling) imply
the following which would have been difficult to observe from the
full data set:
�
 Early crew arrival and early recovery of the first tower is not
sufficient condition to adequate core cooling; a late recovery of
the remaining two towers leads to core damage.

�
 Late crew arrival time does not necessarily lead to core

damage. Fast recovery of the 3 towers can be sufficient to
provide adequate core cooling.

No model uncertainties were considered in this analysis. It
should be indicated that scenario evolutions might have been
different if model uncertainties were considered [5] and might
have affected the consequences of some of the near miss scenar-
ios. It should be also indicated that performing a similar analysis
using the traditional ET/FT would have been extremely challen-
ging since some of the crew actions depend on the event history
(e.g., repair of the second tower cannot start before the repair of
the first tower is completed). Capability to model such history
dependencies was one of the needs that led to the development of
dynamic PRA methodologies.
5. Conclusion

In this paper, we proposed a methodology based on PCA and
MSM for clustering of the data that may be generated by a DET
analysis. The methodology was illustrated using a dataset gener-
ated by ADAPT for a simple level controller and an aircraft crash
recovery of a conceptual design for a sodium-cooled fast reactor.
ADAPT has been linked to RELAP5 to simulate the temporal
behavior of the accident transient for the aircraft crash recovery
scenarios.

The results show the methodology presented is able to
simplify the analysis of large sets of transients generated by
dynamic PRA methods. It is shown that grouping scenarios into
clusters can be helpful to identify trends and evaluate their
characteristics. Such a grouping will be also valuable to identify
differences between DET datasets generated for different system
configurations.

As a final remark, the application for methodology presented
in this paper is not only relevant for the post-processing of data-
set generated by dynamic methodologies. In fact, any time a large
dataset of multi-dimensional functions (e.g., flux profiles) need to
be analyzed, the user may find in the MSM a valuable tool for the
analysis.



Fig. 19. Cluster centers (black lines) and associated scenarios (red lines) for each cluster. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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Fig. 20. Distribution of crew arrival time (red) and the recovery time of tower 1 (blue), 2 (green) and 3 (magenta). (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)
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