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ABSTRACT  

The use of dynamic event trees (DETs) can serve as a powerful tool for the dynamic probabilistic 

risk assessment (DPRA) of nuclear power plants. The DETs have the capability to more accurately 

model the complex interactions and events which may occur during a transient. One of the 

challenges of DPRA through DETs is the management of the resulting very large data sets. Hence, 

the need for a methodology able to handle high volumes of data in terms of both cardinality (due 

to the high number of uncertainties included in the analysis) and dimensionality (due to the 

complexity of systems) arises. Hierarchical and partitional clustering methodologies are compared 

and evaluated with regard to their potential to analyze large scenario datasets generated by DETs 

using several different data sets.  
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1  INTRODUCTION 

The Event Tree (ET)/Fault Tree (FT) approach [1] is the traditional tool for probabilistic 

safety/risk assessment (PSA/PRA) not only for nuclear systems but also for the aerospace, 

chemical and transportation industries. However, several concerns have been raised about the 

capability of the ET/FT approach to treat the coupling between the plant physical processes and 

triggered or stochastic logical events [2] which can have significant impacts on the consequences 

of upset conditions and their frequencies. Another concern is the contribution of epistemic 

uncertainties to the ordering of events and consequences of upset conditions. As discussed in [3], 

a safety methodology has to be able to: 

 Model the dynamics of the system and, hence, needs to be coupled with system or plant 

simulators 

 Model the exact time scale of the accident 

 Model the change of hardware component states 

 Model human interaction with the system dynamics 

 Handle epistemic and aleatory uncertainties 

Dynamic PSA/PRA methodologies [3] respond to these needs by using advanced system 

simulators to identify the timing of events and to account for the coupling between triggered 

and/or stochastic events. 
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A challenging aspect of dynamic methodologies, such as the DET methodology [4], is the 

large number of scenarios generated for a single initiating event. Such large amounts of 

information can be difficult to organize for tractable analysis. In particular, as part of the 

PSA/PRA framework, it is important to identify the main scenario evolutions and the main risk 

contributors for each initiating event. In this work, we want to address this problem of data 

analysis by grouping the scenarios into clusters and analyzing the properties of the scenarios of 

each cluster. 

By scenario clustering we mean two actions: 

1. Identify the scenarios that have a “similar” behavior (i.e. identify the most evident classes) 

2. Decide for each scenario which class it belongs to (i.e., classification) 

When dealing with nuclear transients, it is possible to analyze the set of scenarios in two 

possible modes: 

 End State Analysis: Classify the scenarios into clusters based on the end state of the scenarios 

 Transient Analysis: Classify the scenarios into clusters based on the time evolution of the 

scenarios 

While the first mode has been widely used in the traditional ET/FT analysis, the second one 

is only starting to be considered in the recent years. The volume of data is not the only the only 

challenge we need to deal with. We also want to accomplish the following: 

 Discover clusters with arbitrary shapes 

 Deal with noise and outliers 

 Achieve interpretability and usability 

2 CLUSTERING: AN OVERVIEW 

From a mathematical viewpoint, the concept of clustering [5] considered here is to find a 

partition C={C1, … , CK} of the data set X ={x1, …, xj, … , xN} where each data point xj can be 

represented as a d-dimensional vector xj = (xj1, xj2, … ,  xjd) where each xji is said to be a feature 

(attribute, dimension or variable). A partition C of X is such that: 

 
            

 
      

   

       (1) 

A loose definition of clustering is the process of organizing objects into groups whose 

members are, in some way, similar. A cluster is therefore a collection of objects which are 

“similar” to each other and are “dissimilar” to the objects belonging to other clusters according 

to a specific distance
1
 [6]. 

As shown in Fig. 1, the main division between clustering methodologies can be made by 

partitioning them in two classes: 

                                                 
1
 In [6] it is possible to find several types of distances. In this article we will focus on the Euclidean distance, i.e., in 

a d-dimensional space, the distance between two data points x=(x1,…,xi,…, xd) and y=(y1,…,yi,…, yd) is: 
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 Hierarchical [5] 

 Partitional [5] 

Hierarchical algorithms organize data into a hierarchical structure accordingly to a proximity 

matrix in which an entry (j, k) is some measure of the similarity (or distance) between the items 

to which row j and column k corresponds. Usually, the final result of these algorithms is a binary 

tree, also called dendrogram (see Section 5), in which the root of the tree represents the whole 

data set and each leaf is a data point.  

 

 

Figure 1 - Taxonomy of clustering methodologies [7]. 

 

Partitional clustering seeks for a single partition of the data sets instead of nested sequence of 

partitions obtained by hierarchical methodologies. Under this category it is possible to classify 

methodologies under five main sub-categories [7]: 

 Squared Error assigns each point to the cluster whose center (also called centroid) is nearest. 

The center is the average of all the points in the cluster, that is, its coordinates are the 

arithmetic mean for each dimension separately over all the points in the cluster. The most 

famous and used methodology is the K-Means algorithm [7]. 

 Mode Estimation is based on the assumption that the distribution of the points in the state 

space can be described through a probability density function (pdf). The goal is to find the 

modes, i.e. the regions in the state space with higher data densities. An example of this kind 

of methodology is the Mean-Shift methodology [8]. 

 Graph Theory based methodologies aim to build a graph of the data set often called Minimal 

Spanning Tree. Clusters are determined by deleting the longest edges of the graph. 

Conceptually this approach is very similar to the hierarchical one. 

 Fuzzy clustering assigns, each point a degree of belonging to clusters, as in fuzzy logic, 

rather than belonging completely to just one cluster. Thus, points on the edge of a cluster may 

be in the cluster to a lesser degree than points in the center of cluster. For each point x we 

have a coefficient uk(x) giving the degree of being in the k
th

 cluster. 

 Neural Network methodologies are essentially inspired by the biological neural network. The 

learning process associated with the training of an artificial neural network (ANN) allows to 
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associate patterns (input variables) to clusters (output nodes) through a series of weights that 

are updated at each iteration. 

3 CLUSTERING METHODOLOGIES 

In this section we, provide an overview of describe four clustering methodologies. 

3.1 Hierarchical Algorithm 

Hierarchical algorithms [7] organize the data set into a hierarchical structure according to a 

proximity matrix. Each element d(i, j) of this matrix contains the distance between the i
th

 and the 

j
th

 cluster center. The final result of this technique is a dendrogram. This kind of representation 

has the advantages of providing a very informative description and visualization of the data 

structure even for high values of dimensionality. 

The procedure to determine the dendrogram for a data set of n points in a d-dimensional 

space is the following: 

1. Start the analysis with a set of n clusters (i.e., each point is considered as a cluster). 

2. Determine the proximity matrix M (dimension: n × n): M(i, j) = d(xi,  xj) where xi and  xj are 

the position of the i
th

 and the j
th

 cluster. 

3. For each point p find the closest neighbor q from the proximity matrix M 

4. Combine the points p and q 

5. Repeat steps 2, 3 and 4 until all the points of the data set are in the same cluster 

 

The advantage of this kind of algorithm is the nice visualization of the results that show the 

underlying structure of the data set. However, the computational complexity for most of the 

hierarchical algorithm is of the order of (n
2
) (where n is the number of points in the data set). 

3.2 K-Means Algorithm 

As mentioned in the last section K-Means clustering algorithms [7] belong to the more 

general family of Squared Error algorithms. The goal is to partition n data points xi into K 

clusters in which each data point maps to the cluster with the nearest mean. The stopping 

criterion is to find the global minimum of the error squared function   defined as: 

           
 

     
 
         (2) 

where μi is the centroid of the i
th

 cluster. 

The procedure to determine the centroids μi of K clusters (C1, … , CK) is the following: 

1. Start with a set of K random centroids distributed in the state space, 

2. Assign each pattern to the closest centroid, 

3. Determine the new K centroids accordingly to the point-centroid membership: 

μ
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where Ni corresponds to the number of data points in the i
th

 cluster, 

4. Repeat 2 and 3 until convergence is met (i.e., until a minima of the function   is reached). 

 

The K-Means algorithm is one of the most popular and widely used algorithms due in part to 

the fact that is very easy to implement and the computational time is directly proportional to the 

cardinality of data points. The main disadvantage is that the algorithm is sensitive to the choice 

of the initial partition and may converge to a local minimum of the error squared function. In 

addition, the number of clusters should be known ahead of time. 

3.3 Fuzzy C-Means Algorithm 

Fuzzy C-Means clustering [7] is a clustering methodology that is based on fuzzy sets and, 

hence, it allows a data point to belong to more than one cluster. Similar to the K-Means 

clustering, the objective is to find a partition of C fuzzy centers to minimize the function J 

defined as following: 

        
        

  
   

 
         (3) 

where: 

 U = [uij] is the fuzzy partition matrix, 

 each element uij ∈ [0, 1] of U is the membership coefficient of the j
th

 data point for the i
th

 

cluster, 

 m ∈ [0, ∞) is the fuzzification parameter (usually set to m = 2), 

 μj is the centroid of the j
th

 cluster center. 

The procedure to determine the centroids μj (i=1, …, K) of C clusters is the following: 

1. Initialize the U = [uij] matrix, 

2. Calculate the set of C centroids { μ1 , … , μK} as following: 

μ
 
 

     
   

 
   

     
  

   

 

3. Update the matrix U = [uij] as following: 

    
  

 

  
     
     

 

 
    

   

 

4. Repeat 2 and 3 until convergence is met (i.e., until a minima of the function J is reached). 

 

It is very easy to see that the Fuzzy C-Means clustering is very similar to the K-Means one. 

As for the K-Means, Fuzzy C-Means can also converge to a local minimum. Fuzzy C-Means 

algorithms can be useful when the boundaries among clusters are not well separated and 

ambiguous. 
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3.4 Mean-Shift algorithm 

The main idea behind the Mean-Shift algorithm [8] is to consider each point xi (i =1, …, N) 

of the data set as an empirical distribution density function K(xi) distributed in a d-dimensional 

space (blue line in Fig. 2 for the 1-D case) where regions with high data density (i.e., modes) 

corresponds to local maxima of the global probability density function fN(x) [8] defined as 

following (red line in Fig. 2 for the 1-D case): 

      
 

    
   

    

 
  

         (4) 

where each element xi ∈ ℝd
 and h is a scalar parameter called bandwidth which indicates the 

level of refinement of the cluster analysis. The function K(x): ℝd↦ℝ 
is the distribution density 

associated to each data point which is also called the kernel. 

1. Starting from a data point x data search all points xi within bandwidth radius and determine 

the average data point x as following: 

 

  
      

    
 

  
   

    
    

 
  

   

 

2. Move from x to x and repeat 1  

3. Repeat 1 and 2 until convergence is met:  

 

                  

where x
(r) 

indicates x at iteration r 

4. Repeat 1 through 4 for each data point 

 

 

 
Figure 2 - Density function (red line) for points distributed in a 1-dimensional space  

modeled using kernels (blue lines) 

 

The advantage of this class of algorithms is that they are able to identify clusters with 

arbitrary shapes and, hence, they are not limited to topological figures such as spheres or 

ellipsoids. Moreover, compared to K-Means (see Section 3.2) and Fuzzy C-Means (see Section 

3.3) the number of clusters is not specified a-priori by the user but it is the algorithm that 
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determines this number based on the areas with higher point concentration using the value of the 

bandwidth, h, chosen. 

4 DATA SETS 

In order to compare the four methodologies listed above we selected three different data sets 

as described in Figs. 3, 4 and 5: 

1. A set of 300 points grouped in 3 spherical clusters (see Fig. 3a), 

2. A set of 200 points distributed in 2 rings (see Fig. 3b), 

3. A set of scenarios described in [9] (see Fig. 4). 

We choose the first data set as applicative examples of data sets having different cluster 

geometries. The scope is to evaluate performances of the four algorithms for different cluster 

geometries.  

 

                                                     (a)                                                                               (b) 

Figure 3 – Representation of the Dataset 1 (a) and 2 (b) 

 

The last data set considers scenarios that have been generated for the analysis of a 

pressurized water reactor. The initiating event investigated was that of a station blackout (SBO) 

and the MELCOR code [10] was linked to the ADAPT tool [4] to determine the evolution of 

each DET scenario. The simulations using MELCOR model the transient from the occurrence of 

the SBO through the core melting phase and up to point of containment failure and release of 

radionuclides to the environment. All the 104 scenarios generated in this DET led to containment 

failure at some point in the scenario evolution. For the purposes of this paper, we choose 4 state 

variables of interests (see Fig. 4): 

1. Core water level [m]: L, 

2. System Pressure [Pa]: P, 

3. Intact core fraction [%]: CF, 

4. Fuel Temperature [K]: T. 
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We sampled each state variable 100 times, which gave us an accurate description of all the 

104 transients. We chose to represent each scenario xi as a multidimensional vector:  

                                                                (5) 

 

  

  

Figure 4 – Representation of the Dataset 3 [9] 

5 COMPARISON OF CLUSTERING METHODOLOGIES 

In order to compare the results for the methodologies presented in Section 3, for Datasets 1 

and 2, we will compare the cluster centers obtained from the each methodology with the original 

ones.  

Tables 1 and 2 show the comparison of the cluster centers for K-Means, Fuzzy C-Means and 

Mean-Shift using the Datasets 1 and 2 described in Section 4. For the Dataset 1 it is possible to 

note a general agreement between the three methodologies (Table 1). However, Table 2 shows 

major disagreements for the K-Means and the Fuzzy C-Means methodologies. The reason of 

these discrepancies for the 2 methodologies is due to the fact that the shape of the two clusters is 

not spherical or ellipsoidal and, hence, both the K-Means and the Fuzzy C-means algorithms 

have problems to find 2 clusters with a more complex shapes such as the two rings pictured in 

Fig.3b.   
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Table 1 Cluster centers comparison for Dataset 1 

Original  K-Means Fuzzy C-Means Mean-Shift 

(0,0,0) (-0.0173,0.0177, -0.0335) (-0.019,0.0033,-0.0311) (-0.012, 0.0055,-0.0358) 

(6,0,0) (5.9510,-0.0008,-0.0599) (6.381,0.128,-0.201) (6.163,0.075,-0.0432) 

(3,6,6) (2.974,6.01,6.118) (2.51,5.4878,5.98) (3.02,5.893,6.011) 

 

Table 2 Cluster centers comparison for Dataset 2 (differences are highlighted in bold) 

Original  K-Means Fuzzy C-Means Mean-Shift 

(0,0,0) (0.142,3.632,1.01) (-0.737,3.866,0.422) (0.101, -0.0732,0.127) 

(0,5,0) (0.573,15.59,-0.311) (0.246,15.4894,-0.342) (0.121,5.182,-0.095) 

 

We also performed the hierarchical clustering for both Datasets 1 and 2. Fig. 5 shows the 

dendrogram Dataset 1 where it is possible to identify the 3 clusters and the hierarchical structure 

based on the reciprocal distance of the points. Regarding the Dataset 2, the algorithm was not 

able to identify the two clusters for the same reason presented for K-Means and Fuzzy C-Means. 

 

 

Figure 5 - Dendrogram derived from the Hierarchical clustering algorithm for Dataset 1. 

 

For the Dataset 3 we do not have the exact solution and hence we chose one methodology as 

a comparison reference using the scenarios shown in Fig. 4. Mean-Shift methodology has proven 

to be more flexible in terms of identifying clusters with arbitrary shapes and, thus, we decided to 

use the cluster centers obtained from Mean-Shift as a reference. We performed the clustering 

using Mean-Shift with value of bandwidth equal to 20 and we obtained 8 cluster centers pictured 

in Fig. 6.  

We then performed the clustering of the third dataset using K-Means and Fuzzy C-Means 

using the number of clusters (i.e., 8) obtained with the Mean-Shift as input. Results are shown in 

Fig. 7 and 8 for K-Means and Fuzzy C-Means, respectively. When we compared the cluster 

centers, we discovered that 5 out of 8 clusters had notable differences in terms of both cluster 

centers (pictured in Fig. 7 and 8) and scenario memberships. From the comparison of the results 

shown for the Datasets 1 and 2, we believe that the 8 clusters obtained using the Mean-Shift 

methodology have geometrical shapes that cannot be modeled using K-Means and Fuzzy C-
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Means. However, all the three methodologies were able to identify outliers which are scenarios 

that belong to clusters having only very few elements. 

 

  

  

Figure 6 - Cluster centers obtained using Mean-Shift for Dataset 3 

 

6 CONCLUSIONS  

The major challenges in using dynamic PRA/PSA methodologies are the heavier 

computational and memory requirements compared to the classical ET analysis. Large volumes 

of data are generated and, hence, a large quantity of valuable information needs to be analyzed. 

Data clustering techniques that have been developed in the last decades offer tools to analyze and 

summarize large data sets. In this paper we described four different clustering methodologies: 

Hierarchical, K-Means, Fuzzy C-Means and Mean-Shift and we compared them using three 

different data sets.  

Hierarchical clustering has the advantage that it is able to show the distribution of the data 

points through a dendrogram. This is useful when the dimensionality of the data points is greater 

than 3 and hence, it is not easy to graphically visualize the data set distribution. However, this 

ability is lost when the data points are distributed in cluster having complex geometries. K-

Means and Fuzzy C-Means methodologies have the same disadvantage since they are able to 
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identify mainly spherical or ellipsoidal cluster of points. However, we found that Mean-Shift 

algorithm is able to overcome this limitation. All methodologies were able to identify outliers. 

 

  

  

Figure 7 - Cluster Centers obtained using K-Means for Dataset 3 
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Figure 8 - Cluster centers obtained using Fuzzy C-Means for Dataset 3 


