
INL/EXT-21-63255

Light Water Reactor Sustainability
Program

Development and Release of
the Methods and Tools
for Risk-Informed Asset Management

July 2021

U.S. Department of Energy

Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an agency of
the U.S. Government. Neither the U.S. Government nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness,
of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. References herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, do not necessarily constitute or imply its endorsement,
recommendation, or favoring by the U.S. Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

1

INL/EXT-21-63255

Development and Release of the Methods and Tools
for Risk-Informed Asset Management

C. Wang, D. Mandelli, M. Abdo, A. Alfonsi, J. Cogliati, P. Talbot,
S. Lawrence, C. Smith (INL)

D. Morton (Northwestern University)
I. Popova (Texas State University)

S. Hess (Jensen Hughes)
C. Pope, J. Miller, S. Ercanbrack (Idaho State University)

July 2021

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

2

3

EXECUTIVE SUMMARY

Under the Risk-Informed Systems Analysis Pathway, the Risk-Informed Asset

Management (RIAM) project has been tasked with the development of effective and

efficient analytical methods and tools to support risk-informed decisions related to plant

equipment reliability and asset management programs. Under the term asset, we include

not only structures, systems, and components (SSCs) and plant budget but also

personnel and time. In addition, management is looked at in a broad sense, which ranges

from the evaluation of future scenarios (i.e., what-if analysis) to the search for optimal

plant conditions. Thus, plant resources management is translated here as the analysis

and optimization of SSC lifecycle (e.g., SSC maintenance or replacement schedule),

personnel job schedule (e.g., maintenance task scheduling), and maintenance/capital

funds allocation (e.g., project prioritization). This is done in a risk-informed context

where risk is broadly defined to include plant safety, operational reliability, and

economics. The final outcome of the RIAM project is the development and release of a

set of computational tools that can be deployed in the nuclear industry to support

management of plant resources both over the short term and throughout the remainder

of the facility lifecycle (including periods of license extension). While the development

of these tools has been reported during FY-19 and FY-20 reports, this report presents

the actual release of these tools for use by operating nuclear power plants. The RIAM

toolkit consists of several tools that are designed for specific use cases ranging from

reliability modeling to economic analysis. In this document, these tools are described

in detail. For each of them, we present their designed use cases, their main

functionalities, and lastly their development in terms of software quality assurance.

4

CONTENTS

EXECUTIVE SUMMARY ..3	
ACRONYMS ...7	
1. INTRODUCTION ...8	
2. RISK ANALYTICS TOOLKIT ..10	
3. LOGOS ..12	
4. SR

2
ML ...15	

5. RAVEN ...18	
6. VERT ...20	
7. TEAL ...23	
8. SOFTWARE QUALITY ASSURANCE PRACTICES ..23	

8.1	 SQA Documentation ...24	
8.2	 Configuration Control Process ..27	
8.3	 Version Control and Accessibility ..29	
8.4	 Regression Testing ..30	
8.5	 Issue and Pull Request ..33	

9. CONCLUSIONS ...34	
REFERENCES ...34	
APPENDIX A – SR

2
ML USER MANUAL ..36	

APPENDIX B – LOGOS USER MANUAL ...105	
APPENDIX C – VERT USER MANUAL ..194	

5

	
FIGURES

Figure 1. Graphical representation of the enterprise risk analysis framework from data to

decisions. .. 8

Figure 2. Example of a workflow that integrates economic and reliability models to obtain an

optimal solution (e.g., optimal component replacement schedule). ... 9

Figure 3 RIAM risk analytics toolkit. Elements in yellow were developed within the RIAM

project while the development of the elements in red was shared among other DOE

programs. .. 11

Figure 4. Screenshot of the LOGOS GitHub repository (https://github.com/idaholab/LOGOS). 12

Figure 5. Folder tree of the LOGOS repository. ... 13

Figure 6. Screenshot of the SR
2
ML GitHub repository (https://github.com/idaholab/SR2ML). 16

Figure 7. Folder tree of the SR
2
ML repository. .. 17

Figure 8. Graphical representation of RAVEN computational capabilities. ... 18

Figure 9. Screenshot of the VERT GitLab repository (https://hpcgitlab.inl.gov/mandd/vert). 20

Figure 10. GRA role in power plant asset management. .. 21

Figure 11. Folder tree of the VERT repository. .. 21

Figure 12. VERT conceptual schematic. .. 22

Figure 13. VERT risk methodology diagram. ... 22

Figure 14. Dashboard of required documentation for SR
2
ML. ... 26

Figure 15. Dashboard of required documentation for LOGOS. ... 27

Figure 16. RAVEN and RAVEN plug-ins configuration control process (1
st
 stage). 28

Figure 17. RAVEN and RAVEN plug-ins configuration control process (2
nd

 stage). 29

Figure 18. Regression testing process managed by CIVET (SR
2
ML example). .. 32

Figure 19. Issue template for RIAM tool feature request. .. 33

Figure 20. Pull request template for RIAM tool. .. 34

	
	
	 	

6

TABLES

Table 1. Summary of the element composing the RIAM risk analytics platform. 11

Table 2. Summary of LOGOS architecture. ... 14

Table 3. List of LOGOS models and methods and their corresponding use case. 14

Table 4. List of SR
2
ML models and methods and their corresponding use case. 17

Table 5. Summary of SR
2
ML architecture. ... 18

Table 6. List of RAVEN models and methods and their corresponding use case. 19

Table 7. Summary of RAVEN architecture. ... 20

Table 8. List of VERT models and methods and their corresponding use case. .. 22

Table 9. Summary of VERT architecture. .. 23

Table 10. List of TEAL models and methods and their corresponding use case. 23

Table 11. Summary of TEAL architecture. ... 23

Table 12. RIAM tools supplementary documents. ... 25

Table 13. LOGOS requirement tests. .. 30

Table 14. SR
2
ML requirement tests. ... 32

7

ACRONYMS

AM Asset Management

BWR Boiling Water Reactor

CIVET Continuous Integration, Verification, Enhancement, and Testing

DOE (United States) Department of Energy

ER Equipment Reliability

GRA Generation Risk Assessment

INL Idaho National Laboratory

INPO Institute of Nuclear Power Operation

IRR Internal Rate of Return

LWR Light Water Reactor

LWRS Light Water Reactor Sustainability

MSPI Mitigating Systems Performance Index

NEUP Nuclear Energy University Program

NPP Nuclear Power Plant

NPV Net Present Value

NRC (United States) Nuclear Regulatory Commission

PI Profitability Index

PRA Probabilistic Risk Assessment

PWR Pressurized Water Reactor

RAVEN Risk Analysis Virtual ENvironment

RIAM Risk-Informed Asset Management

RISA Risk-Informed Systems Analysis

RTM Requirements Traceability Matrix

SQA Software Quality Assurance

SR
2
ML Safety, Risk, Reliability Model Library

SSCs Structures, Systems, And Components

TEAL Tool for Economic AnaLysis

VERT Versatile Economic Risk Tool

8

1. INTRODUCTION
Industry equipment reliability (ER) and asset management (AM) programs are essential elements that

help ensure the safe and economical operation of nuclear power plants (NPPs). The effectiveness of these

programs is addressed in several industry developed and regulatory programs. For example, all U.S. NPPs

have implemented the ER process defined in INPO AP-913 “Equipment Reliability Process Description”

[1]. Additionally, the performance of plant structures, systems, and components (SSCs) is monitored within

a regulatory context in the Maintenance Rule 10 CFR 50.65 [2] and the Mitigating Systems Performance

Index programs (MSPI) [3]. However, these programs have proven to be labor intensive and expensive.

There is an opportunity to significantly enhance the collection, analysis, and use of this information to

provide more cost-effective plant operation while not impacting plant operation or safety. Additionally, due

to the combination of technological advancements made over the past several decades and cost pressures

being experienced by the operating fleet of NPPs, there exists an acute industry need to leverage this

advanced technology to reduce costs and improve operational effectiveness.

The goal of the Risk-Informed Systems Analysis
1
 (RISA) [4] pathway under the Light Water Reactor

Sustainability (LWRS) [5] program
2
 is to provide effective and efficient analytical methods and tools to

support risk-informed decisions for the ER and AM programs at NPPs. This is accomplished by creating a

direct bridge, see Figure 1, between component health and lifecycle data and decision-making (e.g.,

maintenance scheduling, project prioritization and actuation planning). This framework supports decisions

of a NPP system engineer regarding maintenance activity scheduling and component aging management.

This is performed in a risk-informed context, where risk broadly includes both plant safety, operational

reliability, and economics. The vision is to reduce plant operation and maintenance costs by automating

this decision process, by evaluating the reliability and economic impact of different maintenance strategies

(i.e., evaluate what-if scenarios), and by identifying the optimal maintenance posture that maximizes system

reliability and minimizes operational costs (i.e., maximize the maintenance value given resource

constraints).

Figure 1. Graphical representation of the enterprise risk analysis framework from data to
decisions.

	

1 https://lwrs.inl.gov/SitePages/Risk-Informed%20Systems%20Analysis.aspx
2 https://lwrs.inl.gov/SitePages/Home.aspx

9

	
The outcome of this project is an enterprise risk analysis framework, which can be deployed across the

nuclear industry. This framework combines data analytics tools to analyze ER data with risk-informed

methods designed to support system engineer decisions (e.g., maintenance and replacement schedules,

optimal maintenance posture for plant systems) in a customizable workflow. A challenge is that the

structure of this workflow strongly depends on the decision that needs to be made, the type of data available,

and the constraints that need to be considered. Current methods are designed to provide specific answers to

specific problems; however, these methods might prove to be inadequate when problem settings even

slightly change (e.g., different types of constraints, additional dependencies between system reliability and

economics). This project tackled this challenge by designing the framework in a flexible and modular

fashion such that the user can assemble and customize their own workflow that integrates SSC economic

lifecycle models (e.g., maintenance and replacement costs), system reliability models, and optimization

methods (see Figure 2).

Figure 2. Example of a workflow that integrates economic and reliability models to obtain an
optimal solution (e.g., optimal component replacement schedule).

	
In January 2021, the first step toward the development of this framework was taken when two software

packages, which are an integral part of the enterprise risk analysis framework, were released with an open-

source license: (1) LOGOS and (2) Safety, Risk, Reliability Model Library (SR
2
ML). SR

2
ML is a software

package that contains a set of reliability models designed to integrate ER data (e.g., aging, testing,

maintenance) and perform system level reliability calculations. LOGOS is a software package that contains

a set of discrete optimization algorithms that can be employed to effectively manage plant assets and

optimize schedules for plant operations. These software packages are plug-ins that can interface with the

Idaho National Laboratory (INL) developed Risk Analysis and Virtual ENvironment (RAVEN) code to

propagate data uncertainties (e.g., component remaining useful life) and perform data analysis and model

optimization (e.g., via genetic algorithm heuristics). In this respect, SR
2
ML is designed to propagate ER

knowledge to the system and plant level in order to identify and evaluate the components that are most

critical to the system and plant health. LOGOS uses this information to prioritize and schedule plant

operations (e.g., maintenance, testing, replacement) based on budget, reliability, and resource constraints.

In this report, the software elements that are part of the enterprise risk analysis framework are described

in detail regarding their designed use cases, their main functionalities, and lastly their development in terms

of software quality assurance. The report focuses on LOGOS and SR
2
ML and their interactions with

RAVEN. In addition, two other tools that have been developed to support economic analyses related to

system and plant health related to ER are described: the Tool for Economic AnaLysis (TEAL) and the

10

Versatile Economic Risk Tool (VERT). TEAL contains models to perform economic analyses, while VERT

contains plant generation risk assessment (GRA) models for pressurized-water reactors (PWRs) and

boiling-water reactors (BWRs).

This report has been structured to provide an initial overview of these tools as part of the risk analytics

toolkit in Section 2 by identifying their target application and their use cases. Sections 3 through 7 describe

each tool in more detail. The report provides information about the structure of the repository of each tool,

the set of available models and methods, their associated use cases, and the provided documentation. Lastly,

Section 8 provides a detailed summary about the software quality assurance (SQA) process that was

followed and the software development procedure.

While the release of RAVEN and TEAL has been documented in other Department of Energy (DOE)

reports (see [6] and [7]), this report provides also the user manuals of LOGOS, SR
2
ML, and VERT for

completeness in the three appendixes (i.e., APPENDIX A – SR
2
ML USER MANUAL, APPENDIX B –

LOGOS USER MANUAL, and APPENDIX C – VERT USER MANUAL).

The specific application of these tools are described in detail in previous LWRS reports

[8],[9],[10],[11].

2. RISK ANALYTICS TOOLKIT
As mentioned in Section 1, the RIAM risk analytics toolkit is composed by several software elements,

with each of them designed for a specific and well-defined application. Figure 3 shows the composition of

the RIAM risk analytics toolkit by employing a tree structure.

The development of LOGOS, SR
2
ML, and VERT has been performed mainly under the RISA-RIAM

project, while the development of RAVEN and TEAL has been shared among other LWRS projects (e.g.,

Plant Fuel Reload Optimization project) and several other DOE projects (e.g., the Integrated Energy

Systems
3
 [12], and Nuclear Energy University Program (NEUP) research projects [13]). Figure 3 also

indicates a target application for each software element.

Table 1 expands Figure 3 by providing a more detailed overview of each software package in terms of

designed application and the set of targeted use cases. The main rationale behind the development of several

tools rather than one is the simplified tool development process (e.g., smaller burden on regression testing),

the easier management of tool software architecture (e.g., definition of model dependencies), the easier

integration with other DOE projects, and the ability for operating NPPs to choose the relevant tool (or

combination of tools) that best support the needs of a particular plant application.

An important note to highlight is that these software tools are categorized and constructed as RAVEN

plug-ins. This architecture guarantees the possibility to combine elements of different tools together to

perform complex analyses when desired. As we have indicated also in [10] and [11], the analysis that needs

to be performed might require either a single software element (i.e., standalone configuration), or a

combination of multiple software elements. An example of analysis based on a standalone configuration is

the selection of the optimal set of projects out of a pool of candidate projects that maximize overall value

(i.e., the net present value [NPV]) to support investment decision-making at the plant or fleet level. In the

simple case where projects are independent and good estimates of project costs and benefits are available,

the knapsack model in LOGOS could be directly employed (see [9]). In this case, the user provides

estimates of the NPV of each project and evaluates the outcomes provided by LOGOS to provide

information to executive decision-makers. However, for more complex situations, the NPV of a project

3 https://ies.inl.gov/SitePages/Home.aspx

11

might not be directly available at hand (e.g., due to dependencies with other projects or decisions) but needs

to be computed at each iteration through the evaluation and decision-making process. This type of problem

could be solved by employing the economic models in TEAL, which can be directly linked to the knapsack

model in LOGOS by employing the RAVEN ensemble model capability.

Figure 3 RIAM risk analytics toolkit. Elements in yellow were developed within the RIAM project
while the development of the elements in red was shared among other DOE programs.

Table 1. Summary of the element composing the RIAM risk analytics platform.

Name Application Use Cases

LOGOS
Plant resource

optimization

Project prioritization

Project scheduling

Task scheduling

SR
2
ML Reliability modeling

Component reliability models

Margin-based solver

ER data analysis methods

RAVEN

Data analysis

computational

framework

Model optimization

Uncertainty propagation

Data analysis

Linking models

TEAL Economic analysis Economic cashflow models

VERT Plant models

Light water reactor (LWR) GRA models

LWR probabilistic risk assessment (PRA)

models

12

Sections 3 through 7 provide more details of each software element of the RIAM risk analytics toolkit.

In particular, the focus is on the repository structure, contained computational elements, provided

documentation, and software license.

3. LOGOS
LOGOS (see Figure 4) contains a set of discrete optimization models that can be employed for plant

resource optimization problems [16]. LOGOS integrates economic and reliability risks into a single analysis

framework. More specifically, provided SSC health information (e.g., failure rate or failure probability),

operation and maintenance costs, replacement costs, other costs associated with component failure, and

plant budget constraints, LOGOS determines the optimal set of projects (e.g., SSC replacement or

refurbishment) that maximizes profit and satisfies the provided requirements/constraints.

Figure 4. Screenshot of the LOGOS GitHub repository (https://github.com/idaholab/LOGOS).

13

The input data listed above can be either deterministic or stochastic in nature (i.e., they can be point

forecasts or probability distribution functions). In the latter case, several scenarios are generated by

sampling the provided distributions. The developed models are based on enhanced versions of the knapsack

optimization problem. The basic knapsack optimization problem for capital budgeting can be defined as

follows: given is an instance of a capital budgeting problem with an investment set !, which consists of "

investments # with profit $!, and cost %!, and the available budget &. The objective is to select a subset of

! such that the total profit of the selected investments is maximized and the total cost does not exceed &.

More details on the formulation of the knapsack problem are provided in reference [11].

The two primary application classes are: capital budgeting optimization and task schedule optimization.

The goal for the capital budgeting is to determine the optimal set of projects (i.e., project prioritization) and

their schedule that maximize overall profit. The goal for the task scheduler is to determine the optimal

project schedule that minimizes the overall completion time.

The developed plant models can be either deterministic or stochastic. Deterministic models are simpler

since they require point value data associated to constraints such as project costs and rewards. Stochastic

optimization models extend deterministic models by explicitly considering data uncertainties. These

formulations can be employed as standalone models or interfaced with the INL-developed RAVEN code

to propagate data uncertainties and analyze generated data (i.e., sensitivity analysis and uncertainty

quantification).

The internal structure of LOGOS is represented in Figure 5, which highlights the location of the source

code, provided documentation, and set of regression tests. Table 2 provides a basic summary of the LOGOS

repository in terms of development language, license, and GitHub repository. LOGOS heavily relies on the

PYOMO library (http://www.pyomo.org/) developed by Sandia National Laboratories and University of

California, Davis. The PYOMO library provides a large set of optimization models and solver engines in

Python. Table 2 also lists the number of regression tests that are currently used to monitor new

developments and source code changes and updates.

Figure 5. Folder tree of the LOGOS repository.

14

Table 2. Summary of LOGOS architecture.

Development language Python

Dependencies
PYOMO

4
 [14],GLPK

5
 and

CoinCBC
6

Repository site https://github.com/idaholab/logos

License Apache-2

Number of regression tests 60

Supported operating system macOS, Linux, Windows

Table 3 provides a more detailed overview of the actual methods and models contained in LOGOS.

The first two listed in Table 3 are designed to be used in a model-based optimization setting (see Figure 2)

where the user specifies the architecture of the overall system model, which might include economic (e.g.,

from TEAL), reliability (e.g., from SR
2
ML), and LOGOS sub-models (e.g., project scheduling model).

Then, the user would link models together using the RAVEN ensemble model capability and perform model

optimization on the integrated model using optimization engines (e.g., genetic algorithms) available in

RAVEN.

The rest of the methods and models listed in Table 3 are designed to mainly be used in a standalone

configuration to perform data-based optimization-type analyses. If desired, these models and methods can

be linked to RAVEN to propagate data uncertainties (see [9]).

Table 3. List of LOGOS models and methods and their corresponding use case.

Model/Method Class Use Case

Simple and multiple knapsack

model

Model-based project prioritization, selection,

and scheduling

Scheduling model Model-based tasks scheduling

Simple and multiple knapsack

optimization model

Data-based project prioritization, selection,

and scheduling using PYOMO

Distributionally robust simple

and multiple knapsack

optimization model

Data-based project prioritization, selection,

and scheduling using distributionally robust

formalism using PYOMO

Risk-based simple and multiple

knapsack optimization model

Data-based project prioritization, selection,

and scheduling using conditional value-at-risk

formalism using PYOMO

	

4 http://www.pyomo.org/
5 https://www.gnu.org/software/glpk/
6 https://projects.coin-or.org/Cbc

15

4. SR2ML
The SR

2
ML (see Figure 6) is a software package that contains a set of reliability models designed to

interface with RAVEN. These models can be employed to perform both static and dynamic system risk

analysis and determine the risk importance of specific elements of the considered system. Two classes of

reliability models are included:

• The first class includes all classical reliability models (fault trees, event trees, Markov models, and

reliability block diagrams), which have been extended to deal not only with Boolean logic values

but also time-dependent values. These models have been designed to mainly perform simulation-

based reliability analyses where time needs to be explicitly considered.

• The second class includes several reliability models designed to incorporate the effect of

component aging and maintenance on component unavailability. These models have been designed

to support decision-making regarding maintenance posture at the plant and system level (e.g.,

optimal maintenance operations that best balance cost and reliability).

Models included in these two classes are designed to be included in a RAVEN ensemble model to

perform time-dependent system reliability analysis (e.g., dynamic analysis). Similarly, these models can be

interfaced with system analysis codes within RAVEN to determine the failure time of systems and evaluate

accident progression (static analysis).

The reliability analyses that can be performed in SR
2
ML are not only classical (i.e., probability based)

but also more innovative using a margin-based language. Classical reliability modeling is performed by

coupling existing PRA quantification codes (e.g., SAPHIRE) with SR
2
ML models. The main goal of

margin-based reliability analyses is to better integrate ER data in order to assess system health. Traditional

reliability models (e.g., fault trees) are still employed, but a different calculation engine is used. In this

innovative calculation engine, the risk metric is expressed in terms of “margin to failure” rather than

“probability of failure”. The most important point of this method is how ER data generated by a component

under different maintenance approaches (e.g., corrective or condition-based) can be used directly to

measure component margin. Note that this method is not designed to be an alternative approach to current

PRA methods, but instead a complementary approach designed for different kinds of decisions. This

approach aims to assist decision-making related to plant resources and AM activities, such as work

scheduling and project prioritization. Note that additional details on the functionality and structure of

SR
2
ML have been provided in the previous report [10].

In addition, during FY-21, the development of a set of machine-learning methods designed to analyze

ER data using numeric and natural language processing algorithms has started. These methods are designed

to be integrated directly to plant monitoring and diagnostic centers in order to analyze current data and

compare it with historic data. The targeted applications range from SSC diagnostic/prognostic to current

risk-informed applications such as the surveillance frequency control (SFCP) program.

The internal structure of SR
2
ML is represented in Figure 7. The figure indicates the key modules of the

SR
2
ML application as well as available documentation (of particular note being the user manual, software

requirements specification, and software design specification which can be accessed via the GitHub

https://github.com/idaholab/SR2ML). Also of note is the suite of regression tests used for configuration

control to ensure appropriate functionality of the software.

16

Figure 6. Screenshot of the SR2ML GitHub repository (https://github.com/idaholab/SR2ML).

Table 4 provides a more detailed overview of the actual methods and models contained in SR
2
ML. For

each method/model the type of analysis that can be performed is specified (probability or margin-based)

and the specific use case of reference.

Table 5 provides a basic summary of SR
2
ML repository in terms of development language, license, and

GitHub repository.

17

Figure 7. Folder tree of the SR2ML repository.

Table 4. List of SR2ML models and methods and their corresponding use case.

Model/Method Class Analysis Type Use Case

Maintenance models Probability based

Models designed to calculate availability and

unavailability for component under preventive

maintenance conditions

Reliability models Probability based
Models designed to calculate component

reliability for different aging profiles

Margin models Margin-based
Models designed to calculate component

margin for both point and time series values

Fault tree, event tree, graph,

and reliability block diagram

models

Simulation-based

Models designed to perform simulation-based

reliability analysis using classical reliability

models

Minimal cut set solver Probability based
Model designed to perform probability

calculation provided set of minimal cut sets

Margin-based reliability

solver
Margin-based

Code designed to perform margin-based

reliability calculations

ER data analysis methods —

Library of machine-learning methods designed

to analyze ER data using numeric and natural

language processing algorithms

	

18

Table 5. Summary of SR2ML architecture.

Development language Python

Dependencies RAVEN

Repository site https://github.com/idaholab/SR2ML

License Apache-2

Number of regression tests 67

Supported operating system macOS, Linux, Windows

5. RAVEN
RAVEN [6] is a flexible and multipurpose modeling and simulation platform designed to perform

uncertainty quantifications, regression analyses, data analyses, and model optimization analyses (see Figure

8). Depending on the tasks to be accomplished and on the probabilistic characterization of the problem,

RAVEN perturbs the response of the system by altering its parameters through Monte Carlo, Latin

hypercube, and other reliability surface search [15] sampling methods.

The data generated by the sampling process are analyzed using classical and more advanced data mining

approaches. RAVEN also manages the parallel dispatching (i.e., both on desktop, workstation, and large

high-performance computing machines) of the software representing the physical model. RAVEN heavily

relies on artificial intelligence algorithms to construct surrogate models of complex physical systems to

perform uncertainty quantification, reliability analyses (e.g., limit state surface), and parametric studies.

Figure 8. Graphical representation of RAVEN computational capabilities.

19

Table 6 provides a summary of the subset of methods and models contained in RAVEN that are being

used within the RIAM project. More specifically, RAVEN is actively used to:

• Link models (e.g., contained in SR
2
ML and/or LOGOS) together using, for example, the ensemble

and logical model

• Sample the constructed models (e.g., for data uncertainty propagation and model optimization)

using RAVEN samplers, optimizers (e.g., genetic algorithms), and the “RAVEN running RAVEN”

capability (e.g., mix of uncertainty propagation and model optimization)

• Postprocess the generated data using classical statistical and data mining methods.

Lastly, Table 7 provides a basic summary of RAVEN repository in terms of development language,

license, and GitHub repository.

Table 6. List of RAVEN models and methods and their corresponding use case.

Model/Method/Capability Use Case

Samplers (e.g., Monte Carlo, Latin

hypercube, grid)

Methods designed to perform uncertainty

quantification by sampling model input variables

according to specific strategy

Pareto frontier [17]
Method designed to determine the Pareto frontier from

a multidimensional dataset

Optimizers (e.g., gradient based,

genetic algorithms [18], simulated

annealing)

Methods designed to determine the global minima and

maxima of the output variable of a model by smartly

changing input variable values

Ensemble model
Capability to link models together in a linear data

workflow

Logical model
Capability to choose which model to run (out of two)

based on a set of logical conditions

Code interface

Capability to link external codes (e.g., PRA, economic

or thermohydraulic codes) and treat them as RAVEN

models

RAVEN running RAVEN

Capability to perform a two-level analysis where the

first RAVEN is considered as a model (slave mode)

while the second RAVEN (master mode) performs

any sampling strategy (e.g., sampling or optimization)

Basic statistics

Postprocessor designed to analyze large datasets with

the goal of determining the statistical moments (e.g.,

mean and variance) and perform sensitivity analysis

Data mining

Postprocessor designed to perform clustering of large

datasets to evaluate similarities and patterns from the

generated data

	
	
	

20

	
Table 7. Summary of RAVEN architecture.

Development language Python, C++

Dependencies

Check

https://github.com/idaholab/raven/blob/devel/dependencies.xml

for a complete list

Repository site https://github.com/idaholab/raven

License Apache-2

Number of regression tests 745

Supported operating system macOS, Linux, Windows

6. VERT
The VERT is a GRA software application focused on simplifying, while improving, evaluation of NPP

electricity generation (see Figure 9 and Figure 10). VERT uses GRA methods to examine how component

reliability and degradation impact the ability for an NPP to generate electricity (see Figure 11 for a tree

representation of the VERT repository structure). Whereas PRA uses fault trees to focus on scenarios

impacting plant nuclear safety, GRA uses fault trees to focus on scenarios impacting plant electricity

generation, including temporary plant power output derating (see Table 8 for a summary of VERT targeted

use cases). Combining GRA with a cost model allows for direct economic analyses.

Figure 9. Screenshot of the VERT GitLab repository (https://hpcgitlab.inl.gov/mandd/vert).

21

Figure 10. GRA role in power plant asset management.

VERT couples the INL-developed SAPHIRE fault tree evaluation software [19] and RAVEN, which

provides a framework for parametric variability along with automated results production and analysis (see

Figure 12). Using component reliability data and degradation models, VERT can identify SSCs that

significantly contribute to plant electricity generation loss over time (see Figure 13). The identified high-

risk equipment can then be targeted for reliability and degradation improvements. Similarly, VERT can

be used to identify components that are not significant contributors to a risk of loss of electricity

generation. This equipment may be subject to over-conservative reliability and maintenance activities

which could be relaxed to obtain cost savings. Insights from VERT support the optimization of

maintenance, inspection, and other electricity generation improvement strategies. Note that the

functionality and structure of VERT have been provided in a previous report [10]. Lastly, Table 9

provides a basic summary of the VERT repository in terms of development language, license, and GitHub

repository.

	
Figure 11. Folder tree of the VERT repository.

22

Figure 12. VERT conceptual schematic.

	

	
Figure 13. VERT risk methodology diagram.

Table 8. List of VERT models and methods and their corresponding use case.

Model/Method Use Case

GUI for GRA model construction

Automated creation of PWR/BWR GRA

models and interface with SAPHIRE and

RAVEN

Generic LWR GRA models
Reference GRA models for generic PWR

and BWR for benchmarking purposes

Generic LWR PRA models
Reference PRA models for generic PWR

and BWR for benchmarking purposes

	

23

Table 9. Summary of VERT architecture.

Development language Python

Dependencies RAVEN, SAPHIRE

Repository site https://hpcgitlab.inl.gov/mandd/vert

License
NDA agreement (to be released open-

source in the near future)

Number of regression tests NA

Supported operating system Windows

7. TEAL
This package enables the capability to compute the NPV, internal rate of return (IRR), and profitability

index (PI) with RAVEN. Furthermore, TEAL makes it possible to perform an NPV, IRR, or PI search.

TEAL computes a multiplicative value (e.g., the production cost) so that the NPV, IRR, or PI produces a

desired value (such as a desired Minimum Acceptable Rate of Return (MRR) or so called “hurdle rate” for

investment decisions). The plug-in allows for a generic definition of cash flows with drivers provided by

RAVEN. Furthermore, TEAL includes flexible options to deal with taxes, inflation, and discounting and

offers capabilities to compute a combined cash flow for components with different component lives. Note

that the primary analysis methods incorporated in TEAL have been provided in a previous report [11].

Table 10 provides a summary of TEAL targeted use cases while Table 11 provides a basic summary of the

TEAL repository in terms of development language, license, and GitHub repository

Table 10. List of TEAL models and methods and their corresponding use case.

Model/Method Use case

Cashflow

Model designed to perform cashflow

calculations over the lifecycle of a project or

component

Amortization
Model designed to perform amortization

calculation

Table 11. Summary of TEAL architecture.

Development language: Python

Dependencies: RAVEN

Repository site: https://github.com/idaholab/TEAL

License: Apache-2

8. SOFTWARE QUALITY ASSURANCE PRACTICES
SQA is a set of necessary activities to provide adequate confidence that a software item or product

conforms to the specified set of functional and technical requirements. The SQA plan presents the

standardized method for capturing software requirements and the required activities to enable consistent

24

SQA implementation (i.e., how the requirements will be implemented, how the software will be tested,

how changes to the software will be controlled, and how software deficiencies will be handled). The SQA

plan presented in this report establishes the SQA program for RAVEN and RAVEN plug-ins discussed in

the previous sections.

8.1 SQA Documentation
RIAM tools inherit RAVEN SQA practices and documentation from RAVEN. They fully adopt and

follow the RAVEN SQA process and plan. The RAVEN SQA documents are maintained both in the

RAVEN GitHub repository (doc/sqa) and INL EDMS system. RAVEN is currently classified as NQ1 Level

3 (research tool) software
7
, but it will soon be moved and maintained with Level 2 (commercial grade – no

safety) standard. As RAVEN plug-ins, RIAM tools are currently classified as NQ1 Level 3 software. The

SQA documents of RIAM tools are also maintained both in their own GitHub repositories (doc/sqa) and

the INL EDMS system.

The RAVEN SQA plan is condensed in PLN-5552, RAVEN and RAVEN Plug-ins Software Quality
Assurance and Maintenance and Operations Plan. This plan is currently maintained in the RAVEN GitHub

repository (doc/sqa/sqap), and this plan covers the following main SQA documents and sections:

• Software Quality Assurance Plan (SQA)

This plan presents the required activities to enable consistent SQA implementation within RAVEN

software and RAVEN plug-ins (i.e., RIAM tools)

• Configuration Management Plan

This plan documents the configuration management activities, plan management, and maintenance

needed to assure proper configuration of RAVEN software and RAVEN plug-ins. Specifically, it

outlines the configuration identification, change controls, status accounting, evaluation, and

reviews.

• Software Standards and Reviews Plan

This plan provides software coding standards, commentary standards, and testing standards.

• Software Testing Plan

This plan outlines the test procedures, the type of tests, test automation, and requirement tests.

• IT Asset Maintenance Plan

This plan documents the maintenance and operation activities (i.e., backup and recovery,

management and operating [M&O] planning, assessment and control) for RAVEN and RAVEN

plug-ins

• Verification and Validation Plan

This plan presents the verification and validation plan processes (i.e., pull request testing, code

review, development branch testing, and master branch testing) for RAVEN and RAVEN plug-ins.

To adopt and follow the above plan, RIAM tools as RAVEN plug-ins produce the following

supplementary documents as listed in Table 12.	
	
	
	
	

7 More information can be found at https://github.com/idaholab/raven/wiki/external-plugin-SQA-requirements .

25

Table 12. RIAM tools supplementary documents.

Document Type Document Description
Base documents/digital

entries

Safety software determination, quality level determination, and asset

management entry (for INL Enterprise Architecture Entry)

Software requirements

specifications

Software requirements specifications have a complete description of the

features and behavior of each RIAM tool. The document includes

various elements describing the minimum functionality, usability, and

performance requirements of the software. It also captures how the

system interfaces and operates with external applications

Requirements Traceability

Matrix (RTM)

RTM is a document that relates to user requirements on the test cases

for each RIAM tool to validate the completeness of the software. The

parameters included in RTM is the requirement ID, the requirement

description, and the test case for verification of every requirement

Configuration item list

The configuration item list aims to gather software, hardware, and

documentation components of each RIAM tool’s infrastructure. These

are the items that define the configuration of the software

Software design description

The software design description is a document written by a software

designer or architect to give other software developers an overall guide

to the architecture of the software product. It has an architectural

diagram with detailed information on system purpose and scope, along

with the structure of code and software. It serves as a reference

document outlining all parts and functionality of the RIAM tool

User manual

This document describes the capabilities and intended use of the

software within specified limits

	
In order to retrieve the SQA documentation, navigate to the RIAM tool SQA directory located

at:./ToolName/doc/sqa/ and run (in your terminal) the building bash script:

	
./make_docs.sh

	
All the following SQA documents are generated and collected in a new folder called

“sqa_built_documents”:

• Configuration items list

• Software design description

• Software requirements specification and traceability matrix

The dashboards of the required documentation for SR
2
ML and LOGOS are illustrated in Figure 14 and

Figure 15, respectively.

26

Figure 14. Dashboard of required documentation for SR2ML.

27

Figure 15. Dashboard of required documentation for LOGOS.

	
8.2 Configuration Control Process

RIAM tools also adopt and follow RAVEN configuration control process as illustrated in Figure 16

and Figure 17. The change control activities consist of requesting a change, performing an evaluation,

obtaining an approval (or disapproval), providing notification to requester, and executing design,

implementation, acceptance testing, and closure of changes. Changes include both error correction and

enhancement. The GitHub Issues and Pull requests system and INL CIVET (Continuous Integration,

Verification, Enhancement, and Testing system) are currently used to track and log the activities through

the change control process.

28

Figure 16. RAVEN and RAVEN plug-ins configuration control process (1st stage).

	

Yes

No

Yes

Start
Notify User or
Developer of

decision

Implement
Change?

Comment and
Close Issue

Issue Submitted by
User or Developer

Issue Reviewed by
CCB

Implement Change

Notify User of
impact and

corrective action
plan

Error?

Initial Automated
testing

Pass Initial
testing?

Peer Review of
Changes

Pass Peer
Review?

Test case
includes

requirements?

Merge to
Development

branch

Execute Test
Case(s)

Test cases
pass?

Automated check in
changes into

Master Branch

Execute Test
Case(s)

Test cases
pass?

Comment and
Close Tracking Issue

End 1st

Stage

No

Yes

Yes

No

No

No

No

Yes

Yes

No

Label issue with
associated

requirement

Update Test Case
requirement as

needed and review
requirement list

To 2nd Stage

Requirement
impacted?

YesCCB design
meeting

No

29

Figure 17. RAVEN and RAVEN plug-ins configuration control process (2nd stage).

8.3 Version Control and Accessibility
RIAM tools are currently maintained as open-source Git repositories hosted on GitHub

(https://github.com). GitHub provides the distributed version control and source code management

functionality of Git as well as several collaboration features, such as bug tracking, feature requests, task

management, continuous integration, and wikis for each repository. As described in the SQA

documentation, the development work is performed on development branches and must undergo review,

testing, and approval before being pushed to the master branch of RIAM tools. This enforces the control of

issue resolution and feature development. The GitHub Issue System is used to track and log the discussion

between issue creators and RIAM tool developers and the GitHub Pull Request System is used to manage

the change request and review process. The automated tests are also managed by GitHub and all test results

Start 2nd

Stage

If Defect,
does it
affect

Release?

End

No

Yes

Notify User of
impact and

corrective action
plan

Implement Change

Initial Automated
testing

From 1st Stage

Test Case(s)
pass?

Peer Review of
Changes

Pass Peer
Review?

Merge to release
branch

No

Yes

No

Yes

30

are logged and tracked by the INL CIVET System
8
. The following sections illustrate details of automated

regression testing and “issue and pull” request system.

	
8.4 Regression Testing

RIAM tools inherit the same regression testing philosophy and framework used by RAVEN; that is,

before any modifications to the code can be merged into the main development branch, a series of regression

tests must be passed to ensure that behavior has not notably changed, or if it has changed, that the changed

behavior is documented and updated as part of the code changes. These regression tests are a combination

of analytic tests evaluating the performance of RIAM tools, and integration tests evaluation the ability of

RIAM tools to perform as a whole to satisfy particular use cases. There are numerous regression tests for

each RIAM tool. All the test configurations are available in the code repository under ToolName/tests. For

LOGOS and SR
2
ML, a list of requirement test cases are presented and described in Table 13 and Table 14,

respectively.

RIAM tools are periodically tested for use on MAC, Linux, and Windows operating systems. These

automated tests are managed by GitHub, and all the test results are logged and tracked by the INL CIVET

System, as shown in Figure 18 as an example.

	
Table 13. LOGOS requirement tests.

Functional
Requirements Requirement Description Test

L-F-1

The LOGOS plug-in shall allow support for

user-defined analysis flow using RAVEN

on capital budgeting problems

LOGOS/tests/MilestoneTestsSeptFY

19/use_case_III/raven_capital_budge

ting_III.xml

L-F-2

The LOGOS plug-in shall allow support for

standalone analysis on capital budgeting

problems

LOGOS/tests/CapitalInvestments/ex

amples/use_case_3b_fy19_consisten

t_constraint_I_II.xml

L-DCBO-1

LOGOS shall be able to perform single

knapsack deterministic capital budgeting

optimization

LOGOS/tests/CapitalInvestments/sk

p/test_skp.xml

L-DCBO-2

LOGOS shall be able to perform multiple

knapsack deterministic capital budgeting

optimization

LOGOS/tests/CapitalInvestments/mk

p/test_mkp.xml

L-DCBO-3

LOGOS shall be able to perform

multichoice knapsack deterministic capital

budgeting optimization

LOGOS/tests/CapitalInvestments/mc

kp/test_mckp.xml

8 https://civet.inl.gov/

31

Functional
Requirements Requirement Description Test

L-SDCBO-1

LOGOS plug-in shall be able to perform

stochastic analysis of single knapsack

deterministic capital budgeting optimization

LOGOS/tests/test_skp.xml

L-SDCBO-2

LOGOS plug-in shall be able to perform

stochastic analysis of multiple knapsack

deterministic capital budgeting optimization

LOGOS/tests/test_mkp.xml

L-SDCBO-3

LOGOS plug-in shall be able to perform

stochastic analysis of multichoice knapsack

deterministic capital budgeting optimization

LOGOS/tests/test_mckp.xml

L-SCBO-1

LOGOS shall be able to perform single

knapsack stochastic capital budgeting

optimization

LOGOS/tests/CapitalInvestments/sk

p/test_multi_variation.xml

L-SCBO-2

LOGOS shall be able to perform multiple

knapsack stochastic capital budgeting

optimization

LOGOS/tests/CapitalInvestments/mk

p/test_mkp_scenarios.xml

L-SCBO-3

LOGOS shall be able to perform

multichoice knapsack stochastic capital

budgeting optimization

LOGOS/tests/CapitalInvestments/mc

kp/test_mckp_scenario.xml

L-DRO-1

LOGOS shall be able to perform single

knapsack distributionally robust capital

budgeting optimization

LOGOS/tests/CapitalInvestments/dr

o/test_droskp_scenario.xml

L-DRO-2

LOGOS shall be able to perform multiple

knapsack distributionally robust capital

budgeting optimization

LOGOS/tests/CapitalInvestments/dr

o/test_dromkp_scenarios.xml

L-DRO-3

LOGOS shall be able to perform

multichoice knapsack distributionally robust

capital budgeting optimization

LOGOS/tests/CapitalInvestments/dr

o/test_dromckp_scenario.xml

L-CVaR-1

LOGOS shall be able to perform single

knapsack stochastic capital budgeting

optimization based conditional value-at-risk

LOGOS/tests/CapitalInvestments/cv

ar/test_cvar_skp_scenario.xml

L-CVaR-2

LOGOS shall be able to perform multiple

knapsack stochastic capital budgeting

optimization based conditional value-at-risk

LOGOS/tests/CapitalIn-

vestments/cvar/test_cvar_mkp_scena

rios.xml

L-CVaR-3

LOGOS shall be able to perform

multichoice knapsack stochastic capital

budgeting optimization based conditional

value-at-risk

LOGOS/tests/CapitalInvestments/cv

ar/test_cvar_mckp_scenario.xml

	

32

Table 14. SR2ML requirement tests.

Functional
Requirements Requirement Description Test

SR2ML-F-1

The SR
2
ML plug-in shall allow support for

user-defined instructions for controlling the

execution stages of the probabilistic safety, risk

and reliability analysis.

SR2ML/tests/test_ensemblePR

AModel_discrete.xml

SR2ML-F-2
The SR

2
ML plug-in shall allow for user-

defined output types for simulation data.

SR2ML/tests/test_markovMod

el_3states.xml

SR2ML-PRA-1

The SR
2
ML plug-in shall support importing

Event Tree Boolean logic structure to construct

RAVEN Event Tree ExternalModel

SR2ML/tests/test_ETmodel.x

ml

SR2ML-PRA-2

The SR
2
ML plug-in shall support importing

Fault Tree Boolean logic structure to construct

RAVEN Fault Tree ExternalModel

SR2ML/tests/test_FTmodel.x

ml

SR2ML-PRA-3

The SR
2
ML plug-in shall support importing a

generic Markov chain to construct RAVEN

Markov chain ExternalModel

/SR2ML/tests/test_markovMo

del_2states.xml

SR2ML-PRA-4

The SR
2
ML plug- in shall support importing

Reliability Block Diagram (RBD) Boolean

logic structure to construct RAVEN RBD

ExternalModel

SR2ML/tests/test_graphModel

.xml

SR2ML-SI-1
The SR

2
ML plug-in shall be able to be

initialized via input files.

SR2ML/tests/test_ensemblePR

AModel_mixed.xml

	
	
	

Figure 18. Regression testing process managed by CIVET (SR2ML example).

33

8.5 Issue and Pull Request
Issues can be initiated by anyone, including offsite users, and this option is used for maintenance, new

development, enhancements of the software tools, or it can be used to report program errors and problems.

The GitHub Issue System is used to track and log the discussion between issue creators and RIAM tool

developers. Figure 19 shows the issue template that is used for each feature request of a RIAM tool.

Figure 19. Issue template for RIAM tool feature request.

	
Pull requests can also be initiated by anyone and this option is used for maintenance, enhancement, or

new capability of the software tool. Pull requests inform others about changes pushed to a branch in a

repository on GitHub. Once a pull request is opened, the RIAM tool developers can discuss and view the

potential changes before any changes are merged into the base branch. Figure 20 shows the pull request

template that is used for RIAM tools.

34

	

Figure 20. Pull request template for RIAM tool.

	
9. CONCLUSIONS

In this document, we have presented several software products designed to support AM decision-

making under the RIAM project. These products have been designed for specific use cases ranging from

reliability and economic modeling to model- and data-based optimization methods. Each product is

available on its own Git repository, which contains the actual source code, the reference documentation

(e.g., user manual and user guide), and a set of regression tests. For each product, the report presents its

architecture and structure. In particular, this report has expanded the specific use cases for each method and

model contained in each product. The actual application of these tools for specific types of analysis are

described in [8,9,10,11]. The plan is to release all of these tools as open-source with an Apache-2 license.

This will further simplify the deployment and use of these tools into existing plant health and decision-

making software frameworks. Lastly, it is important to note that the development for some of the tools

indicated in Figure 3 have been shared among other DOE projects within LWRS and NEUP.

REFERENCES

[1] Institute of Nuclear Power Operations (INPO). 2018. “AP-913 - Equipment Reliability Process

Description, Revision 6.” Washington, DC (limited distribution).

[2] United States Nuclear Regulatory Commission (NRC). n.d. “10 CFR 50.65 Requirements for

monitoring the effectiveness of maintenance at nuclear power plants.” Last modified March 24, 2021.

https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0065.html.

[3] United States Nuclear Regulatory Commission (NRC). 2005. “Independent Verification of the

Mitigating Systems Performance Index (MSPI) Results for the Pilot Plants.” NUREG-1816, NRC,

Washington, DC.

35

[4] H. Zhang, Y.-J. Choi, C. Smith, S. Prescott, D. Mandelli, A. Alfonsi. 2020. “Risk-Informed Systems

Analysis (RISA) Pathway Technical Program Plan.” INL/EXT-19-55721, Idaho National

Laboratory.

[5] Idaho National Laboratory. 2020. “Integrated Program Plan.” INL/EXT-11-23452, Rev.8, Idaho

National Laboratory

[https://lwrs.inl.gov/Technical%20Integration%20Office/LWRS_Integrated_Program_Plan.pdf#sea

rch=INL%2FEXT%2D11%2D23452]

[6] Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P. W. Talbot, D. P. Maljovec, and C. Smith.

2021. “RAVEN Theory Manual.” INL/EXT-16-38178 Rev. 4, Idaho National Laboratory

[https://doi.org/10.2172/1784873].

[7] A. Alfonsi, C. Wang, A. Epiney, C. Rabiti, and USDOE Office of Nuclear Energy, “TEAL. Computer

software,” USDOE Office of Nuclear Energy (NE) [https://www.osti.gov//servlets/purl/1668299]

(2020) Web. doi:10.11578/dc.20200929.3.

[8] Mandelli, D., Z. Ma, R. Youngblood, S. St. Germain, C. Smith, P. Talbot, S. Hess, D. Dube, C. Pope,

J. Miller, M. Robbins, D. Das, M. Azarian, and J. Coble. 2019. “Plant Integral Risk-informed System

Health Program.” INL-EXT-19-55808, Idaho National Laboratory.

[9] Mandelli, D., C. Wang, S. St. Germain, C. Smith, D. Morton, I. Popova, and S. Hess. 2019.

“Combined Data Analytics and Risk Analysis Tool for Long Term Capital SSC Refurbishment and

Replacement.” INL-EXT-19-55819, Idaho National Laboratory.

[10] Mandelli, D., C. Wang, J. Cogliati, C. Smith, S. Hess, R. Sugrue, C. Pope, J. Miller, S. Ercanbrack,

D. Cole, and J. Yurko. 2020. “Integration of Data Analytics with Plant System Health Program.”

INL/EXT-20-59928, Idaho National Laboratory.

[11] Mandelli, D., C. Wang, M. Abdo, A. Alfonsi, P. Talbot, J. Cogliati, C. Smith, D. Morton, I. Popova,

and S. Hess. 2020. “Development and Application of a Risk Analysis Toolkit for Plant Resources

Optimization.” INL-EXT-20-59942, Idaho National Laboratory.

[12] Bragg-Sitton, S. M., C. Rabiti, R. D. Boardman, J. O’Brien, T. J. Morton, S. Jong Yoon, J. Soo Yoo,

K. Frick, and P. Sabharwall. 2020. “Integrated Energy Systems: 2020 Roadmap.” INL-EXT-20-

57708 Rev. 1, Idaho National Laboratory. https://doi.org/10.2172/1670434.

[13] Mandelli, D., C. Wang, A. Alfonsi, Z. Ma, C. Smith, C. Parisi, R. Youngblood, and T. Aldemir. 2021.

“Mutual Integration of Classical and Dynamic PRA.” Nuclear Technology 207 (3): 363–375.

https://doi.org/10.1080/00295450.2020.1776030.

[14] Hart, W. E., J.-P. Watson, and D. L. Woodruff. 2011. “PYOMO: Modeling and Solving Mathematical

Programs in Python.” Mathematical Programming Computation 3 (3): 219–260.

[15] Maljovec, D., B. Wang, V. Pascucci, P.-T. Bremer, and D. Mandelli. 2013. “Adaptive sampling

algorithms for probabilistic risk assessment of nuclear simulations.” in ANS PSA 2013 International
Topical Meeting on Probabilistic Safety Assessment and Analysis Columbia, SC, on CD-ROM,

American Nuclear Society, LaGrange Park, IL.

[16] Hillier, F., and G. Lieberman. 2015. Introduction to Operations Research, 10
th
 edition, McGraw-Hill.

[17] Mattson, C.A., and A. Messac. 2005. “Pareto Frontier Based Concept Selection Under Uncertainty,

with Visualization.” Optimization and Engineering 6: 85–115.

https://doi.org/10.1023/B:OPTE.0000048538.35456.45.

[18] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution programs, 3
rd

 edition,

Springer Edition.

[19] Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), risk and

reliability assessment tool, [https://saphire.inl.gov/]

	 	

36

APPENDIX A – SR2ML USER MANUAL

	 	

MANUAL
INL/EXT-20-57857

Revision 1

Printed July 12, 2021

SR2ML User Manual

Congjian Wang and Diego Mandelli

Prepared by

Idaho National Laboratory

Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by

Battelle Energy Alliance for the United States Department of Energy

under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for unlimited release.

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

38

INL/EXT-20-57857
Revision 1

Printed July 12, 2021

SR2ML User Manual

Diego Mandelli
Congjian Wang

39

Contents
1 Introduction . 43

1.1 Acquiring and Installing SR2ML . 43
1.2 Accessing SR2ML from within RAVEN . 44
1.3 User Manual Formats . 44
1.4 Capabilities of SR2ML . 45

2 Event Tree Model . 46
2.1 ET Model Reference Tests . 48

3 Fault Tree Model . 49
3.1 FT Model Reference Tests . 51

4 Markov Model . 52
4.1 Markov Model Reference Tests . 53

5 Reliability Block Diagram Model . 54
5.1 RBD Model Reference Tests . 56

6 MCSSolver . 57
6.1 Time dependent calculation . 59
6.2 MCSSolver model reference tests . 60

7 Reliability Models . 61
7.1 The Probability Density and Cumulative Density Functions 61
7.2 The Reliability and Failure Rate Models . 62
7.3 The Lifetime Distributions or Aging Models . 63

7.3.1 The Lognormal Model . 65
7.3.2 The Exponential Model . 66
7.3.3 The Weibull Model . 67
7.3.4 The Erlangian Model . 68
7.3.5 The Gamma Model . 69
7.3.6 The Fatigue Life Model (Birnbaum-Saunders) . 70
7.3.7 The Exponentiated Weibull Model . 71
7.3.8 The Bathtub Model . 72
7.3.9 The Power Law Model for Failure Rate Function . 73
7.3.10 The Log Linear Model for Failure Rate Function . 74

7.4 Reliability Models Reference Tests . 75
8 Maintenance Models . 77

8.1 Operating Model . 78
8.2 Standby Model . 79

9 Data Labeling . 80
9.1 Data Labeling Reference Tests . 82

10 Event Tree Data Importer . 83
10.1 ET Importer Reference Tests . 87

11 Fault Tree Data Importer . 88
11.1 FT Importer Reference Tests . 92

40

12 MCSImporter . 93
13 Discrete Risk Measures . 96
14 Margin Models . 101

14.1 PointSetMarginModel Model . 102
References . 103

41

42

1 Introduction

SR2ML is a software package that contains a set of safety and reliability models designed to be
interfaced with the INL’s RAVEN code. These models can be employed to perform both static
and dynamic system risk analyses and to determine the risk importance of specific elements of the
considered system.

Two classes of reliability models have been developed; the first class includes all classical reli-
ability models (fault trees, event trees, Markov models and reliability block diagrams) which have
been extended to not only deal with Boolean logic values but also time-dependent values. The sec-
ond class includes several component aging and maintenance models. Models of these two classes
are designed to be included in a RAVEN ensemble model to perform a time-dependent system
reliability analysis (dynamic analysis). Similarly, these models can be interfaced with system anal-
ysis codes to determine the failure time of systems and evaluate the accident progression (static
analysis).

1.1 Acquiring and Installing SR2ML

SR2ML is supported on three separate computing platforms: Linux, OSX (Apple Macintosh),
and Microsoft Windows. Currently, SR2ML is downloadable from the SR2ML GitLab reposi-
tory: https://hpcgitlab.hpc.inl.gov/RAVEN_PLUGINS/SR2ML.git. New users
should contact SR2ML developers to get started. This typically involves the following steps:

• Download SR2ML
You can download the source code from https://github.com/idaholab/SR2ML.
git.

• Use as a RAVEN Plugin,
RAVEN must first be downloaded from https://github.com/idaholab/raven.
git.
Detailed instructions are available from https://github.com/idaholab/raven/
wiki. To register a plugin with RAVEN and make its components accessible, run the script:

raven/scripts/install_plugins.py -s /abs/path/to/SR2ML

After the plugin registration, follow the installation instructions at https://github.
com/idaholab/raven/wiki/installationMain to install the required dependen-
cies.

43

https://hpcgitlab.hpc.inl.gov/RAVEN_PLUGINS/SR2ML.git
https://github.com/idaholab/SR2ML.git
https://github.com/idaholab/SR2ML.git
https://github.com/idaholab/raven.git
https://github.com/idaholab/raven.git
https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki/installationMain
https://github.com/idaholab/raven/wiki/installationMain

1.2 Accessing SR2ML from within RAVEN

The SR2ML can be accessed as a special subtype of the External model. The syntax is given in
Listing 1.

Listing 1. Call SR2ML.FTModel from RAVEN input.

<ExternalModel name="FaultTree" subType="SR2ML.FTModel">
<variables> Input and output variables needed by SR2ML

</variables>
...

</ExternalModel>

1.3 User Manual Formats

In this manual, we employ the following formats to highlight certain parts with particular meanings
(i.e., input structure, examples, and terminal commands):

• Python Coding:

class AClass():
def aMethodImplementation(self):

pass

• SR2ML XML input example:

<MainXMLBlock>
...
<aXMLnode anAttribute='aValue'>

<aSubNode>body</aSubNode>
</aXMLnode>
<!-- This is commented block -->
...

</MainXMLBlock>

• Bash Commands:

cd path/to/SR2ML/
cd ../../

44

1.4 Capabilities of SR2ML

This document provides a detailed description of the SR2ML plugin for the RAVEN code [1, 2].
The features included in this plugin are:

• Event Tree (ET) Model (see Section 2)

• Fault Tree (FT) Model (see Section 3)

• Markov Model (see Section 4)

• Reliability Block Diagram (RBD) Model (see Section 5)

• MCSSolver (see Section 6)

• Reliability Models (see Section 7)

• Maintenance Models (see Section 8)

• Data Labeling (see Section 9)

• ET Data Importer (see Section 10)

• FT Data Importer (see Section 11)

45

2 Event Tree Model

This model is designed to read the structure of the event tree (ET) from the file and to import such
Boolean logic structure as a RAVEN model [1,2]. The ET must be specified in: the OpenPSA for-
mat (https://github.com/open-psa). As an example, the ET of Figure 1 is translated in the OpenPSA
format as shown in Listing 13 below:

Listing 2. ET of Figure 1 in the OpenPSA format.

<define-event-tree name="eventTree">
<define-functional-event name="ACC"/>
<define-functional-event name="LPI"/>
<define-functional-event name="LPR"/>
<define-sequence name="1"/>
<define-sequence name="2"/>
<define-sequence name="3"/>
<define-sequence name="4"/>
<initial-state>

<fork functional-event="ACC">
<path state="0">

<fork functional-event="LPI">
<path state="0">

<fork functional-event="LPR">
<path state="0">

<sequence name="1"/>
</path>
<path state="+1">

<sequence name="2"/>
</path>

</fork>
</path>
<path state="+1">

<sequence name="3"/>
</path>

</fork>
</path>
<path state="+1">

<sequence name="4"/>
</path>

</fork>
</initial-state>

</define-event-tree>

46

LPRLPIACCIE Out

OK

CD

CD

CD

ID

1

2

3

4

Figure 1. Example of event tree.

The ET of Figure 1 described in Listing 13 can be defined in the RAVEN input file as follows:

Listing 3. ET model input example.

<Models>
...
<ExternalModel name="ET" subType="ETModel">

<variables>
statusACC,statusLPI,statusLPR,sequence

</variables>
<map var="statusACC">ACC</map>
<map var="statusLPI">LPI</map>
<map var="statusLPR">LPR</map>
<sequenceID>sequence</sequenceID>

</ExternalModel>
...

</Models>

All the specifications of the ET model are given in the <ExternalModel> block. Inside the
<ExternalModel> block, the XML nodes that belong to this models are:

• <variables>, string, required parameter, a list containing the names of both the input
and output variables of the model

• <sequenceID>, string, required parameter, the name of the alias variable that indicates
the branch ID

• <map>, string, required parameter, the name ID of the ET branching variable

– var, required string attribute, the ALIAS name ID of the ET branching variable.

Provided this definition and the ET model of Figure 1 and described in Listing 13, the resulting
model in RAVEN is characterized by these variables:

47

• Input variables: statusACC, statusLPI, statusLPR

• Output variable: sequence

2.1 ET Model Reference Tests

• SR2ML/tests/test ETmodel.xml

• SR2ML/tests/test ETmodel TD.xml

48

3 Fault Tree Model

This model is designed to read the structure of the fault tree (FT) from the file and to import such
Boolean logic structures as a RAVEN model. The FT must be specified in the OpenPSA format
(https://github.com/open-psa). As an example, the FT of Figure 2 is translated in the OpenPSA as
shown below:

Listing 4. FT in OpenPSA format.

<opsa-mef>
<define-fault-tree name="FT">

<define-gate name="TOP">
<or>

<gate name="G1"/>
<gate name="G2"/>
<gate name="G3"/>

</or>
</define-gate>
<define-component name="A">

<define-gate name="G1">
<and>

<basic-event name="BE1"/>
<basic-event name="BE2"/>

</and>
</define-gate>
<define-gate name="G2">

<and>
<basic-event name="BE1"/>
<basic-event name="BE3"/>

</and>
</define-gate>
<define-basic-event name="BE1">

<float value="1.2e-3"/>
</define-basic-event>
<define-component name="B">

<define-basic-event name="BE2">
<float value="2.4e-3"/>

</define-basic-event>
<define-basic-event name="BE3">

<float value="5.2e-3"/>
</define-basic-event>

</define-component>

49

Out

G1

BE1 BE2

G2

BE1 BE3

G3

BE1 BE4

Figure 2. Example of FT.

</define-component>
<define-component name="C">

<define-gate name="G3">
<and>

<basic-event name="BE1"/>
<basic-event name="BE4"/>

</and>
</define-gate>
<define-basic-event name="BE4">

<float value="1.6e-3"/>
</define-basic-event>

</define-component>
</define-fault-tree>

</opsa-mef>

The FT of Figure 2 described in Listing 15 can be defined in the RAVEN input file as follows:

Listing 5. FT model input example.

<Models>
...
<ExternalModel name="FT" subType="FTModel">

<variables>
statusBE1,statusBE2,statusBE3,statusBE4,TOP

</variables>
<topEvents>TOP</topEvents>
<map var="statusBE1">BE1</map>
<map var="statusBE2">BE2</map>
<map var="statusBE3">BE3</map>
<map var="statusBE4">BE4</map>

</ExternalModel>

50

...
</Models>

All the specifications of the FT model are given in the <ExternalModel> block. Inside the
<ExternalModel> block, the XML nodes that belong to this models are:

• <variables>, string, required parameter, a list containing the names of both the input
and output variables of the model

• <topEvents>, string, required parameter, the name of the alias Top Event

• <map>, string, required parameter, the name ID of the FT basic events

– var, required string attribute, the ALIAS name ID of the FT basic events

Provided this definition and the FT model of Figure 2 described in Listing 5, the resulting
model in RAVEN is characterized by these variables:

• Input variables: statusBE1, statusBE2, statusBE3, statusBE4

• Output variable: TOP

3.1 FT Model Reference Tests

• SR2ML/tests/test FTmodel.xml

• SR2ML/tests/test FTmodel TD.xml

51

Figure 3. Example of a continuous time Markov chain (source
Wikipedia: https://en.wikipedia.org/wiki/Markov chain).

4 Markov Model

This model is designed to import a generic Markov chain as a RAVEN model. As an example, the
Markov chain from Figure 3 is translated in the OpenPSA, as shown below:

Listing 6. Markov model input example.

<Models>
<ExternalModel name="markov" subType="MarkovModel">

<variables>initialState,finalState</variables>
<initState>initialState</initState>
<finState>finalState</finState>
<endTime>1000</endTime>
<state name="1"> <!-- Bull market -->
<transition type="lambda" value="0.02" >2</transition>
<transition type="lambda" value="0.005">3</transition>

</state>
<state name="2"> <!-- Bear market -->
<transition type="lambda" value="0.3">1</transition>
<transition type="lambda" value="0.2">3</transition>

</state>
<state name="3"> <!-- Stagnant market -->
<transition type="lambda" value="0.02">1</transition>
<transition type="lambda" value="0.4" >2</transition>

</state>
</ExternalModel>

</Models>

All the specifications of the Markov model are given in the <ExternalModel> block. Inside
the <ExternalModel> block, the XML nodes that belong to this model are:

52

• <variables>, string, required parameter, a list containing the names of both the input
and output variables of the model

• <initState>, string, required parameter, variable ID corresponding to the initial state

• <finState>, string, required parameter, variable ID corresponding to the final state

• <endTime>, float, required parameter, time horizon to evaluate the Markov chain transi-
tion history

• <state>, specifies a single node; inside a <state>, all possible transitions OUT of this
state must be specified in the <transition> xml sub-nodes:

– transition, required string attribute, arrival state

– type, required string attribute, type of transition. Allowed transition types are:
lambda, tau, instant, and unif (see below)

– value, required string attribute, value associated to the particular transition.

The following transition types are available:

• lambda: classical continuous time Markov chain transition rate in � form

• tau: classical continuous time Markov chain transition rate in the ⌧ = 1
� form

• instant: deterministic transition out of a particular state; the exact transition time is provided
in an input

• unif: transition time is uniformly sampled between the two provided values in the value
node.

4.1 Markov Model Reference Tests

• SR2ML/tests/test markovModel 2states tau.xml

• SR2ML/tests/test markovModel 2states.xml

• SR2ML/tests/test markovModel 3states complexTrans.xml

• SR2ML/tests/test markovModel 3states instantTrans.xml

• SR2ML/tests/test markovModel 3states.xml

53

5 Reliability Block Diagram Model

This model is designed to read the structure of the reliability block diagram (RBD) from the file
and import such Boolean logic structures as a RAVEN model. The RBD must be specified in a
specific format. As an example, the RBD of Figure 4 is translated in the RAVEN format as shown
below:

Listing 7. RBD input file.

<Graph name="testGraph">
<node name="CST">

<childs>1</childs>
</node>
<node name="1">

<childs>2,3,4</childs>
</node>
<node name="2">

<childs>5</childs>
</node>
<node name="3">

<childs>5</childs>
</node>
<node name="4">

<childs>5</childs>
</node>
<node name="5">

<childs>6,7,8</childs>
</node>
<node name="6">

<childs>SG1</childs>
</node>
<node name="7">

<childs>SG2</childs>
</node>
<node name="8">

<childs>SG3</childs>
</node>
<node name="SG1">
</node>
<node name="SG2">
</node>
<node name="SG3">

54

1 3

2

4

5 7

6

8

SG2

SG1

SG3

CST

Figure 4. Example of RBD.

</node>
</Graph>

The FT of RBD illustrated in Figure 4 and defined in Listing 7 can be defined in the RAVEN
input file as follows:

Listing 8. RBD model input example.

<Models>
...
<ExternalModel name="graph" subType="GraphModel">

<variables>
status2,status3,status4,status5,
statusSG1,statusSG2,statusSG3

</variables>
<modelFile>graphTest</modelFile>
<nodesIN>CST</nodesIN>
<nodesOUT>SG1,SG2,SG3</nodesOUT>
<map var="status2">2</map>
<map var="status3">3</map>
<map var="status4">4</map>
<map var="status5">5</map>
<map var="statusSG1">SG1</map>
<map var="statusSG2">SG2</map>
<map var="statusSG3">SG3</map>

</ExternalModel>
...

</Models>

All the specifications of the RBD model are given in the <ExternalModel> block. Inside
the <ExternalModel> block, the XML nodes that belong to this model are:

55

• <variables>, string, required parameter, a list containing the names of both the input
and output variables of the model

• <modelFile>, string, required parameter, the name of the file that provide the RBD
structure

• <nodesIN>, string, required parameter, the name of the input nodes

• <nodesOUT>, string, required parameter, the name of the output nodes

• <map>, string, required parameter, the name ID of the RBD node

– var, required string attribute, the ALIAS name ID of the RBD node

Provided this definition, the RBD model of Figure 4 described in Listing 7, is the resulting
model in RAVEN characterized by these variables:

• Input variables: status2, status3, status4, status5

• Output variable: statusSG1, statusSG2, statusSG3.

5.1 RBD Model Reference Tests

• SR2ML/tests/test graphModel.xml

• SR2ML/tests/test graphModel TD.xml.

56

Table 1. MCS file format.
ID Prob MCS
1, 0.01, BE1
2, 0.02, BE3
3, 0.03, BE2,BE4

6 MCSSolver

This model is designed to read from file a list of Minimal Cut Sets (MCSs) and to import such
Boolean logic structure as a RAVEN model. Provided the sampled Basic Events (BEs) margin or
probability values, the MCSSolver determines the margin or the probability of Top Event (TE).
The list of MCS must be provided through a CSV file with the following format:

In this example:

• three MCSs are defined: MCS1 = BE1, MCS2 = BE3 and MCS3 = BE2 and BE4

• four BEs are defined: BE1, BE2, BE3 and BE4

Note that the MCSSolver considers only the list of MCSs and it discards the rest of data con-
tained in the csv file.

All the specifications of the MCSSolver model are given in the <ExternalModel> block.
Inside the <ExternalModel> block, the XML nodes that belong to this models are:

• <variables>, string, required parameter, a list containing the names of both the input
and output variables of the model

• <solver>

– type, required string attribute, type of calculation to be performed: probability or
margin

– <solverOrder>,integer, required parameter, solver order of P (TE) for probabil-
ity calculations: it specifies the maximum calculation envelope for P (TE), i.e., the
maximum number of MCSs to be considered when evaluating the probability of their
union

– <metric>,string, required parameter, metric used for margin calculations of the top
event of M(TE); it specifies the desired distance metric in terms of p values for the Lp

norm (allowed values are: 0, 1, 2, inf).

57

• <topEventID>,string, required parameter, the name of the alias variable for the Top
Event

• <map>,string, required parameter, the name ID of the ET branching variable

– var, required string attribute, the ALIAS name ID of the basic event

An example of RAVEN input file is the following:

Listing 9. MCSSolver model input example.

<Models>
...
<Models>

<ExternalModel name="MCSmodel" subType="SR2ML.MCSSolver">
<variables>statusBE1,statusBE2,statusBE3,statusBE4,TOP</variables>
<solver type='probability'>

<solverOrder>3</solverOrder>
</solver>
<topEventID>TOP</topEventID>>
<map var='pBE1'>BE1</map>
<map var='pBE2'>BE2</map>
<map var='pBE3'>BE3</map>
<map var='pBE4'>BE4</map>

</ExternalModel>
</Models>
...

</Models>

In this case, the MCSs are written in terms of the variables BE1, BE2, BE3, and BE4. The
values of the variables pBE1, pBE2, pBE3, and pBE4 (i.e., the probability values associated to
each basic event) are generated outside the MCSSolver model (e.g., by a sampler) and passed to
the MCSSolver model in order to calculate the probability value of the top event (e.g., the variable
TOP in the example above). The <map> blocks allow the user to link the sampled probability
value to the correspoding basic event.

If solverOrder = 1 then: P (TE) = P (MCS1)+P (MCS2)+P (MCS3). If solverOrder =
2 then: P (TE) = P (MCS1)+P (MCS2)+P (MCS3)�P (MCS1MCS2)�P (MCS1MCS3)�
P (MCS2MCS3). If solverOrder = 3 then: P (TE) = P (MCS1)+P (MCS2)+P (MCS3)�
P (MCS1MCS2)� P (MCS1MCS3)� P (MCS2MCS3) + P (MCS1MCS2MCS3)

58

6.1 Time dependent calculation

The MCSSolver can also perform time dependent calculation by providing in the MultiRun step
a dataObject which contains the logic status of the Basic Events. This dataObject contains the
logical status of the the Basic Event: 0 (Basic event set to False: probability=p(BE)) or 1 (Basic
event set to True: probability=1.0). The format of the dataObject can be:

• HistorySet: it contains the temporal profile of each basic event (e.g., BE1, BE2, BE3, and
BE4) as a time series (see test MCSSolver TD.xml). In this case it is needed to specify the
ID of the time variable contained in the HistorySet in the <timeID> node.

Listing 10. Time dependent (from HistorySet) MCSSolver
model input example.

<Models>
<ExternalModel name="MCSmodel"

subType="SR2ML.MCSSolver">
<variables>statusBE1,statusBE2,statusBE3,statusBE4,TOP,time</variables>
<solverOrder>3</solverOrder>
<topEventID>TOP</topEventID>
<timeID>time</timeID>
<map var='statusBE1'>BE1</map>
<map var='statusBE2'>BE2</map>
<map var='statusBE3'>BE3</map>
<map var='statusBE4'>BE4</map>

</ExternalModel>
</Models>

• PointSet: it contains the interval time (initial and final time) under which each basic event
is set to True (see test MCSSolver TD fromPS.xml). As an example, the PointSet contains
the IDs of the basic events in the and the initial and final time as shown below:

Listing 11. Example of PointSet for time dependent MCSSolver
calculation.

<PointSet name="maintenanceSchedule_PointSet">
<Input>BE</Input>
<Output>tIn,tFin</Output>

</PointSet>

In this case, the MCSSolver requires the specification of the DataObject variables that con-
tain the list of basic events (<BE ID> node) and the initial and final time values (<tInitial>
and <tEnd> nodes).

59

Listing 12. Time dependent (from PointSet) MCSSolver model
input example.

<Models>
<ExternalModel name="MCSmodel"

subType="SR2ML.MCSSolver">
<variables>pBE1,pBE2,pBE3,pBE4,TOP,time,BE1,BE2,BE3,BE4</variables>
<solverOrder>3</solverOrder>
<BE_ID>BE</BE_ID>
<tInitial>tIn</tInitial>
<tEnd>tFin</tEnd>
<topEventID>TOP</topEventID>
<timeID>time</timeID>
<map var='pBE1'>BE1</map>
<map var='pBE2'>BE2</map>
<map var='pBE3'>BE3</map>
<map var='pBE4'>BE4</map>

</ExternalModel>
</Models>

6.2 MCSSolver model reference tests

The following is the provided analytic test:

• test MCSSolver.xml

• test MCSSolver TD.xml

• test MCSSolver TD fromPS.xml

60

7 Reliability Models

Reliability Models are the most frequently used in life data analysis and reliability engineering.
These models/functions give the probability of a component operating for a certain amount of
time without failure. As such, the reliability models are function of time, in that every reliability
value has an associated time value. In other words, one must specify a time value with the desired
reliability value. This degree of flexibility makes the reliability model a much better reliability
specification that the mean time to failure (MTTF), which only represents one point along the
entire reliability model.

7.1 The Probability Density and Cumulative Density Functions

From probability and statistics, given a continuous random variable X , we denote:

• The probability density function (pdf), as f(x)

• The cumulative density function (cdf), as F (x).

If x is a continuous random variable, then the probability of x takes on a value in the interval [a, b]
is the area under the pdf f(x) from a to b

P (a x b) =

Z b

a

f(x)dx (1)

The cumulative distribution function is a function F (x) of a random variable x and is defined for
a number x0 by

F (x0) = P (x x0) =

Z x0

�1
f(s)ds (2)

That is, for a given value x0, F (x0) is the probability that the observed value of x would be, at
most, x0. The mathematical relationship between the pdf and cdf is given by:

F (x) =

Z x

�1
f(s)ds (3)

Conversely

f(x) = �dF (x)

dx
(4)

The functions most commonly used in reliability engineering and life data analysis, namely the
reliability function and failure rate function, can be determined directly from the pdf definition,
or f(t). Different distributions exist, such as Lognormal, Exponential, Weibull, etc., and each of
them has a predefined f(t). These distributions were formulated by statisticians, mathematicians,
and engineers to mathematically model or represent certain behavior. Some distributions tend to
better represent life data and are most commonly referred to as lifetime distributions.

61

7.2 The Reliability and Failure Rate Models

Given the mathematical representation of a distribution, we can derive all functions needed for
reliability analysis (i.e., reliability models/functions). This would only depend on the value of t
after the value of the distribution parameters are estimated from data. Now, let T be the random
variable defining the lifetime of the component with cdf F (t), which is the time the component
would operate before failure. The cdf F (t) of the random variable T is given by

F (t) =

Z t

�1
f(T)dT (5)

If F (t) is a differentiable function, the pdf f(t) is given by

f(t) = �dF (t)

dt
(6)

The reliability function or survival function R(t) of the component is given by

R(t) = P (T > t) = 1� P (T t) = 1� F (t) (7)

This is the probability that the component would operate after time t, sometimes called the survival
probability. The failure rate of a system during the interval [t, t+�t] is the probability that a failure
per unit time occurs in the interval, given that a failure has not occurred prior to t, the beginning
of the interval. The failure rate function (i.e., instantaneous failure rate, conditional failure rate) of
the hazard function is defined as the limit of the failure rate as the interval approaches zero

�(t) = lim
�t!0

F (t+�t)� F (t)

�tR(t)
=

1

R(t)
lim
�t!0

F (t+�t)� F (t)

�t
=

1

R(t)

dF (t)

dt
=

f(t)

R(t)
(8)

The failure rate function is the rate of change of the conditional probability of a failure at time t. It
measures the likelihood that a component that has operated up until time t fails in the next instance
of time. Generally, �(t) is the one tabulated because it is measured experimentally and because it
tends to vary less rapidly with time than the other parameters. When �(t) is given, all other three
parameters, F (t), f(t), R(t), can be computed as follows

R(t) = exp(�
Z t

0

�(s)ds) (9)

f(t) = �(t)R(t) = �(t) exp(�
Z t

0

�(s)ds) (10)

F (t) = 1�R(t) = 1� exp(�
Z t

0

�(s)ds) (11)

The mean time between failure (MTBF) can be obtained by finding the expected value of the
random variable T , time to failure. Hence

MTBF = E(T) =

Z 1

0

tf(t)dt =

Z 1

0

R(t)dt (12)

62

7.3 The Lifetime Distributions or Aging Models

We would consider several of the most useful reliability models based on different probability
distributions for describing the failure of continuous operating devices, including:

• Exponential, model type is ’exponential’

• Erlangian, model type is ’erlangian’

• Gamma, model type is ’gamma’

• Lognormal, model type is ’lognorm’

• Fatigue Life, model type is ’fatiguelife’

• Weibull, model type is ’weibull’

• Exponential Weibull, model type is ’exponweibull’

• Bathtub, model type is ’bathtub’

• Power Law, model type is ’powerlaw’

• Log Linear, model type is ’loglinear’.

The specifications of these models must be defined within a RAVEN <ExternalModel>.
This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, defines which of the subtypes should be used. For
reliability models, the user must use ’SR2ML.ReliabilityModel’ as the subtype.

In the reliability <ExternalModel> input block, the following XML subnodes are required:

• <variable>, string, required parameter. Comma-separated list of variable names. Each
variable name needs to match a variable used or defined in the reliability model or variable
coming from another RAVEN entity (i.e. Samplers, DataObjects and Models). Note: For all
the reliability models, the following outputs variables would be available. If the user added
these output variables in the node <variables>, these variables would be also available
to for use anywhere in the RAVEN input to refer to the reliability model output variables.

63

– ’pdf f’, variable contains the calculated pdf value or values at given time instance(s),
(i.e., a series of times).

– ’cdf F’, variable contains the calculated cdf value or values at given time instance(s),
(i.e., a series of times).

– ’rdf R’, variable contains the calculated reliability function (rdf) value or values at
given time instance(s), (i.e., a series of times).

– ’frf h’, variable contains the calculated failure rate function (frf) value or values at
given time instance(s), (i.e., a series of times).

Note: When the external model variables are defined, at run time, RAVEN initializes them
and tracks their values during the simulation.

• <ReliabilityModel>, required parameter. The node is used to define the reliability
model, and it contains the following required XML attribute:

– type, required string attribute, user-defined identifier of the reliability model. Note: the
types for different reliability models can be found at the beginning of this section.

In addition, this node accepts several different subnodes representing the model parameters
depending on the type of the reliability model. The common subnodes for all reliability
models are:

– <Tm>, string or float or comma-separated float, required parameter. Time instance(s)
that the reliability models would use to compute the pdf, cdf, rdf, and frf values. If
a string was provided, the reliability model would treat it as an input variable that
came from entities of RAVEN. In this case, the variable must be listed in the sub-node
<variables> under <ExternalModel>.

– <Td>, string or float, optional parameter. The time that the reliability models start
to be active. If a string was provided, the reliability model would treat it as an input
variable that came from RAVEN entities. In this case, the variable must be listed in the
sub-node <variables> under <ExternalModel>.
Default: 0.

In addition, if the user wants to use the alias system, the following XML block can be input:

• <alias> string, optional field specifies an alias for any variable of interest in the input
or output space for the ExternalModel. These aliases can be used anywhere in the RAVEN
input to refer to the ExternalModel variables. In the body of this node, the user specifies the
name of the variable that the ExternalModel is going to use (during its execution). The actual
alias, usable throughout the RAVEN input, is instead defined in the variable attribute of
this tag.
The user can specify aliases for both the input and the output space. As a sanity check,

64

RAVEN requires an additional required attribute type. This attribute can be either “input”
or “output.” Note: The user can specify as many aliases as needed.
Default: None

Example XML (Bathtub Reliability Model):

<ExternalModel name="bathtub"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="bathtub">

<!-- scale parameter -->
<beta>1.</beta>
<theta>1.0</theta>
<!-- mission time -->
<Tm>tm</Tm>
<!-- shape parameter -->
<alpha>1.0</alpha>
<rho>0.5</rho>
<!-- weight parameter -->
<c>0.5</c>

</ReliabilityModel>
<!-- alias can be used to represent any

input/output variables -->
<alias variable='bathtub_F'

type='output'>cdf_F</alias>
<alias variable='bathtub_f'

type='output'>pdf_f</alias>
<alias variable='bathtub_R'

type='output'>rdf_R</alias>
<alias variable='bathtub_h'

type='output'>frf_h</alias>
</ExternalModel>

7.3.1 The Lognormal Model

The probability density function of the lognormal is given by

f(Tm) =
1

↵Tm

p
2⇡

exp

0

@�1

2

ln Tm�Td

�

↵

!2
1

A (13)

65

where Tm � Td, Td,↵, � > 0, � is the scale parameter, ↵ is the shape parameter, and Td is the
location parameter. This model accepts the following additional sub-nodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

Example XML:

<ExternalModel name="lognorm"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<ReliabilityModel type="lognorm">
<!-- scale parameter -->
<beta>1.</beta>
<!-- mission time -->
<Tm>tm</Tm>
<!-- shape parameter -->
<alpha>1.</alpha>

</ReliabilityModel>
</ExternalModel>

7.3.2 The Exponential Model

The probability density function of the exponential is given by

f(Tm) = � exp (�� (Tm � Td)) (14)

where Tm � Td, Td,� > 0, � is the mean failure rate or the inverse of scale parameter, and Td is
the location parameter. This model accepts the following additional subnodes:

• <lambda>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

66

Example XML:

<ExternalModel name="exponential"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="exponential">

<!-- mean failure rate -->
<lambda>1.</lambda>
<!-- mission time -->
<Tm>tm</Tm>

</ReliabilityModel>
</ExternalModel>

7.3.3 The Weibull Model

The probability density function of the Weibull is given by

f(Tm) =
↵

�

✓
Tm � Td

�

◆↵�1

exp

✓
�
✓
Tm � Td

�

◆↵◆
(15)

where Tm � Td, Td,↵, � > 0, and � is the scale parameter, ↵ is the shape parameter, and Td is the
location parameter. This model accepts the following additional subnodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

Example XML:

<ExternalModel name="weibull"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

67

<!-- xml portion for this plugin only -->
<ReliabilityModel type="weibull">

<!-- scale parameter -->
<beta>1.</beta>
<!-- mission time -->
<Tm>tm</Tm>
<!-- time delay -->
<Td>2.0</Td>
<!-- shape parameter -->
<alpha>1.0</alpha>

</ReliabilityModel>
</ExternalModel>

7.3.4 The Erlangian Model

The probability density function of the Erlangian is given by

f(Tm) =
� (�Tm)

k�1 exp (��Tm)

(k � 1)!
(16)

where Tm � Td, Td,� > 0, and � is the inverse of scale parameter, k is positive integer that control
the shape, and Td is the location parameter. This model accepts the following additional subnodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <k>, string or float, optional parameter. See the above definition. If a string was provided,
the reliability model would treat it as an input variable that came from other RAVEN entity.
In this case, the variable must be listed in the subnode <variables> under <ExternalModel>.

Default: 1 Note: k is a positive integer. If a float was provided, a warning would be raised.

Example XML:

<ExternalModel name="erlangian"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->

68

<ReliabilityModel type="erlangian">
<!-- mean failure rate -->
<lambda>0.1</lambda>
<!-- mission time -->
<Tm>tm</Tm>
<!-- shape parameter -->
<k>2</k>

</ReliabilityModel>
</ExternalModel>

7.3.5 The Gamma Model

The probability density function of the Gamma is given by

f(Tm) =
� (� (Tm � Td))

↵�1 exp (�� (Tm � Td))

� (↵)
(17)

where Tm � Td, Td,↵, � > 0, and � is the inverse of scale parameter, ↵ is the shape parameter,
and Td is the location parameter. This model accepts the following additional subnodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

Example XML:

<ExternalModel name="gamma"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="gamma">

<!-- rate parameter -->
<beta>0.1</beta>
<!-- mission time -->

69

<Tm>tm</Tm>
<!-- shape parameter -->
<alpha>2.</alpha>

</ReliabilityModel>
</ExternalModel>

7.3.6 The Fatigue Life Model (Birnbaum-Saunders)

The probability density function of the fatigue life is given by

f(Tm) =
Tm�Td

� + 1

2↵

r
2⇡
⇣

Tm�Td
�

⌘3 exp

0

B@�

⇣
Tm�Td

� � 1
⌘2

2
⇣

Tm�Td
�

⌘
↵2

1

CA (18)

where Tm � Td, Td,↵, � > 0, and � is the scale parameter, ↵ is the shape parameter, and Td is the
location parameter. This model accepts the following additional subnodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

Example XML:

<ExternalModel name="fatiguelife"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="fatiguelife">

<!-- scale parameter -->
<beta>1.</beta>
<!-- mission time -->
<Tm>tm</Tm>
<!-- shape parameter -->

70

<alpha>1.0</alpha>
</ReliabilityModel>

</ExternalModel>

7.3.7 The Exponentiated Weibull Model

The probability density function of the exponentiated Weibull is given by

f(Tm) = �↵

✓
1� exp

✓
�
✓
Tm � Td

�

◆↵◆◆��1✓
Tm � Td

�

◆↵�1

exp

✓
�
✓
Tm � Td

�

◆↵◆
(19)

where Tm � Td, Td,↵, �, � > 0, and � is the scale parameter, ↵ and � is the shape parameter, and
Td is the location parameter. This model accepts the following additional subnodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

• <gamma>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

Example XML:

<ExternalModel name="exponweibull"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="exponweibull">

<!-- scale parameter -->
<beta>1.</beta>
<!-- mission time -->
<Tm>tm</Tm>

71

<!-- time delay -->
<Td>2.0</Td>
<!-- shape parameter -->
<alpha>1.0</alpha>
<gamma>0.5</gamma>

</ReliabilityModel>
</ExternalModel>

7.3.8 The Bathtub Model

The reliability function is given by:

R(Tm) = exp

✓
�c�

✓
Tm � Td

�

◆↵

� (1� c)

✓
exp

✓
Tm � Td

✓

◆⇢

� 1

◆◆
(20)

The failure rate function is given by

�(Tm) = c↵

✓
Tm � Td

�

◆↵�1

+ (1� c)⇢

✓
Tm � Td

✓

◆⇢�1

(21)

The probability density function of the Bathtub is given by

f(Tm) = �(Tm)R(Tm) (22)

where Tm � Td, Td,↵, �, ✓, ⇢, c > 0, and �, ✓ are the scale parameters, ↵, ⇢ are the shape param-
eters, c 2 [0, 1] is the weight parameter, and Td is the location parameter. This model accepts the
following additional subnodes:

• <alpha>, string or float, required parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

• <theta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

72

• <rho>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

• <c>, string or float, optional parameter. See the above definition. If a string was provided,
the reliability model would treat it as an input variable that came from other RAVEN entity.
In this case, the variable must be listed in the subnode <variables> under <ExternalModel>.

Default: 1

Example XML:

<ExternalModel name="bathtub"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="bathtub">

<!-- scale parameter -->
<beta>1.</beta>
<theta>1.0</theta>
<!-- mission time -->
<Tm>tm</Tm>
<!-- shape parameter -->
<alpha>1.0</alpha>
<rho>0.5</rho>
<!-- weight parameter -->
<c>0.5</c>

</ReliabilityModel>
</ExternalModel>

7.3.9 The Power Law Model for Failure Rate Function

The hazard rate satisfies a power law as a function of time

�(Tm) = �+ ↵(Tm � Td)
� (23)

where Tm � Td, Td,↵, �,� > 0, and Td is the location parameter. This model accepts the following
additional subnodes:

73

• <alpha>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

• <lambda>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

Example XML:

<ExternalModel name="powerlaw"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="powerlaw">

<beta>1.0</beta>
<alpha>1.0</alpha>
<lambda>0.5</lambda>
<Tm>tm</Tm>

</ReliabilityModel>
</ExternalModel>

7.3.10 The Log Linear Model for Failure Rate Function

The hazard rate satisfies a exponential law as a function of time:

�(Tm) = exp (↵ + �(Tm � Td)) (24)

where Tm � Td, Td,↵, � > 0, and Td is the location parameter. This model accepts the following
additional subnodes:

74

• <alpha>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

• <beta>, string or float, optional parameter. See the above definition. If a string was
provided, the reliability model would treat it as an input variable that came from other
RAVEN entity. In this case, the variable must be listed in the subnode <variables>
under <ExternalModel>.
Default: 1

Example XML:

<ExternalModel name="loglinear"
subType="SR2ML.ReliabilityModel">

<variables>cdf_F, pdf_f, rdf_R, frf_h,
tm</variables>

<!-- xml portion for this plugin only -->
<ReliabilityModel type="loglinear">

<beta>1.</beta>
<alpha>1.</alpha>
<Tm>tm</Tm>

</ReliabilityModel>
</ExternalModel>

7.4 Reliability Models Reference Tests

• SR2ML/tests/reliabilityModel/test bathtub.xml

• SR2ML/tests/reliabilityModel/test erlangian.xml

• SR2ML/tests/reliabilityModel/test expon.xml

• SR2ML/tests/reliabilityModel/test exponweibull.xml

• SR2ML/tests/reliabilityModel/test fatiguelife.xml

• SR2ML/tests/reliabilityModel/test gamma.xml

• SR2ML/tests/reliabilityModel/test loglinear.xml

• SR2ML/tests/reliabilityModeltest lognorm.xml

75

• SR2ML/tests/reliabilityModel/test normal.xml

• SR2ML/tests/reliabilityModel/test powerlaw.xml

• SR2ML/tests/reliabilityModeltest weibull.xml

• SR2ML/tests/reliabilityModel/test time dep ensemble reliability.xml.

76

8 Maintenance Models

Maintenance Models are models designed to model maintenance and testing from a reliability
perspective. These models are designed to optimize preventive maintenance at the system level.

Two classes of models are considered here:

• Operating, i.e. model type is ’Operating’

• Standby, i.e. model type is ’Standby’

The specifications of these models must be defined within a RAVEN <ExternalModel>.
This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, defines which of the subtypes should be used. For
maintenance models, the user must use ’SR2ML.MaintenanceModel’ as subtype.

In the maintenance <ExternalModel> input block, the following XML subnodes are required:

• <variable>, string, required parameter. Comma-separated list of variable names. Each
variable name needs to match a variable used or defined in the maintenance model or variable
coming from other RAVEN entities (i.e., Samplers, DataObjects, and Models). Note: For
all the maintenance models, the following outputs variables would be available. If the user
added these output variables in the node <variables>, these variables would be also
available to for use anywhere in the RAVEN input to refer to the maintenance model output
variables.

– ’avail’, variable that contains the calculated availability value
– ’unavail’, variable that contains the calculated unavailability value

Note: When the external model variables are defined, at run time, RAVEN initializes them
and tracks their values during the simulation.

• <MaintenanceModel>, required parameter. The node is used to define the maintenance
model, and it contains the following required XML attribute:

– type, required string attribute, user-defined identifier of the maintenance model.
Note: the types for different maintenance models can be found at the beginning of

this section.

77

In addition, if the user wants to use the alias system, the following XML block can be input:

• <alias> string, optional field specifies alias for any variable of interest in the input or
output space for the ExternalModel. These aliases can be used anywhere in the RAVEN
input to refer to the ExternalModel variables. In the body of this node, the user specifies the
name of the variable that the ExternalModel is going to use (during its execution). The actual
alias, usable throughout the RAVEN input, is instead defined in the variable attribute of
this tag.
The user can specify aliases for both the input and the output space. As a sanity check,
RAVEN requires an additional required attribute type. This attribute can be either “input”
or “output.” Note: The user can specify as many aliases as needed.
Default: None

8.1 Operating Model

For an operating model, the unavailability u is calculated as

u = lambda ⇤ Tr/(1.0 + lambda ⇤ Tr) + Tpm/Tm (25)

where:

• lambda: is the component failure rate

• Tr: mean time to repair

• Tpm: mean time to perform preventive maintenance

• Tm: preventive maintenance interval

Example XML:

<ExternalModel name="PMmodelOperating"
subType="SR2ML.MaintenanceModel">
<variables>lambda,Tm,avail,unavail</variables>
<MaintenanceModel type="PMModel">
<type>operating</type>
<Tr>24</Tr>
<Tpm>10</Tpm>
<lambda>lambda</lambda>
<Tm>Tm</Tm>

</MaintenanceModel>
</ExternalModel>

78

8.2 Standby Model

For an operating model, the unavailability u is calculated as:

u = rho+ 0.5 ⇤ lambda ⇤ T i+ Tt/T i+ (rho+ lambda ⇤ T i) ⇤ Tr/T i+ Tpm/Tm (26)

where:

• rho: failure probability per demand

• Ti: surveillance test interval

• Tr: mean time to repair

• Tt: test duration

• Tpm: mean time to perform preventive maintenance

• Tm: preventive maintenance interval

• lamb: component failure rate

Example XML:

<ExternalModel name="PMmodelStandby"
subType="SR2ML.MaintenanceModel">
<variables>lambda,Tm,Ti,avail,unavail</variables>
<MaintenanceModel type="PMModel">
<type>standby</type>
<Tr>24</Tr>
<Tpm>10</Tpm>
<Tt>5</Tt>
<rho>0.01</rho>
<lambda>lambda</lambda>
<Ti>Ti</Ti>
<Tm>Tm</Tm>

</MaintenanceModel>
</ExternalModel>

79

9 Data Labeling

The DataLabeling post-processor is specifically used to label the data stored in the DataObjects.
It accepts two DataObjects, one DataObject (i.e., reference DataObject) with type PointSet is used
to label the other target DataObjects (type can be either PointSet or HistorySet).

In order to use the DataLabeling PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SR2ML.DataLabeling’/>.

Several sub-nodes are available:

• <label>, string, required field, the label variable name in the reference DataObject. This
variable will be used to label the target DataObject.

• <variable>, required, xml node. In this node, the following attribute should be specified:

– name, required, string attribute, the variable name, which should be exist in the refer-
ence DataObject.

and the following sub-node should also be specified:

– <Function>, string, required field, this function creates the mapping from target
DataObject to the reference DataObject.

* class, string, required field, the class of this function (e.g. Functions)

* type, string, required field, the type of this function (e.g. external)

In order to use this post-processor, the users need to specify two different DataObjects, i.e.

<DataObjects>
<PointSet name="ET_PS">

<Input>ACC, LPI</Input>
<Output>sequence</Output>

</PointSet>
<PointSet name="sim_PS">

<Input>ACC_status, LPI_status</Input>
<Output>out</Output>

</PointSet>
</DataObjects>

The first data object “ET PS” contains the event tree with input variables “ACC, LPI” and output
label “sequence”. This data object will be used to classify the data in the second data object

80

“sim PS”. The results will be stored in the output data object with the same label “sequence”.
Since these two data objects contain different inputs, <Functions> will be used to create the
maps between the inputs:

<Functions>
<External file="func_ACC.py" name="func_ACC">

<variable>ACC_status</variable>
</External>
<External file="func_LPI.py" name="func_LPI">

<variable>LPI_status</variable>
</External>

</Functions>

The inputs to these functions are the data from the target DataObject, and the outputs of these
functions are the data from the reference DataObject.

Example Python Function for “func ACC.py”

def evaluate(self):
return self.ACC_status

Example Python Function for “func LPI.py”

def evaluate(self):
return self.LPI_status

Note: All the functions that are used to create the maps should be include the “evaluate”
method.

The example of DataLabeling post processor is provided below:

<PostProcessor name="ET_Classifier"
subType="SR2ML.DataLabeling">
<label>sequence</label>
<variable name='ACC'>
<Function class="Functions"

type="External">func_ACC</Function>
</variable>
<variable name='LPI'>
<Function class="Functions"

type="External">func_LPI</Function>
</variable>

</PostProcessor>

81

The definitions for the XML nodes can be found in the RAVEN user manual. The label “sequence”
and the variables “ACC, LPI” should be exist in the reference data object, while the functions
“func ACC, func LPI” are used to map relationships between the reference and target data objects.

The labeling process can be achieved via the <Steps> as shown below:

<Simulation>
...
<Steps>

<PostProcess name="classify">
<Input class="DataObjects" type="PointSet"

>ET_PS</Input>
<Input class="DataObjects" type="PointSet"

>sim_PS</Input>
<Model class="Models" type="PostProcessor"

>ET_Classifier</Model>
<Output class="DataObjects" type="PointSet"

>sim_PS</Output>
</PostProcess>

</Steps>
...
</Simulation>

9.1 Data Labeling Reference Tests

• test DataLabeling postprocessor.xml

• test DataLabeling postprocessor HS.xml.

82

10 Event Tree Data Importer

The ETImporter post-processor has been designed to import Event-Tree (ET) object into RAVEN.
Since several ET file formats are available, as of now only the OpenPSA format (see https://open-
psa.github.io/joomla1.5/index.php.html) is supported. As an example, the OpenPSA format ET is
shown below:

Listing 13. ET in OpenPSA format.

<define-event-tree name="eventTree">
<define-functional-event name="ACC"/>
<define-functional-event name="LPI"/>
<define-functional-event name="LPR"/>
<define-sequence name="1"/>
<define-sequence name="2"/>
<define-sequence name="3"/>
<define-sequence name="4"/>
<initial-state>

<fork functional-event="ACC">
<path state="0">

<fork functional-event="LPI">
<path state="0">

<fork functional-event="LPR">
<path state="0">

<sequence name="1"/>
</path>
<path state="+1">

<sequence name="2"/>
</path>

</fork>
</path>
<path state="+1">

<sequence name="3"/>
</path>

</fork>
</path>
<path state="+1">

<sequence name="4"/>
</path>

</fork>
</initial-state>

</define-event-tree>

83

This is performed by saving the structure of the ET (from file) as a PointSet (only PointSet
are allowed), since an ET is a static Boolean logic structure. Each realization in the PointSet
represents a unique accident sequence of the ET, and the PointSet is structured as follows:

• Input variables of the PointSet are the branching conditions of the ET. The value of each
input variable can be:

– 0: event did occur (typically upper branch)
– 1: event did not occur (typically lower branch)
– -1: event is not queried (no branching occured)

• Output variables of the PointSet are the ID of each branch of the ET (i.e., positive integers
greater than 0)

Note: that the 0 or 1 values are specified in the <path state="0"> or <path state="1">
nodes in the ET OpenPSA file.

Provided this definition, the ET described in Listing 13 will be converted to PointSet that is
characterized by the following variables:

• Input variables: statusACC, statusLPI, statusLPR

• Output variable: sequence

and the corresponding PointSet if the <expand> node is set to False is shown in Table 2. If
<expand> set to True, the corresponding PointSet is shown in Table 3.

Table 2. PointSet generated by RAVEN by employing the ET
Importer Post-Processor with <expand> set to False for the ET
of Listing 13.

ACC LPI LPR sequence
0. 0. 0. 1.
0. 0. 1. 2.
0. 1. -1. 3.
1. -1. -1. 4.

The ETImporter PP supports also:

• links to sub-trees Note: If the ET is split in two or more ETs (and thus one file for each ET),
then it is only required to list all files in the Step. RAVEN automatically detect links among
ETs and merge all of them into a single PointSet.

84

Table 3. PointSet generated by RAVEN by employing the ET
Importer Post-Processor with <expand> set to True for the ET
of Listing 13.

ACC LPI LPR sequence
0. 0. 0. 1.
0. 0. 1. 2.
0. 1. 0. 3.
0. 1. 1. 3.
1. 0. 0. 4.
1. 0. 1. 4.
1. 1. 0. 4.
1. 1. 1. 4.

• by-pass branches

• symbolic definition of outcomes: typically outcomes are defined as either 0 (upper branch)
or 1 (lower branch). If instead the ET uses the success/failure labels, then they are converted
into 0/1 labels Note: If the branching condition is not binary or success/failure, then the ET
Importer Post-Processor just follows the numerical value of the <state> attribute of the
<<path>> node in the ET OpenPSA file.

• symbolic/numerical definition of sequences: if the ET contains a symbolic sequence then
a .xml file is generated. This file contains the mapping between the sequences defined in
the ET and the numerical IDs created by RAVEN. The file name is the concatenation of the
ET name and “ mapping”. As an example the file “eventTree mapping.xml” generated by
RAVEN:

<map Tree="eventTree">
<sequence ID="0">seq_1</sequence>
<sequence ID="1">seq_2</sequence>
<sequence ID="2">seq_3</sequence>
<sequence ID="3">seq_4</sequence>

</map>

contains the mapping of four sequences defined in the ET (seq 1,seq 2,seq 3,seq 4) with the
IDs generated by RAVEN (0,1,2,3). Note that if the sequences defined in the ET are both
numerical and symbolic then they are all mapped.

• The ET can contain a branch that is defined as a separate block in the <define-branch>
node and it is replicated in the ET; in such case RAVEN automatically replicate such branch
when generating the PointSet.

85

The <collect-formula> are not considered since this node is used to connect the Boolean
formulae generated by the Fault-Trees to the branch (i.e., fork) point.

In order to use the ETImporter PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SR2ML.ETImporter’/>.

Several sub-nodes are available:

• <fileFormat>, string, required field, specifies the format of the file that contains the ET
structure (supported format: OpenPSA).

• <expand>,bool, required parameter, expand the ET branching conditions for all branches
even if they are not queried

Example:

Listing 14. ET Importer input example.

<Files>
<Input name="eventTreeTest" type="">eventTree.xml</Input>

</Files>

<Models>
...
<PostProcessor name="ETimporter" subType="SR2ML.ETImporter">

<fileFormat>OpenPSA</fileFormat>
<expand>False</expand>

</PostProcessor>
...

</Models>

<Steps>
...
<PostProcess name="import">

<Input class="Files" type=""
>eventTreeTest</Input>

<Model class="Models" type="PostProcessor"
>ETimporter</Model>

<Output class="DataObjects" type="PointSet"
>ET_PS</Output>

</PostProcess>

86

...
</Steps>

<DataObjects>
...
<PointSet name="ET_PS">

<Input>ACC,LPI,LPR</Input>
<Output>sequence</Output>

</PointSet>
...

</DataObjects>

10.1 ET Importer Reference Tests

• test ETimporter.xml

• test ETimporterMultipleET.xml

• test ETimporterSymbolic.xml

• test ETimporter expand.xml

• test ETimporter DefineBranch.xml

• test ETimporter 3branches.xml

• test ETimporter 3branches NewNumbering.xml

• test ETimporter 3branches NewNumbering expanded.xml.

87

11 Fault Tree Data Importer

The FTImporter post-processor has been designed to import Fault-Tree (FT) object into RAVEN.
Since several FT file formats are available, as of now only the OpenPSA format (see https://open-
psa.github.io/joomla1.5/index.php.html) is supported. As an example, the FT in OpenPSA format
is shown in Listing 15.

Listing 15. FT in OpenPSA format.

<opsa-mef>
<define-fault-tree name="FT">

<define-gate name="TOP">
<or>

<gate name="G1"/>
<gate name="G2"/>
<gate name="G3"/>

</or>
</define-gate>
<define-component name="A">

<define-gate name="G1">
<and>

<basic-event name="BE1"/>
<basic-event name="BE2"/>

</and>
</define-gate>
<define-gate name="G2">

<and>
<basic-event name="BE1"/>
<basic-event name="BE3"/>

</and>
</define-gate>
<define-basic-event name="BE1">

<float value="1.2e-3"/>
</define-basic-event>
<define-component name="B">

<define-basic-event name="BE2">
<float value="2.4e-3"/>

</define-basic-event>
<define-basic-event name="BE3">

<float value="5.2e-3"/>
</define-basic-event>

</define-component>

88

</define-component>
<define-component name="C">

<define-gate name="G3">
<and>

<basic-event name="BE1"/>
<basic-event name="BE4"/>

</and>
</define-gate>
<define-basic-event name="BE4">

<float value="1.6e-3"/>
</define-basic-event>

</define-component>
</define-fault-tree>

</opsa-mef>

This is performed by saving the structure of the FT (from file) as a PointSet (only PointSet are
allowed).

Each Point in the PointSet represents a unique combination of the basic events. The PointSet
is structured as follows: input variables are the basic events, output variable is the top event of the
FT. The value for each input and output variable can have the following values:

• 0: False

• 1: True

Provided this definition, the FT model of Listing 15 can be converted to PointSet that is char-
acterized by these variables:

• Input variables: BE1, BE2, BE3, BE4

• Output variable: out

and it is structured is shown in Table 4.

In order to use the FTImporter PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SR2ML.FTImporter’/>.

Several sub-nodes are available:

89

Table 4. PointSet generated by RAVEN by employing the FT
Importer Post-Processor for the FT of Listing 15.

BE1 BE2 BE3 BE4 TOP
0. 0. 0. 0. 0.
0. 0. 0. 1. 0.
0. 0. 1. 0. 0.
0. 0. 1. 1. 0.
0. 1. 0. 0. 0.
0. 1. 0. 1. 0.
0. 1. 1. 0. 0.
0. 1. 1. 1. 0.
1. 0. 0. 0. 0.
1. 0. 0. 1. 1.
1. 0. 1. 0. 1.
1. 0. 1. 1. 1.
1. 1. 0. 0. 1.
1. 1. 0. 1. 1.
1. 1. 1. 0. 1.
1. 1. 1. 1. 1.

• <fileFormat>, string, required field, specifies the format of the file that contains the FT
structure (supported format: OpenPSA).

• <topEventID>,string, required parameter, the name of the top event of the FT

The example of FTImporter PostProcessor is shown in Listing 16

Listing 16. FT Importer input example.

<Files>
<Input name="faultTreeTest"

type="">FTimporter_not.xml</Input>
</Files>

<Models>
...
<PostProcessor name="FTimporter" subType="SR2ML.FTImporter">

<fileFormat>OpenPSA</fileFormat>
<topEventID>TOP</topEventID>

</PostProcessor>
...

90

</Models>

<Steps>
...
<PostProcess name="import">

<Input class="Files" type=""
>faultTreeTest</Input>

<Model class="Models" type="PostProcessor"
>FTimporter</Model>

<Output class="DataObjects" type="PointSet"
>FT_PS</Output>

</PostProcess>
...

</Steps>

<DataObjects>
...
<PointSet name="FT_PS">

<Input>BE1,BE2,BE3,BE4</Input>
<Output>TOP</Output>

</PointSet>
...

</DataObjects>

Important notes and capabilities:

• If the FT is split in two or more FTs (and thus one file for each FT), then it is only required
to list all files in the Step. RAVEN automatically detect links among FTs and merge all of
them into a single PointSet.

• Allowed gates: AND, OR, NOT, ATLEAST, CARDINALITY, IFF, imply, NAND, NOR,
XOR

• If an house-event is defined in the FT:

Listing 17. FT Importer input example: house-event.

<opsa-mef>
<define-fault-tree name="FT">

<define-gate name="TOP">
<or>

<basic-event name="BE1"/>

91

<basic-event name="BE2"/>
<house-event name="HE1"/>

</or>
</define-gate>
<define-house-event name="HE1">

<constant value="true"/>
</define-house-event>

</define-fault-tree>
</opsa-mef>

then the HE1 is not part of the PointSet (value is fixed)

11.1 FT Importer Reference Tests

• test FTimporter and withNOT embedded.xml

• test FTimporter and withNOT withNOT embedded.xml

• test FTimporter and withNOT.xml

• test FTimporter and.xml

• test FTimporter atleast.xml

• test FTimporter cardinality.xml

• test FTimporter component.xml

• test FTimporter doubleNot.xml

• test FTimporter iff.xml

• test FTimporter imply.xml

• test FTimporter multipleFTs.xml

• test FTimporter nand.xml

• test FTimporter nor.xml

• test FTimporter not.xml

• test FTimporter or houseEvent.xml

• test FTimporter or.xml

• test FTimporter xor.xml.

92

12 MCSImporter

The MCSImporter post-processor has been designed to import Minimal Cut Sets (MCSs) into
RAVEN. This post-processor reads a csv file which contain the list of MCSs and it save this list as
a DataObject (i.e., a PointSet). The csv file is composed by three columns; the first contains the ID
number of the MCS, the second one contains the MCS probability value, the third one lists all the
Basic Events contained in the MCS. An example of csv file is shown in Table 5.

Table 5. Example of csv file which contains four MCSs.

ID, Prob, MCS,
1., 1.8E-2, D
2., 4.0E-3, B
3., 3.0E-4, A,C
4., 2.1E-5, E,C

The PointSet is structured to include all Basic Event, the MCS ID, the MCS probability, and
the outcome of such MCS (always set to 1). MCS ID and MCS probability are copied directly
from the csv file. For each MCS, the Basic Events can have two possible values:

• 0: Basic Event is not included in the MCS

• 1: Basic Event is included in the MCS

The PointSet generated from the csv file of Table 5 is shown in Table 6.

Table 6. PointSet generated by RAVEN for the list of MCSs
shown in Table 5.

A B C D E MCS ID probability out
0 0 0 1 0 1 1.8E-2 1
0 1 0 0 0 2 4.0E-3 1
1 0 1 0 0 3 3.0E-4 1
0 0 1 0 1 4 4.0E-3 1

In order to use the MCSImporter PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SR2ML.MCSImporter’/>.

Several sub-nodes are available:

93

• <expand>,bool, required parameter, expand the set of Basic Events by including all PRA
Basic Events and not only the once listed in the MCSs

• <BElistColumn>,string, optional parameter, if expand is set to True, then this node
contains the column of the csv file which contains all the PRA Basic Events

Example:

Listing 18. MCS Importer input example (no expand).

<Files>
<Input name="MCSlistFile" type="MCSlist">MCSlist.csv</Input>

</Files>

<Models>
<PostProcessor name="MCSImporter"

subType="SR2ML.MCSImporter">
<expand>False</expand>

</PostProcessor>
</Models>

<Steps>
<PostProcess name="import">

<Input class="Files" type="MCSlist"
>MCSlistFile</Input>

<Model class="Models" type="PostProcessor"
>MCSImporter</Model>

<Output class="DataObjects" type="PointSet"
>MCS_PS</Output>

</PostProcess>
</Steps>

<DataObjects>
<PointSet name="MCS_PS">

<Input>A,B,C,D,E</Input>
<Output>MCS_ID,probability,out</Output>

</PointSet>
</DataObjects>

Example:

Listing 19. MCS Importer input example (expanded).

94

<Files>
<Input name="MCSlistFile" type="MCSlist">MCSlist.csv</Input>
<Input name="BElistFile" type="BElist" >BElist.csv</Input>

</Files>

<Models>
<PostProcessor name="MCSImporter"

subType="SR2ML.MCSImporter">
<expand>False</expand>

</PostProcessor>
</Models>

<Steps>
<PostProcess name="import">

<Input class="Files" type="MCSlist"
>MCSlistFile</Input>

<Input class="Files" type="BElist"
>BElistFile</Input>

<Model class="Models" type="PostProcessor"
>MCSimporter</Model>

<Output class="DataObjects" type="PointSet"
>MCS_PS</Output>

</PostProcess>
</Steps>

<DataObjects>
<PointSet name="MCS_PS">

<Input>A,B,C,D,E,F,G</Input>
<Output>MCS_ID,probability,out</Output>

</PointSet>
</DataObjects>

95

13 Discrete Risk Measures

This Post-Processor calculates a series of risk importance measures from a PointSet. This calcula-
tion is performed for a set of input parameters given an output target.

The user is required to provide the following information:

• the set of input variables. For each variable the following need to be specified:

– the set of values that imply a reliability value equal to 1 for the input variable
– the set of values that imply a reliability value equal to 0 for the input variable

• the output target variable. For this variable it is needed to specify the values of the output
target variable that defines the desired outcome.

The following variables are first determined for each input variable i:

• R0 Probability of the outcome of the output target variable (nominal value)

• R
+
i Probability of the outcome of the output target variable if reliability of the input variable

is equal to 0

• R
�
i Probability of the outcome of the output target variable if reliability of the input variable

is equal to 1

Available measures are:

• Risk Achievement Worth (RAW): RAW = R
+
i /R0

• Risk Achievement Worth (RRW): RRW = R0/R
�
i

• Fussell-Vesely (FV): FV = (R0 �R
�
i)/R0

• Birnbaum (B): B = R
+
i �R

�
i

In order to use the RiskMeasureDiscrete PP, the user needs to set the subType of a <PostProcessor>
node:

<PostProcessor name=’ppName’ subType=’SR2ML.RiskMeasureDiscrete’/>.

Several sub-nodes are available:

In the <PostProcessor> input block, the following XML sub-nodes are required, indepen-
dent of the subType specified:

96

• <measures>, string, required field, desired risk importance measures that have to be com-
puted (RRW, RAW, FV, B)

• <variable>, string, required field, ID of the input variable. This node is provided for
each input variable. This nodes needs to contain also these attributes:

– R0values, float, required field, interval of values (comma separated values) that
implies a reliability value equal to 0 for the input variable

– R1values, float, required field, interval of values (comma separated values) that
implies a reliability value equal to 1 for the input variable

• <target>, string, required field, ID of the output variable. This nodes needs to contain
also the attribute values, string, required field, interval of values of the output target
variable that defines the desired outcome

Example: This example shows an example where it is desired to calculate all available risk
importance measures for two input variables (i.e., pumpTime and valveTime) given an output target
variable (i.e., Tmax). A value of the input variable pumpTime in the interval [0, 240] implies a
reliability value of the input variable pumpTime equal to 0. A value of the input variable valveTime
in the interval [0, 60] implies a reliability value of the input variable valveTime equal to 0. A value
of the input variables valveTime and pumpTime in the interval [1441, 2880] implies a reliability
value of the input variables equal to 1. The desired outcome of the output variable Tmax occurs in
the interval [2200, 2500].

<Simulation>
...
<Models>

...
<PostProcessor name="riskMeasuresDiscrete"

subType="RiskMeasuresDiscrete">
<measures>B,FV,RAW,RRW</measures>
<variable R0values='0,240'

R1values='1441,2880'>pumpTime</variable>
<variable R0values='0,60'

R1values='1441,2880'>valveTime</variable>
<target values='2200,2500'

>Tmax</target>
</PostProcessor>
...

</Models>
...

</Simulation>

97

This Post-Processor allows the user to consider also multiple datasets (a data set for each initi-
ating event) and calculate the global risk importance measures. This can be performed by:

• Including all datasets in the step

<Simulation>
...
</Steps>

...
<PostProcess name="PP">

<Input class="DataObjects" type="PointSet"
>outRun1</Input>

<Input class="DataObjects" type="PointSet"
>outRun2</Input>

<Model class="Models" type="PostProcessor"
>riskMeasuresDiscrete</Model>

<Output class="DataObjects" type="PointSet"
>outPPS</Output>

<Output class="OutStreams" type="Print"
>PrintPPS_dump</Output>

</PostProcess>
</Steps>
...

</Simulation>

• Adding in the Post-processor the frequency of the initiating event associated to each dataset

<Simulation>
...
<Models>

...
<PostProcessor name="riskMeasuresDiscrete"

subType="SR2ML.RiskMeasuresDiscrete">
<measures>FV,RAW</measures>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Astatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Bstatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Cstatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Dstatus</variable>
<target values='0.9,1.1'>outcome</target>

98

<data freq='0.01'>outRun1</data>
<data freq='0.02'>outRun2</data>

</PostProcessor>
...

</Models>
...

</Simulation>

This post-processor can be made time dependent if a single HistorySet is provided among
the other data objects. The HistorySet contains the temporal profiles of a subset of the input
variables. This temporal profile can be only boolean, i.e., 0 (component offline) or 1 (component
online). Note that the provided history set must contains a single History; multiple Histories are
not allowed. When this post-processor is in a dynamic configuration (i.e., time-dependent), the
user is required to specify an xml node <temporalID> that indicates the ID of the temporal
variable. For each time instant, this post-processor determines the temporal profiles of the desired
risk importance measures. Thus, in this case, an HistorySet must be chosen as an output data
object. An example is shown below:
<Simulation>

...
<Models>

...
<PostProcessor name="riskMeasuresDiscrete"

subType="SR2ML.RiskMeasuresDiscrete">
<measures>B,FV,RAW,RRW,R0</measures>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Astatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Bstatus</variable>
<variable R1values='-0.1,0.1'

R0values='0.9,1.1'>Cstatus</variable>
<target values='0.9,1.1'>outcome</target>
<data freq='1.0'>outRun1</data>
<temporalID>time</temporalID>

</PostProcessor>
...

</Models>
...
<Steps>

...
<PostProcess name="PP">

<Input class="DataObjects" type="PointSet"
>outRun1</Input>

99

<Input class="DataObjects" type="HistorySet"
>timeDepProfiles</Input>

<Model class="Models" type="PostProcessor"
>riskMeasuresDiscrete</Model>

<Output class="DataObjects" type="HistorySet"
>outHS</Output>

<Output class="OutStreams" type="Print"
>PrintHS</Output>

</PostProcess>
...

</Steps>
...

</Simulation>

100

14 Margin Models

Margin Models are models designed to calculate the margin of a component for margin-based
reliability calculations.

The classes of models considered here are as follows:

• PointSetMarginModel, i.e. model type is ’PointSetMarginModel’

The specifications of these models must be defined within a RAVEN <ExternalModel>.
This XML node accepts the following attributes:

• name, required string attribute, user-defined identifier of this model. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, defines which of the subtypes should be used. For
margin models, the user must use ’SR2ML.MarginModel’ as subtype.

In the margin <ExternalModel> input block, the following XML subnodes are required:

• <variable>, string, required parameter. Comma-separated list of variable names. Each
variable name needs to match a variable used or defined in the matign model or variable
coming from other RAVEN entities (i.e., Samplers, DataObjects, and Models).

• <MarginModel>, required parameter. The node is used to define the maintenance model,
and it contains the following required XML attribute:

– type, required string attribute, user-defined identifier of the margin model.

In addition, if the user wants to use the alias system, the following XML block can be input:

• <alias> string, optional field specifies alias for any variable of interest in the input or
output space for the ExternalModel. These aliases can be used anywhere in the RAVEN
input to refer to the ExternalModel variables. In the body of this node, the user specifies the
name of the variable that the ExternalModel is going to use (during its execution). The actual
alias, usable throughout the RAVEN input, is instead defined in the variable attribute of
this tag.
The user can specify aliases for both the input and the output space. As a sanity check,
RAVEN requires an additional required attribute type. This attribute can be either “input”
or “output.” Note: The user can specify as many aliases as needed.
Default: None

101

14.1 PointSetMarginModel Model

For the PointSetMarginModel model, in the margin <MarginModel> input block, the following
XML subnodes are required:

• <failedDataFileID>, string, required parameter. ID of the file containing the failure
data to be used as reference data

• <marginID>, required parameter. ID of the variable where the margin needs to be stored

• <map>, required parameter. This node is used to map actual measured data dimension and
the failure data dimension. In here, the ID of the Raven variable representing a dimension of
the actual data

– var, required string attribute, the ID of the corresponding dimension in the failure
data.

Example XML:

<ExternalModel name="PointSetMargin"
subType="SR2ML.MarginModel">
<variables>actualTime,actualTemp,marginPS1</variables>
<MarginModel type="PointSetMarginModel">
<failedDataFileID>failureData.csv</failedDataFileID>
<marginID>marginPS1</marginID>
<map var='time'>actualTime</map>
<map var='avgT'>actualTemp</map>

</MarginModel>
</ExternalModel>

102

Document Version Information

This document has been compiled using the following version of the plug-in git repository:
fc3c0d531b108b2f2017a3e0e12ed8b25d8641ba mandd Fri, 9 Jul 2021 16:39:49 -0600

103

References

[1] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, S. Sen, C. Wang, and J. Chen,
“Raven user manual,” Tech. Rep. INL/EXT-15-34123, March 2017.

[2] A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P. W. Talbot, D. P. Maljovec, and
C. Smith, “Raven theory manual,” tech. rep., Idaho National Laboratory (INL), 2017.

104

105

APPENDIX B – LOGOS USER MANUAL

MANUAL

INL/EXT-20-61006

Revision 0

Printed July 12, 2021

LOGOS User Manual

Congjian Wang and Diego Mandelli

Prepared by

Idaho National Laboratory

Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by

Battelle Energy Alliance for the United States Department of Energy

under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for unlimited release.

106

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

107

INL/EXT-20-61006
Revision 0

Printed July 12, 2021

LOGOS User Manual

Congjian Wang
Diego Mandelli

108

Contents
1 Introduction . 111

1.1 Acquiring and Installing LOGOS . 111
1.2 User Manual Formats . 112
1.3 Components of LOGOS . 113
1.4 Capabilities of LOGOS . 114

2 Overview of Modeling Components . 115
2.1 Sets . 116
2.2 Parameters . 117
2.3 Uncertainties . 119
2.4 External Constraints . 120
2.5 Settings: Options for Optimization . 123

3 Deterministic Capital Budgeting . 126
3.1 Single Knapsack Problem Optimization . 127

3.1.1 Simple Knapsack Problem . 127
3.1.2 Bounded Knapsack Problem . 129
3.1.3 Multi-Dimensional Knapsack Problem: DKP . 130

3.2 Multiple Knapsack Problem Optimization . 132
3.3 Multiple-Choice Multi-Dimensional Knapsack Problem Optimization 134

4 Prioritizing Project Selection to Hedge Against Uncertainty . 138
4.1 Risk-Informed Single Knapsack Problem Optimization . 140

4.1.1 Risk-Informed Simple Knapsack Problem . 140
4.1.2 Risk-Informed Multi-Dimensional Knapsack Problem 142

4.2 Risk-Informed Multiple Knapsack Problem Optimization . 144
4.3 Risk-Informed Multiple-Choice Multi-Dimensional Knapsack Problem Optimization147

5 Distributionally Robust Optimization. 151
5.1 Defining a Distributional Uncertainty Set via the Wasserstein Distance 152
5.2 Towards a Computationally Tractable Reformulation . 153
5.3 LOGOS Settings for DRO Problems . 155
5.4 DRO for Single Knapsack Problem . 156
5.5 DRO for Multi-Dimensional Knapsack Problem . 157
5.6 DRO for Multiple Knapsack Problem . 159
5.7 DRO for Multiple-Choice Knapsack Problem . 161

6 Risk-Based Stochastic Capital Budgeting using Conditional Value-at-Risk 165
6.1 Definitions of VaR and CVaR . 165
6.2 CVaR in Capital Budgeting . 166
6.3 LOGOS Settings for CVaR Problems . 167
6.4 CVaR for Single Knapsack Problem . 168
6.5 CVaR for Multi-Dimensional Knapsack Problem . 169
6.6 CVaR for Multiple Knapsack Problem . 171
6.7 CVaR for Multiple-Choice Knapsack Problem . 173

109

7 Plugin for the RAVEN Code . 177
7.1 Test Automation . 178
7.2 Testing System Prerequisites . 178
7.3 Test Location and Definition . 179
7.4 Running the Tests . 180
7.5 Continuous Integration System (CIVET) . 180

8 SSC Cashflow and NPV Models . 181
9 Knapsack Models . 189

9.1 Simple Knapsack Model . 189
9.2 MultipleKnapsack Model . 190

References . 192

110

1 Introduction

Industry equipment reliability (ER) and asset management (AM) programs are essential elements
that help ensure the safe and economical operation of nuclear power plants (NPPs). The effec-
tiveness of these programs is addressed in several industry-developed and regulatory programs.
However, these programs have proven labor-intensive and expensive. There is an opportunity to
significantly enhance the collection, analysis, and use of this information in order to provide more
cost-effective plant operation. LOGOS provides computational capabilities to optimize plant re-
sources such as maintenance optimization (ER application) and optimal component replacement
schedule (AM application) by using state-of-the-art discrete optimization methods.

LOGOS is a software package and RAVEN [1, 2] plugin that contains a set of discrete opti-
mization models designed to solve capital budgeting optimization problems by integrating eco-
nomic and reliability data into the analysis framework. More specifically, given system, structure
and component (SSC) health (e.g., failure rate or probability), O&M costs, replacement costs, and
cost associated with component failure and budget constraints, LOGOS provides the optimal set
of projects (e.g., SSC replacement) to maximize profit and satisfy the provided reliability require-
ments. The aforementioned input data can be either deterministic or stochastic in nature (i.e., they
can be point values or probability distribution functions). In the latter case, several scenarios are
generated by sampling the provided distributions.

The developed models are based on different versions of the knapsack optimization problem.
Two main classes of optimization models were initially developed: deterministic and stochastic.
Stochastic optimization models evolve deterministic models by explicitly considering data un-
certainties associated with constraints or item cost and reward. In FY-20, we moved forward by
implementing two schedule optimization methods. The first one reformulates the capital budgeting
problem in a distributionally robust form which allows the user to rely on data directly rather than
proposing a distribution from the data itself. The second one reformulates the capital budgeting
explicitly using risk measures as variable to be maximized or minimized.

These models can be employed as stand-alone models or interfaced with the INL-developed
RAVEN code to propagate data uncertainties and analyze the generated data (i.e., sensitivity anal-
ysis).

1.1 Acquiring and Installing LOGOS

LOGOS is supported on three separate computing platforms: Linux, OSX (Apple Macintosh),
and Microsoft Windows. Currently, LOGOS can be downloaded from the LOGOS GitLab repos-
itory: https://hpcgitlab.hpc.inl.gov/RAVEN_PLUGINS/LOGOS.git. New users
should contact LOGOS developers to get started with LOGOS. This typically involves the follow-
ing steps:

111

https://hpcgitlab.hpc.inl.gov/RAVEN_PLUGINS/LOGOS.git

• Download LOGOS

You can download the source code for LOGOS from https://hpcgitlab.hpc.inl.
gov/RAVEN_PLUGINS/LOGOS.git.

• Install LOGOS dependencies

path/to/LOGOS/build.sh --install

• Activate LOGOS Libraries

source activate LOGOS_libraries

• Test LOGOS

python run_tests.py

Alternatively, the logos script contained in the folder “LOGOS” can be directly used:

path/to/LOGOS/logos -i <inputFile.xml> -o <outputFile.csv>

• For use as a RAVEN Plugin, RAVEN must first be downloaded from https://github.
com/idaholab/raven.git.
Detailed instructions are available from https://github.com/idaholab/raven/
wiki. To register a plugin with RAVEN and make its components accessible, run the script:

raven/scripts/install_plugins.py -s /abs/path/to/LOGOS

After the plugin registration, then following the installation instruction at https://github.
com/idaholab/raven/wiki/installationMain to install the required dependen-
cies.

1.2 User Manual Formats

In this manual, we employ the following formats to highlight specific elements with particular
meanings (i.e., input structure, examples, and terminal commands):

• Python Coding:

class AClass():
def aMethodImplementation(self):

pass

• LOGOS XML input example:

112

https://hpcgitlab.hpc.inl.gov/RAVEN_PLUGINS/LOGOS.git
https://hpcgitlab.hpc.inl.gov/RAVEN_PLUGINS/LOGOS.git
https://github.com/idaholab/raven.git
https://github.com/idaholab/raven.git
https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki/installationMain
https://github.com/idaholab/raven/wiki/installationMain

<MainXMLBlock>
...
<aXMLnode anAttribute='aValue'>

<aSubNode>body</aSubNode>
</aXMLnode>
<!-- This is commented block -->
...

</MainXMLBlock>

• Bash Commands:

cd path/to/LOGOS/
./build.sh --install
cd ../../

1.3 Components of LOGOS

In LOGOS, eXtensible Markup Language (XML) format is used to create the input file. For more
information about XML, please click on the link: XML tutorial.
The main input blocks are as follows:

• <Logos>: The root node containing the entire input; all of the subsequent blocks fit inside
the LOGOS block.

• <Settings>: Specifies the calculation settings (i.e. options for optimization solvers, op-
tions for constraints, and working directory.)

• <Sets>: Specifies a collection of data, possibly including numeric data (e.g. real or integer
values) as well as symbolic data (e.g. strings) typically used to specify valid indices for
indexed components. Note: numeric data provided in the <Sets> would be treated as
strings.

• <Parameters>: Specifies a collection of parameters, which are numerical values used
to formulate constraints and objectives in a optimization model. A parameter can denote a
single value, an array of values, or a multi-dimensional array of values.

• <Uncertainties>: Specifies a collection of scenarios, which are numerical values used
to simulate variations within parameters. A scenarios should follow the same format as the
parameter.

• <ExternalConstraints>: Specifies a collection of external constraints, which are
Python functions used to add additional constraints to the current optimization problem.

113

https://www.w3schools.com/xml/default.asp

Each of these components is explained in dedicated sections of the user manual.

1.4 Capabilities of LOGOS

This document provides a detailed description of LOGOS. The features included in LOGOS are:

• Overview of modeling components (see Section 2)

• Deterministic capital budgeting (see Section 3)

• Prioritizing project selection to hedge against uncertainty (see Section 4)

• Distributionally robust optimization (see Section 5)

• Risk-based stochastic capital budgeting using conditional Value-at-Risk (See Section 6)

• Plugin for the RAVEN code (see Section 7)

• SSC cashflow and NPV models (see Section 8)

114

2 Overview of Modeling Components

We consider a capital budgeting problem for a nuclear generation station, with possible extension
to a larger fleet of plants. Due to limited resources, we can only select a subset from a number
of candidate investment projects. Our goal is to maximize overall net present value (NPV), or a
variant of this objective, when we incorporate uncertainty into project cost and revenue streams. In
doing so, we must respect resource limits and capture key structural and stochastic dependencies
of the system. Example projects include upgrading a steam turbine, refurbishing or replacing a set
of reactor coolant pumps, and replacing a set of feed-water heaters. Selecting an individual project
has multiple facets and implications.

• Rewards or Net Present Values: Selecting a project can improve revenue (e.g., upgrading
a steam turbine may lead to an uprate in plant capacity resulting in larger revenue from sell-
ing power.) Replacing a key system component can improve reliability, increasing revenue
due to a reduction in forced outages as well as operations and maintenance (O&M) costs.
Choosing to perform minimum maintenance versus refurbishing a component or replacing
and improving a system can produce reward streams that can be negative or positive depend-
ing on the selection. Parameter <net present values> is used to specify the rewards
(see Section 2.2).

• Resources and Liabilities: Critical resources, including (i) capital costs, (ii) O&M costs,
(iii) time and labor-hours during a planned outage, and (iv) personnel, installation and main-
tenance of equipment, workspaces, etc.. Within these categories, resources can further sub-
categorized, (witch each subcategory having its own budget), according to the plant’s orga-
nizational structure to provide multiple “colors” of money within capital costs, O&M costs,
personnel availability, etc.. The set <resources> and parameter <available capitals>
are used to specify the resources and liabilities (see Section 2.1 and Section 2.2).

• Costs: Selecting a project in year t induces multiple cost streams in year t as well as in
subsequent years; we interpret “cost” broadly to include commitment of critical resources.
The parameter <costs> is used to specify the costs (see Section 2.2).

• Time Periods: Multiple capital projects can compete for same time period, limiting project
selection. The set <time periods> is used to provide indices for costs and available
capitals (see Section 2.1).

• Options: The goal of selecting a project is typically to improve or maintain a particular
function the plant performs, and there may be multiple ways to carry out the task. A project
may be performed over a three-year period–say, years ‘t, t + 1, t + 2’–or the start of the
project could instead be two years hence, changing the equation to ‘t + 2, t + 3, t + 4’.
Alternatively, at increased cost and benefit, it may be possible to complete the project in two
years: ‘t, t + 1’ or ‘t + 2, t + 3’. When selecting a project to uprate plant capacity, we
may have the options of increasing it by 3% or 6%. In all these cases, we can perform the

115

project in, at most, one particular way, out of a collection of options. We represent this by
cloning a “project” into multiple project-option pairs, and adding a constraint saying that we
can select, at most, one from this set of options. The set <options> is used to provided
indices for these multiple project-option pairs (see Section 2.1).

• Capitals: If we consider maintenance for multiple units in an NPP in parallel, it has to be
decided whether to accept a particular replacement and, in the positive case in which unit
to conduct the corresponding replacement. In this case, the set <capitals> is used to
provided indices for these units (see Section 2.1).

• Available Capitals: This is available budgets for resources/units. The parameter <available
capitals> is used to specify the available capitals for different resources/units at different
t (see Section 2.2).

• Non-Selection: Not selecting a project also has implications, inducing a growth in O&M
costs in future years, a decrease in plant production, an increase in forced outages, and even
risking a premature end to plant life. Thus, not selecting a project can be seen as one more
“option” for how a larger project is executed, expanding the list discussed earlier. Selection
is of the “do nothing” option is reflected in both liability streams and reward streams. This
can be activated by setting <nonSelection> to ’True’ (see Section 2.5).

• Uncertainty: One limitation of traditional optimization models for capital budgeting is that
they do not account for uncertainty in reward and cost streams associated with individual
projects, nor do they account for uncertainty in resource availability in future years. Projects
can incur cost over-runs, especially when projects are large, performed infrequently, or when
there is uncertainty regarding technical viability, external contractors, and/or suppliers of
requisite parts and materials. Occasionally, projects are performed ahead of schedule and
with savings in cost. Planned budgets for capital improvements can be cut, and key personnel
may be lost. Or, there may be surprise budgetary windfalls for maintenance activities due
to decreased costs for “unplanned” maintenance. The XML node <Uncertainties> is
used to specify such uncertainties (see Section 2.3).

LOGOS consists of a collection of modeling entities/components that define different aspects
of the model, including <Sets>, <Parameters>, <Uncertainties>, and <External
Constraints>. In addition, the <Setting> block specifies how the overall computation
should run.

2.1 Sets

This subsection contains information regarding the XML nodes used to define the <Sets> of
the optimization model being performed through LOGOS. <Sets> specifies a collection of data,
possibly including numeric data (e.g. real or integer values) as well as symbolic data (e.g. strings)

116

typically used to specify the valid indices for indexed components. Note: Numeric data provided
in <Sets> would be treated as strings. <Sets> accepts the following additional sub-nodes:

• <investments>, comma/space-separated string, required, specifies the valid indices for
investment projects.

• <capitals>, comma/space-separated string, optional, specifies the indices for NPP units.

• <time periods>, comma/space-separated string, optional, specifies the indices for time.

• <resources>, comma/space-separated string, optional, specifies indices for the resources
and liabilities.

• <options>, semi-colon separated list of strings, optional, specifies the indices for multi-
ple project-option pairs. This sub-node accepts the following attribute:

– index, string, required, specifies the index dependence. Valid index is ’investments’.

Example XML:

<Sets>
<investments>

HPFeedwaterHeaterUpgrade
PresurizerReplacement
...
ReplaceMoistureSeparatorReheater

</investments>
<time_periods>year1 year2 year3 year4 year5</time_periods>
<resources>CapitalFunds OandMFunds</resources>
<options index='investments'>

PlanA PlanB DoNothing;
PlanA PlanB PlanC;
...
PlanA PlanB PlanC DoNothing

</options>
</Sets>

2.2 Parameters

This subsection contains information regarding the XML nodes used to define the <Parameters>
of the optimization model being performed through LOGOS:

117

• <net present values>, comma/space-separated string, required, specifies the NPVs
for capital projects or project-option pairs. This node accepts the following optional attribute:

– index, comma-separated string, optional, specifies the indices of this parameter;
keywords should be predefined in <Sets>. Valid keywords are ’investments’
and ’options’.
Default: investments

• <costs>, comma/space-separated string, required, specifies the costs for capital projects
or project-option pairs. This node accepts the following optional attribute:

– index, comma-separated string, optional, specifies the indices of this parameter;
keywords should be predefined in <Sets>. Valid keywords are ’investments’,
’investments, time periods’, ’options’, ’options, resources’,
’options, time periods’, and ’options, resources, time periods’.

Default: ‘investments’

• <available capitals>, comma/space-separated string, required, specifies the avail-
able capitals for capital projects or project-option pairs. This node accepts the following
optional attribute:

– index, comma-separated string, optional, specifies the indices of this parameter;
keywords should be predefined in <Sets>. Valid keywords are ’resources’,
’time periods’, ’capitals’, ’resources, time periods’, and ’capitals,
time periods’
Default: None

Example XML:

<Parameters>
<net_present_values index='options'>

27.98 27.17 0.
-10.07 -9.78 -9.22
...
8.26 7.56 7.34 0.

</net_present_values>
<costs index='options,resources,time_periods'>

12.99 1.3 0 0 0
...
0.01 0 0 0 0

</costs>
<available_capitals index="resources,time_periods">

22.6 36.7 20.6 23.6 22.7
0.08 0.17 0.05 0.15 0.14

118

</available_capitals>
</Parameters>

2.3 Uncertainties

This subsection contains information regarding the XML nodes used to define the <Uncertainties>
of the optimization model being performed through LOGOS:

• <available capitals>, optional, specifies the scenarios associated with available cap-
itals. This node accepts the attribute index, which should be consistent with the <available
capitals> defined in <Parameters>. This node accepts the following sub-nodes:

– <totalScenarios>, integer, required, specifies the total number of scenarios for
this parameter.

– <probabilities>, comma/space-separated float, required, specifies the probabil-
ity for each scenario. The length should be equal to the total number of scenarios.

– <scenarios>, comma/space-separated float, required, specifies all scenarios for
this parameter. The length should be equal to the total number of scenarios multiplied
by the length of this parameter, as defined in <Parameters>.

• <net present values>, optional, specifies the scenarios associated with net present values.
This node accepts the attribute index, which should be consistent with the <net present values>
defined in <Parameters>.

– <totalScenarios>, integer, required, specifies the total number of scenarios for
this parameter.

– <probabilities>, comma/space-separated float, required, specifies the probabil-
ity for each scenario. The length should be equal to the total number of scenarios.

– <scenarios>, comma/space-separated float, required, specifies all scenarios for
this parameter. The length should be equal to the total number of scenarios multiplied
by the length of this parameter, as defined in <Parameters>.

The overall number of scenarios is the total number of scenarios for <available capitals>
multiplied by the total number of scenarios for <net present values>.

Example XML:

<Uncertainties>
<available_capitals index="resources,time_periods">

<totalScenarios>10</totalScenarios>

119

<probabilities>
0.5, 0.5

</probabilities>
<scenarios>

20.0 34.0 17.0 20.0 18.0 0.08 0.17 0.05 0.15 0.14
23.0 38.0 22.0 25.0 24.0 0.08 0.17 0.05 0.15 0.14

</scenarios>
</available_capitals>
<net_present_values index='options'>

<totalScenarios>9</totalScenarios>
<probabilities>

0.3 0.8
</probabilities>
<scenarios>

13.3129 12.0228 0.0 -10.07
...

</scenarios>
</net_present_values>

</Uncertainties>

2.4 External Constraints

This subsection contains information regarding the XML nodes used to define the <External
Constraints> of the optimization model being performed through LOGOS. This node accepts
the following sub-node(s):

• <constraint>, string, required, specifies the external Python module file name along
with its absolute or relative path. This external Python module contains the user-defined
additional constraint. Note: If a relative path is specified, the code first checks relative to the
working directory, then it checks with respect to the location of the input file. The working
directory can be specified in <Settings> (see Section 2.5). In addition, the extension
‘.py’ is optional for the module file name that was inputted in this node. This sub-node also
requires the following attribute:

– name, string, required, specifies the name of the constraint that will be added to the
optimization problem.

Example XML:

<ExternalConstraints>
<constraint name="con_I">externalConst</constraint>

120

<constraint name="con_II">externalConstII.py</constraint>
</ExternalConstraints>

These constraints are Python modules, with a format automatically interpretable by LOGOS.
For example, users can define their own constraint, and the code will be embedded and use the
constraint as though it were an active part of the code itself. The following provides an example of
a user-defined external constraint:

Example Python Function:

External constraint function

import numpy as np
import pyomo.environ as pyomo

def initialize():
"""

Optional Method

Optimization model parameters values can be updated/modified

without directly accessing the optimization model.

Value(s) will be updated in-place.

@ In, None

@ Out, updateDict, dict, {paramName:paramInfoDict}, where

paramInfoDict contains {Indices:Values}

Indices are parameter indices (either strings or tuples of

strings, depending on whether there is one or

more than one dimension). Values are the new values being

assigned to the parameter at the given indices.

"""

updateDict = {'available_capitals':{'None':16},
'costs':{'1':1,'2':3,'3':7,'4':4,'5':8,

'6':9,'7':6,'8':10,'9':2,'10':5}
}

return updateDict

def constraint(var, sets, params):
"""

Required Method

External constraint provided by users that will be added to

optimization problem

@ In, sets, dict, all "Sets" provided in the Logos input

file will be stored and available in this dictionary,

i.e. {setName: setObject}

@ In, params, dict, all "Parameters" provided in the

121

Logos input file will be stored and

available in this dictionary, i.e. {paramName: paramObject}

@ In, var, object, the internally used decision variable,

the dimensions/indices of this variable depend the type of

optimization problems (i.e. "<problem_type>" from Logos

input file). Currently, we will accept the following

problem types:

1. "singleknapsack": in this case, "var" will be var[:],

where the index will be the element from

xml node of "investment" in Logos input file.

2. "multipleknapsack": in this case, "var" will be var[:,:],

where the indices are the combinations element from set

"investment" and element from set "capitals" in Logos

input file

3. "mckp": in this case, "var" will be var[:,:], where the

indices are the combinations element from set

"investment" and element from set "options" in Logos

input file

(Note that any element that is used as index will be

converted to a string even if a number is provided in

the Logos input file).

@ Out, constraint, tuple, either (constraintRule,)

or (constraintRule, indices)

(Note that any modifications in provided sets and params

will only have impact on this local module,

i.e. the external constraint. In other words, the Sets

and Params used in the internal constraints and

objective will be kept unchanged!)

"""

All sets and parameters can be retrieved from dictionary

"sets" and "params" investments = sets['investments']

def constraintRule(self, i):
"""

Expression for user provided external constraint

@ In, self, object, required to present, but not used

122

@ In, i, str, element for the index set

@ Out, constraintRule, function expression, expression

to define user provided constraint

Note that: Constraints can be indexed by lists or sets.

When the return of function "constraint" contains

lists or sets except the "constraintRule", the elements

are iteratively passed to the rule function. If there

is more than one, then the cross product is sent.

For example, this constraint could be interpreted as

placing limit on "ith" decision variable "var".

A list of constraints for all "ith" decision variable

"var" will be added to the optimization model

"""

return var[i] <= 1

A tuple is required for the return, the first element

should be always the "constraintRule",

while the rest of elements are the lists or sets

if the user wants to construct the constraints

iteratively (See the docstring in "constraintRule"),

otherwise, keep it empty

return (constraintRule, investments)

2.5 Settings: Options for Optimization

This subsection contains information regarding the XML nodes used to define the <Settings>
of the optimization model being performed through LOGOS:

• <problem type>, string, required parameter, specifies the type of optimization problem.
Available types include ’SingleKnapsack’, ’MultipleKnapsack’, and ’MCKP’
for risk-informed stochastic optimization. Available types include ’droskp’, ’dromkp’,
and ’dromckp’ for distributionally robust optimization. Available types include ’cvarskp’,
’cvarmkp’, and ’cvarmckp’.

• <solver>, string, optional parameter, represents available solvers including <cbc> from
https://github.com/coin-or/Cbc.git and <glpk> from https://www.gnu.
org/software/glpk/.

• <sense>, string, optional parameter, specifies ’minimize’ or ’maximize’ for min-
imization or maximization, respectively.

123

https://github.com/coin-or/Cbc.git
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

Default: minimize

• <mandatory>, comma/space-separated string, optional parameter, specifies regulatorily
mandated or must-do projects.

• <nonSelection>, boolean, optional parameter, indicates whether the investments op-
tions includes DoNothing option.
Default: False

• <lowerBounds>, comma/space-separated integers, optional parameter, specifies the
lower bounds for decision variables.

• <upperBounds>, comma/space-separated integers, optional parameter, specifies the up-
per bounds for decision variables.

• <consistentConstraintI>, string, optional parameter, indicates whether this con-
straint is enabled.
Default: True

• <consistentConstraintII>, string, optional parameter, indicates whether this con-
straint is enabled or not.
Default: False

• <solverOptions>, optional parameter, accepts different options for the given solver
provided in <solver>. A simple XML node only containing node tags and node texts can
be used to provide the options for the solver. For example:

<solverOptions>
<threads>1</threads>
<StochSolver>EF</StochSolver>

</solverOptions>

In addition, if the problem type is distributionally robust optimization, additional option
<radius ambiguity> can be used to control the Wasserstein distance. See Section 5. If
the problem type is conditional value at risk (See Section 6), additional options are available:

– <risk aversion>, float within [0, 1], optional parameter, indicates the weight on
maximizing expected NPV versus penalizing solutions that yield low-NPV scenarios.

– <confidence level>, float within [0, 1], optional parameter, indicates the confi-
dence level, i.e. the ↵-percentile of the loss.

Example XML:

<Settings>
<mandatory>

PresurizerReplacement

124

...
ReplaceInstrumentationAndControlCables

</mandatory>
<nonSelection>True</nonSelection>
<consistentConstraintI>True</consistentConstraintI>
<consistentConstraintII>True</consistentConstraintII>
<solver>cbc</solver>
<solverOptions>

<threads>1</threads>
<StochSolver>EF</StochSolver>

</solverOptions>
<sense>maximize</sense>
<problem_type>mckp</problem_type>

</Settings>

125

3 Deterministic Capital Budgeting

We consider a capital budgeting problem for a nuclear generation station, with possible extension
to a larger fleet of plants. Due to limited resources, we can only select a subset from a list of sev-
eral candidate capital projects. Our goal is to maximize overall NPV associated with the selected
subset. In doing so, we must respect resource limits and capture key structural and stochastic
dependencies of the system, although in this section we start with the simpler deterministic case,
ignoring randomness. Example projects include upgrading a steam turbine, refurbishing or replac-
ing a set of reactor coolant pumps, and replacing a set of feed-water heaters.

Indexes and sets:

t 2 T time periods (years)
i 2 I investment candidate projects
j 2 Ji options for selecting project i
k 2 K types of resources

Data:

aij reward (revenue minus financial cost) of selecting project i via option j
bkt available budget for a resource of type k in year t
cijkt consumption of resource of type k in year t if project i is performed via option j

Decision variables:

xij 1 if project i is selected via option j; 0 otherwise

Formulation:

max
x

X

i2I,j2Ji

aijxij (1a)

s.t.
X

j2Ji

xij = 1, i 2 I (1b)

X

i2I,j2Ji

cijktxij bkt, k 2 K, t 2 T (1c)

xij 2 {0, 1}, j 2 Ji, i 2 I. (1d)

The decision variables, xij , indicate whether we choose to do project i by means j. Restated, if
xij = 1, then we recommend doing project i via option j; taken together, these decision variables
produce both a portfolio of selected projects and a schedule for performing those projects over

126

time. The set of available options, j 2 Ji, can explicitly include the “do-nothing” option, and the
first constraint ensures that we choose exactly one option from the available set for each project,
including the possibility of selecting the do-nothing option. Even if we select the do-nothing
option for a project, it induces an NPV, aij , which may be negative, representing growing O&M
costs, losses in plant efficiency, etc. The second structural constraint ensures that the budget of
each resource k is respected in each year t. The objective function includes the NPV for each
project-option pair, aij , and the correct NPV is selected by the 0� 1 decision variable, xij .

We note that certain projects must be done (e.g., for safety and or regulatory reasons). This can
be handled within the mathematical formulation just given, without introducing additional con-
structs. The set Ji typically includes a do-nothing option for each project, but when project i must
be done, we simply do not include the do-nothing option. Mathematically, one alternative is to
disclude an explicit do-nothing option, replace the first structural constraint with an inequality, and
add an additional set of must-do projects with an equality constraint. Both options are mathemat-
ically equivalent and simply represent a choice to be made by the analyst. In LOGOS, we use
<mandatory> and <nonSelection> to handle these conditions. <mandatory> is used to
specify the must-do projects, while <nonSelection> is used to activate the do-nothing option.

Note: If a project is listed under <mandatory>, the do-nothing option is not allowed for this
project. In addition, handling the do-nothing option implicitly leads to the NPV being calculated
relative to that of the do-nothing option.

The objective of capital budgeting is to find the right combination of binary decisions for every
investment so that overall profit is maximized. The output is a collection of projects to be carried
out, and we refer to this selected collection of projects as a “project portfolio”. However, as
is frequently the case for capital budgeting with NPP applications, in practice, several optional
constraints, such as resources/liabilities, dependencies/synergies, options, time windows for every
investment, etc., have to be fulfilled. This leads to a various variations of the knapsack problem. In
the following subsection, we will present several different variants of the above capital budgeting
problem (i.e., variants of the knapsack problem).

3.1 Single Knapsack Problem Optimization

3.1.1 Simple Knapsack Problem

The simple knapsack problem (KP) for capital budgeting can be defined as follows: we are given
an instance of the capital budgeting problem with investment set I , consisting of I investments i
with profit ai (e.g. NPV), cost ci, and available budget b. The objective is to select a subset of I
such that the total profit of the selected investments is maximized and the total cost does not exceed
b. Alternatively, KP can be formulated as a solution of the following linear integer programming
formulation:

127

max
x

X

i2I

aixi (2a)

s.t.
X

i2I

cixi b (2b)

xi 2 {0, 1}, i 2 I. (2c)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10

</investments>
</Sets>

<Parameters>
<net_present_values index="investments">

18,20,17,19,25,21,27,23,25,24
</net_present_values>
<costs index="investments">

1,3,7,4,8,9,6,10,2,5
</costs>
<available_capitals>

15
</available_capitals>

</Parameters>

<Settings>
<solver>cbc</solver>
<sense>maximize</sense>

</Settings>
</Logos>

When running this case, LOGOS would generate a CSV (comma separated values) file con-
taining solutions for the optimization problem (i.e. values of decision variables and maximum
profit [MaxNPV is used to describe the maximum profit]). The header of this CSV file contains
the indices listed under <investments> used as indices for decision variables and the objec-
tive variable MaxNPV. The data provides the values for both decision variables and the objective
variable.

128

Example LOGOS output CSV:

1,2,3,4,5,6,7,8,9,10,MaxNPV
1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,106.0

In this case, projects 1, 2, 4, 9, and 10 are selected with a maximum profit of 106.0.

3.1.2 Bounded Knapsack Problem

In the capital budgeting problem described above, it may be the case that not all investments/pro-
jects are different from each other. For example, in practice, there may be given a number (ni) of
identical pumps/valves to be replaced. In this case, the number of decision variables is equal to the
number of different investments, rather than the total number of investments. The constraint for
the decision variables becomes:

0 xi ni, i 2 N (3)

The resulting problem is called the bounded knapsack problem (BKP) and is formally defined as:

max
x

X

i2I

aixi (4a)

s.t.
X

i2I

cixi b (4b)

xi 2 {0, ni}, i 2 I. (4c)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22

</investments>
</Sets>

<Parameters>
<net_present_values index="investments">

150,35,200,60,60,45,60,40,30,10,70,
30,15,10,40,70,75,80,20,12,50,10

</net_present_values>

129

<costs index="investments">
9,13,153,50,15,68,27,39,23,52,11,32,
24,48,73,42,43,22,7,18,4,30

</costs>
<available_capitals>

400
</available_capitals>

</Parameters>

<Settings>
<lowerBounds>

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

</lowerBounds>
<upperBounds>

1,1,2,2,2,3,3,3,1,3,1,
1,2,2,1,1,1,1,1,2,1,2

</upperBounds>
<solver>glpk</solver>
<sense>maximize</sense>

</Settings>
</Logos>

Example LOGOS output CSV:

1,2,...,21,22,MaxNPV
1.0,1.0,...,1.0,0.0,1010.0

3.1.3 Multi-Dimensional Knapsack Problem: DKP

Moving in a different direction, we now take into account not only the cost constraint, but also the
limited commitment of critical resources, including: (i) capital cost, (ii) O&M costs, (iii) time and
labor-hours during a planned outage, and (iv) personnel, installation and maintenance equipment,
workspaces, etc.. Denoting the cost of every investment by cik for each resource k and introducing
the corresponding limited resource bk, we can formulate the capital budgeting problem as a multi-
dimensional or D-dimensional knapsack problem formally defined by:

130

max
x

X

i2I

aixi (5a)

s.t.
X

i2I

cikxi bk, k 2 K (5b)

xi 2 {0, 1}, i 2 I. (5c)

Where the limited resources set is denoted by K, consisting of k “colors” of money within
capital costs, O&M costs, personnel availability, etc. Another example is provided if the plant has
multi-year investments. Consider a DKP problem in which the costs of each investment and the
available capitals vary according to time period t. By defining cit as the cost of investment i at time
period i, and bt as the available capital at time period t, we get:

max
x

X

i2I

aixi (6a)

s.t.
X

i2I

citxi bt, t 2 T (6b)

xi 2 {0, 1}, i 2 I. (6c)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9

</investments>
<time_periods>

1,2,3,4,5
</time_periods>

</Sets>

<Parameters>
<net_present_values index="investments">

2.315,0.824,22.459,60.589,0.667,5.173,4.003,0.582,0.122
</net_present_values>
<costs index="investments, time_periods">

131

0.219,0.257,0.085,0.0,0.0,
0.0,0.0,0.122,0.103,0.013,
5.044,1.839,0.0,0.0,0.0,
6.74,6.134,10.442,0.0,0.0,
0.425,0.0,0.0,0.0,0.0,
2.125,2.122,0.0,0.0,0.0,
2.387,0.19,0.012,2.383,0.192,
0.0,0.95,0.0,0.0,0.0,
0.03,0.03,0.688,0.0,0.0

</costs>
<available_capitals index="time_periods">

0.665,4.712,9.642,3.458,1.683
</available_capitals>

</Parameters>

<Settings>
<solver>glpk</solver>
<sense>maximize</sense>

</Settings>
</Logos>

Example LOGOS output CSV:

1,2,3,4,5,6,7,8,9,MaxNPV
1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,4.388

3.2 Multiple Knapsack Problem Optimization

Another interesting variant of the capital budgeting problem arises if we consider maintenance for
multiple units in a NPP in parallel, i.e. it has to be decided whether to accept a particular replace-
ment and, in the positive case, in which unit to conduct the corresponding replacement. This can
be formulated by introducing a binary decision variable for every maintenance-unit combination.
If there are I investments (investment set I) on the list of maintenance requests and m units (unit
set M) available, we use binary variables:

xim 2 {0, 1}, i 2 I,m 2 M (7)

The resulting problem is called the multiple knapsack problem (MKP), and the mathematical for-
mulation is given by:

132

max
x

X

m2M

X

i2I

aixim (8a)

s.t.
X

i2I

cixim bm,m 2 M (8b)

X

m2M

xim 1 (8c)

xim 2 {0, 1}, i 2 I,m 2 M. (8d)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10

</investments>
<capitals>

unit_1, unit_2
</capitals>

</Sets>

<Parameters>
<net_present_values index="investments">

78, 35, 89, 36, 94, 75, 74, 79, 80, 16
</net_present_values>
<costs index="investments">

18, 9, 23, 20, 59, 61, 70, 75, 76, 30
</costs>
<available_capitals index="capitals">

103, 156
</available_capitals>

</Parameters>

<Settings>
<solver>cbc</solver>
<sense>maximize</sense>
<problem_type>MultipleKnapsack</problem_type>

</Settings>
</Logos>

133

Example LOGOS output CSV:

1,2,3,4,5,6,7,8,9,10,capitals,MaxNPV
0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,unit_1,452.0
1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,unit_2,452.0

3.3 Multiple-Choice Multi-Dimensional Knapsack Problem Optimization

Another quite different variant of the capital budgeting problem appears if there may be multiple
ways to carry out each investment/project. Each investment i, however, exists in a number of
options in which the j-th option has cost cij and profit value aij . This problem can be expressed
as the multiple-choice knapsack problem (MCKP). Assume Ji is the set of different options for
investment i. Using the decision variables xij to denote whether option j was chosen from the set
Ji, the mathematical formulation of MCKP is given by:

max
x

X

i2I,j2Ji

aijxij (9a)

s.t.
X

j2Ji

xij = 1, i 2 I (9b)

X

i2I,j2Ji

cijxij b (9c)

xij 2 {0, 1}, j 2 Ji, i 2 I. (9d)

Considering the limited resources and multi-year investments, the MCKP may be extended to
a D-dimensional MCKP problem (D-MCKP). For example, a project may be performed over a
three-year period–say, years ‘t, t + 1, t + 2’–or the start of the project could instead be two years
hence, changing the equation to ‘t+ 2, t+ 3, t+ 4’. Alternatively, at increased cost and benefit, it
may be possible to complete the project in two years: ‘t, t + 1’, or ‘t + 2, t + 3’. When selecting
a project to uprate plant capacity, we may have the options of increasing it by 3% or 6%. In these
cases, the problem can be expressed as the D-MCKP. This problem is formally defined as follows:

134

max
x

X

i2I,j2Ji

aijxij (10a)

s.t.
X

j2Ji

xij = 1, i 2 I (10b)

X

i2I,j2Ji

cijtxij bt, t 2 T (10c)

xij 2 {0, 1}, j 2 Ji, i 2 I. (10d)

or in the same as the problem described at the beginning of this chapter (see Section 3):

max
x

X

i2I,j2Ji

aijxij (11a)

s.t.
X

j2Ji

xij = 1, i 2 I (11b)

X

i2I,j2Ji

cijktxij bkt, k 2 K, t 2 T (11c)

xij 2 {0, 1}, j 2 Ji, i 2 I. (11d)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

</investments>
<options index='investments'>

1;
1;
1;
1,2,3;
1,2,3,4;
1,2,3,4,5,6,7;
1;
1;

135

1;
1;
1;
1;
1;
1;
1;
1;
1

</options>
</Sets>

<Parameters>
<net_present_values index='options'>

2.046 2.679 2.489 2.61 2.313 1.02 3.013 2.55 3.351 3.423
3.781 2.525

2.169 2.267 2.747 4.309 6.452 2.849 7.945 2.538 1.761
3.002 3.449

2.865 3.999 2.283 0.9 8.608
</net_present_values>
<costs index='options'>

36538462
83849038
4615385
2788461538
2692307692
5480769231
1634615385
2981730768
7211538462
9038461538
649038462
650000000
216346154
212500000
3076923077
3942307692
1144230769
675721154
1442307692
99711538
4807692

136

123076923
138461538
86538462
108653846
75092404
6413462
147932692

</costs>
<available_capitals>

15E9
</available_capitals>

</Parameters>

<Settings>
<solver>cbc</solver>
<sense>maximize</sense>
<problem_type>mckp</problem_type>

</Settings>
</Logos>

Example LOGOS output CSV:

1__1,2__1,3__1,4__1,4__2,4__3,...,17__1,MaxNPV
1.0,1.0,1.0,1.0,0.0,0.0,...,1.0,59.82600000000001

In the output file, the names “investmentsIndex” “optionsIndex” are used to specify the
decision variable. For example, 1 1 indicates that investment 1 with option 1 is selected.

137

4 Prioritizing Project Selection to Hedge Against Uncertainty

One limitation of traditional optimization models for capital budgeting is that they do not account
for risk/uncertainty in profit and cost streams associated with individual projects, nor do they ac-
count for risk in resource availability in future years. Projects can incur cost overruns, especially
when projects are large, performed infrequently, or when there is risk regarding technical viability,
external contractors, and/or suppliers of requisite parts and materials. Occasionally, projects are
performed ahead of schedule and with savings in cost. Planned budgets for capital improvements
can be cut, and key personnel may be lost. Or, there may be surprise budgetary windfalls for
maintenance activities due to decreased costs for “unplanned” maintenance. In such cases, how
should we resolve capital budgeting when we have risk forecasts for costs, profits, and budgets?
One approach is to re-solve the models described in the previous section once refined forecasts
for these parameters become available. However, it is not always practical to fully revise a project
portfolio whenever better forecasts become available.

In order to prioritize the project selection using a risk forecast for these parameters, the two-
stage stochastic optimization model [3] is employed to provide priority lists to decision-makers
to support better risk-informed decisions. Its inputs include those described in above sections
for different variants of the capital budgeting problem, except that a probabilistic description of
the uncertain parameters is integrated into the optimization process. The two-stage stochastic
optimization model forms a priority list as its first-stage decision, then forms a corresponding
project portfolio for each scenario as its second-stage decision. When forming the optimal second-
stage project portfolio under a specific scenario, the stochastic optimization model ensures that the
portfolio is consistent with the first-stage prioritization (i.e., a project can be selected only if all
high-priority projects are also selected.) Thus, the portfolios of projects corresponding to different
scenarios are nested.

The notation and formulation of the risk-informed models are as follows:

138

Indices and sets:

t 2 T time periods (years)
i, i

0 2 I candidate projects
j 2 Ji options for selecting project i
k 2 K types of resources
m 2 M units of NPP
! 2 ⌦ scenarios

Data:

a!i reward for selecting project i under scenario !
a!ij reward for selecting project i via option j under scenario !
b! available budget under scenario !
b!k available budget for a resource of type k under scenario !
b!t available budget in year t under scenario !
b!m available budget for unit m under scenario !
b!kt available budget for a resource of type k in year t under scenario !
c!i cost of investment i under scenario !
c!ik consumption of resource of type k

if project i is selected under scenario !
c!ijt consumption of resource in year t

if project i is performed via option j under scenario !
c!ijkt consumption of resource of type k in year t

if project i is performed via option j under scenario !
q! probability of scenario !

Decision variables:

x!
i 1 if project i is selected under scenario !; 0 otherwise

x!
im 1 if project i is selected for unit m under scenario !; 0 otherwise

x!
ij 1 if project i is selected via option j under scenario !; 0 otherwise

yii0 1 if project i has no lower priority than project i0 ; 0 otherwise

139

4.1 Risk-Informed Single Knapsack Problem Optimization

4.1.1 Risk-Informed Simple Knapsack Problem

Formulation:

max
x

X

!2⌦

q!
X

i2I

a!i x
!
i (12a)

s.t.
X

i2I

c!i x
!
i b! (12b)

yii0 + yi0i � 1, i < i0 (12c)
x!
i � x!

i0 + yii0 � 1, i 6= i0 (12d)

For simplicity in what follows, the variable yii0 = 1 means that project i is of higher priority
than i0, even though the variable definition allows for ties (i.e., projects of the same priority).
Constraint (12b) requires us to be within budget under each scenario. Constraint (12c) indicates
that either project i is of higher priority than project i0, or vice versa, or that both are of equal
priority (i.e., a tie). Constraint (12d) indicates that if project i is of higher priority than project i0
(yii0 = 1), and we select the lower priority project, then we must also select the higher priority
project; if yii0 = 0, or if x!

i0 = 0, then the constraint is vacuous. In order to handle the risk in the
capital budgeting problems, the entity <Uncertainties> (see section 2.3) is used to specify
different scenarios of input parameters.

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10

</investments>
</Sets>

<Parameters>
<net_present_values index="investments">

18,20,17,19,25,21,27,23,25,24
</net_present_values>
<costs index="investments">

1,3,7,4,8,9,6,10,2,5
</costs>
<available_capitals>

15

140

</available_capitals>
</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>10</totalScenarios>
<probabilities>
0.012, 0.019, 0.032, 0.052, 0.086, 0.142, 0.235, 0.188,

0.141, 0.093
</probabilities>
<scenarios>
11, 12, 13, 14, 15, 16, 17, 18, 19, 20

</scenarios>
</available_capitals>
<net_present_values>

<totalScenarios>2</totalScenarios>
<probabilities>
0.3, 0.7

</probabilities>
<scenarios>
18,20,17,19,25,21,27,23,25,24,
18,20,17,19,25,21,27,23,25,24

</scenarios>
</net_present_values>

</Uncertainties>
...

</Logos>

When running this case, LOGOS would generate a CSV (comma separated values) file contain-
ing solutions for the optimization problem (i.e. values of decision variables and maximum profit
[MaxNPV is used to describe the maximum profit]). The header of this CSV file contains the in-
dices listed under <investments> used as indices for decision variable, the objective variable
MaxNPV, the scenario name and the associated probability weight. The data provides the values
for both decision variables and the objective variable.

Example LOGOS output CSV:
1 , 1 0 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , ScenarioName , P r o b a b i l i t y W e i g h t , MaxNPV
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 , 0 . 0 0 3 6 , 7 0 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 6 , 0 . 0 2 2 4 , 7 0 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 5 , 0 . 0 0 9 6 , 7 0 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 4 , 0 . 0 1 3 3 , 7 0 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 3 , 0 . 0 0 5 7 , 7 0 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 2 , 0 . 0 0 8 4 , 7 0 . 0

141

1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 7 , 0 . 0 1 5 6 , 9 4 . 0
1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 8 , 0 . 0 3 6 4 , 9 4 . 0
1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 9 , 0 . 0 2 5 8 , 9 4 . 0
1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 2 , 0 . 0 9 9 4 , 9 4 . 0
1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 1 , 0 . 0 4 2 6 , 9 4 . 0
1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 0 , 0 . 0 6 0 2 , 9 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 6 , 0 . 1 3 1 6 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 9 , 0 . 0 2 7 9 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 5 , 0 . 0 5 6 4 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 2 0 , 0 . 0 6 5 1 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 4 , 0 . 1 6 4 5 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 3 , 0 . 0 7 0 5 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 7 , 0 . 0 4 2 3 , 1 1 4 . 0
1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 8 , 0 . 0 9 8 7 , 1 1 4 . 0

4.1.2 Risk-Informed Multi-Dimensional Knapsack Problem

Formulation:

max
x

X

!2⌦

q!
X

i2I

a!i x
!
i (13a)

s.t.
X

i2I

c!itx
!
i b!t , t 2 T (13b)

yii0 + yi0i � 1, i < i0 (13c)
x!
i � x!

i0 + yii0 � 1, i 6= i0 (13d)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

</investments>
<time_periods>

1,2,3,4,5
</time_periods>

</Sets>

<Parameters>

142

<net_present_values index="investments">
2.315,0.824,22.459,60.589,0.667,5.173,4.003,0.582,0.122,
-2.870,-0.102,-0.278,-0.322,-3.996,-0.246,-20.155

</net_present_values>
<costs index="investments, time_periods">

0.219,0.257,0.085,0.0,0.0,
0.0,0.0,0.122,0.103,0.013,
5.044,1.839,0.0,0.0,0.0,
6.74,6.134,10.442,0.0,0.0,
0.425,0.0,0.0,0.0,0.0,
2.125,2.122,0.0,0.0,0.0,
2.387,0.19,0.012,2.383,0.192,
0.0,0.95,0.0,0.0,0.0,
0.03,0.03,0.688,0.0,0.0,
0,0.2,0.763,0.739,2.539,
0.081,0.032,0,0,0,
0.3,0,0,0,0,
0.347,0,0,0,0,
4.025,0.297,0,0,0,
0.095,0.095,0.095,0,0,
5.487,5.664,0.5,6.803,6.778

</costs>
<available_capitals index="time_periods">

18,18,18,18,18
</available_capitals>

</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>10</totalScenarios>
<probabilities>
0.012, 0.019, 0.032, 0.052, 0.086, 0.142, 0.235, 0.188,

0.141, 0.093
</probabilities>
<!--
scenarios is ordered by numberScenarios *

parametersIndex, the number of
scenarios is determined by the number of elements in

<probabilities>,
for this case total element in scenarios:
numberScenarios * time_periods = 10 * 5

-->

143

<scenarios>
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
14, 14, 14, 14, 14,
15, 15, 15, 15, 15,
16, 16, 16, 16, 16,
17, 17, 17, 17, 17,
18, 18, 18, 18, 18,
19, 19, 19, 19, 19,
20, 20, 20, 20, 20

</scenarios>
</available_capitals>

</Uncertainties>
<Settings>

<mandatory>10,11,12,13,14,15,16</mandatory>
<solver>cbc</solver>
<sense>maximize</sense>

</Settings>
</Logos>

Example LOGOS output CSV:
1 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , ScenarioName , P r o b a b i l i t y W e i g h t , MaxNPV
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , s c e n a r i o 1 ,0 .012 , �23 .581
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 2 ,0 .019 , �23 .459
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 3 ,0 .032 , �23 .459
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 4 ,0 .052 , �23 .459
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 5 ,0 .086 , �23 .459
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 6 ,0 .142 , �23 .459
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 7 ,0 .235 , �23 .459
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 8 , 0 . 1 8 8 , 3 7 . 1 3 0
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 9 , 0 . 1 4 1 , 3 7 . 1 2 3 0
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 1 0 , 0 . 0 9 3 , 4 2 . 3 0 3

4.2 Risk-Informed Multiple Knapsack Problem Optimization

Model formulation:

max
x,y

X

!2⌦

q!
X

i2I

X

m2M

a!i x
!
im (14)

s.t. yii0 + yi0 i � 1, i < i
0
, i, i

0 2 I (15)

144

MX

m=1

x!
im �

MX

m=1

x!
i0m + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (16)

Constraint (15) indicates that either project i is of higher priority than project i0 , or vice versa,
or that both are of equal priority (i.e., a tie). Constraint (16) indicates that if project i is higher
priority than project i0 (yii0 = 1), and we select the lower priority project for some unit, then we
must also select the higher priority project; if yii0 = 0, or if

PM
m=1 x

!
i0m = 0 then the constraint is

vacuous.

X

i2I

c!i x
!
im b!m, m 2 M,! 2 ⌦ (17)

Constraint (17) requires that we be within budget for each unit under each scenario.

X

m2M

x!
im 1, i 2 I,! 2 ⌦ (18)

Constraint (18) simultaneously ensures that we select project i only for one unit.

Example LOGOS input XML:

<Sets>
<investments>

1,2,3,4,5,6,7,8,9,10
</investments>
<capitals>

unit_1, unit_2
</capitals>

</Sets>

<Parameters>
<net_present_values index="investments">

78, 35, 89, 36, 94, 75, 74, 79, 80, 16
</net_present_values>
<costs index="investments">

18, 9, 23, 20, 59, 61, 70, 75, 76, 30
</costs>
<available_capitals index="capitals">

103, 156
</available_capitals>

145

</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>2</totalScenarios>
<probabilities>
0.3 0.7

</probabilities>
<scenarios>
103, 156,
103, 156

</scenarios>
</available_capitals>
<net_present_values>

<totalScenarios>2</totalScenarios>
<probabilities>
0.3, 0.7

</probabilities>
<scenarios>
78, 35, 89, 36, 94, 75, 74, 79, 80, 16,
78, 35, 89, 36, 94, 75, 74, 79, 80, 16

</scenarios>
</net_present_values>

</Uncertainties>

<Settings>
<solver>glpk</solver>
<sense>maximize</sense>
<problem_type>MultipleKnapsack</problem_type>

</Settings>
</Logos>

Example LOGOS output CSV:
” (' 1 ' , ' u n i t 1 ') ” , ” (' 1 ' , ' u n i t 2 ') ” , ” (' 1 0 ' , ' u n i t 1 ') ” , ” (' 1 0 ' , ' u n i t 2 ') ” , ” (' 2 ' , ' u n i t 1 ') ” , ” (' 2 ' , ' u n i t 2 ') ” , ” (' 3 ' , ' u n i t 1 ') ” ,
” (' 3 ' , ' u n i t 2 ') ” , ” (' 4 ' , ' u n i t 1 ') ” , ” (' 4 ' , ' u n i t 2 ') ” , ” (' 5 ' , ' u n i t 1 ') ” , ” (' 5 ' , ' u n i t 2 ') ” , ” (' 6 ' , ' u n i t 1 ') ” , ” (' 6 ' , ' u n i t 2 ') ” ,
” (' 7 ' , ' u n i t 1 ') ” , ” (' 7 ' , ' u n i t 2 ') ” , ” (' 8 ' , ' u n i t 1 ') ” , ” (' 8 ' , ' u n i t 2 ') ” , ” (' 9 ' , ' u n i t 1 ') ” , ” (' 9 ' , ' u n i t 2 ') ” ,
ScenarioName , P r o b a b i l i t y W e i g h t , MaxNPV
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 1 , 0 . 0 9 , 4 5 2 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 2 , 0 . 2 1 , 4 5 2 . 0
1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 3 , 0 . 2 1 , 4 5 2 . 0
0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , s c e n a r i o 4 , 0 . 4 9 , 4 5 2 . 0

146

4.3 Risk-Informed Multiple-Choice Multi-Dimensional Knapsack Problem
Optimization

Model formulation:

max
x,y

X

!2⌦

q!
X

i2I

X

j2Ji

a!ijx
!
ij (19)

s.t. yii0 + yi0 i � 1, i < i
0
, i, i

0 2 I (20)

JiX

j=1

x!
ij �

JiX

j=1

x!
i0j + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (21)

Constraint (20) indicates that either project i is of higher priority than project i0 , or vice versa,
or that both are of equal priority (i.e., a tie). Constraint (21) indicates that if project i is higher
priority than project i0 yii0 = 1, and we select the lower priority project under some option, then
we must also select the higher priority project; if yii0 = 0, or if

PJi
j=1 x

!
i0j = 0, then the constraint

is vacuous.

X

i2I

X

j2Ji

c!ijktx
!
ij b!kt, k 2 K, t 2 T,! 2 ⌦ (22)

Constraint (22) requires that we be within budget in each time period, for each resource type,
and under each scenario.

X

j2Ji

x!
ij 1, i 2 I,! 2 ⌦ (23)

Constraint (23) simultaneously ensures that we select project i via, at most, one option. Note
that this illustrates a situation in which we must include the DoNothing option among the alterna-
tives to optional projects.

Example LOGOS input XML:

<Logos>
<Sets>

<investments>

147

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
</investments>
<options index='investments'>

1;
1;
1;
1,2,3;
1,2,3,4;
1,2,3,4,5,6,7;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1

</options>
</Sets>

<Parameters>
<net_present_values index='options'>

2.046
2.679
2.489
2.61
2.313
1.02
3.013
2.55
3.351
3.423
3.781
2.525
2.169
2.267
2.747
4.309
6.452

148

2.849
7.945
2.538
1.761
3.002
3.449
2.865
3.999
2.283
0.9
8.608

</net_present_values>
<costs index='options'>

36538462
83849038
4615385
2788461538
2692307692
5480769231
1634615385
2981730768
7211538462
9038461538
649038462
650000000
216346154
212500000
3076923077
3942307692
1144230769
675721154
1442307692
99711538
4807692
123076923
138461538
86538462
108653846
75092404
6413462
147932692

</costs>

149

<available_capitals>
15E9

</available_capitals>
</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>3</totalScenarios>
<probabilities>
0.2,0.6,0.2

</probabilities>
<scenarios>
5E9,10E9,15E9

</scenarios>
</available_capitals>

</Uncertainties>

<Settings>
<solver>cbc</solver>
<solverOptions>

<threads>1</threads>
<StochSolver>EF</StochSolver>

</solverOptions>
<sense>maximize</sense>
<problem_type>mckp</problem_type>

</Settings>
</Logos>

Example LOGOS output CSV:
” (' 1 ' , ' 1 ') ” , ” (' 1 0 ' , ' 1 ') ” , ” (' 1 1 ' , ' 1 ') ” , ” (' 1 2 ' , ' 1 ') ” , ” (' 1 3 ' , ' 1 ') ” , ” (' 1 4 ' , ' 1 ') ” , ” (' 1 5 ' , ' 1 ') ” , ” (' 1 6 ' , ' 1 ') ” ,
” (' 1 7 ' , ' 1 ') ” , ” (' 2 ' , ' 1 ') ” , ” (' 3 ' , ' 1 ') ” , ” (' 4 ' , ' 1 ') ” , ” (' 4 ' , ' 2 ') ” , ” (' 4 ' , ' 3 ') ” , ” (' 5 ' , ' 1 ') ” , ” (' 5 ' , ' 2 ') ” , ” (' 5 ' , ' 3 ') ” ,
” (' 5 ' , ' 4 ') ” , ” (' 6 ' , ' 1 ') ” , ” (' 6 ' , ' 2 ') ” , ” (' 6 ' , ' 3 ') ” , ” (' 6 ' , ' 4 ') ” , ” (' 6 ' , ' 5 ') ” , ” (' 6 ' , ' 6 ') ” , ” (' 6 ' , ' 7 ') ” , ” (' 7 ' , ' 1 ') ” ,
” (' 8 ' , ' 1 ') ” , ” (' 9 ' , ' 1 ') ” , ScenarioName , P r o b a b i l i t y W e i g h t , MaxNPV
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 1 , 0 . 2 , 5 3 . 8 6 5
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 2 , 0 . 6 , 5 9 . 4 8 8
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , s c e n a r i o 3 , 0 . 2 , 5 9 . 8 2 6

150

5 Distributionally Robust Optimization

We consider another risk-averse decision making approach using distributionally robust optimiza-
tion (DRO). To this end, we begin with a nominal stochastic optimization problem:

max
s2S

X

�2⌃

q�f(s, ⇠�) (24)

In our context, the nominal model is a stochastic capital budgeting problem in which we max-
imize expected NPV, and we could have f(s, ⇠�) = NPV (s, ⇠�). In this context “s 2 S” simply
indicates the constraints that a prioritized solution must satisfy, wherein we prioritize project selec-
tion subject to uncertainty in costs and the NPV of each project as well as uncertainty in resource
availability. The goal is to prioritize so as to maximize expected NPV, assuming that nominal
distribution, specified by the probability mass function q�, � 2 ⌃.

We suppose that ⇠ is a discrete random variable with finite sample space ⌦, so that ⇠!,! 2 ⌦
enumerates all possible realizations. We further suppose that we only have observations of ⇠�, � 2
⌃ ⇢ ⌦, i.e., possibly a strict subset, which may arise in a data-driven setting. In such a data-driven
setting we could have, for example, probability mass q� = 1/|⌃| for all � 2 ⌃. A DRO variant of
this nominal stochastic optimization model is then given by:

max
s2S

min
p2P

X

!2⌦

p!f(s, ⇠!) (25)

Here, we may view this DRO model as playing a “game” against nature. First, we select s 2 S,
and then knowing s, nature selects a worst-case probability distribution, p 2 P , to minimize
the expected NPV, which we seek to maximize. We will make precise what we mean by the
Distributional Uncertainty Set (DUS), denoted by P , below, but for the moment it is enough to
think of the set as representing a neighborhood of probability distributions centered on the given
probability mass function, q, with the radius of the neighborhood specified by parameter ". If " = 0
then the DRO model reduces to the nominal model. If " is very large then nature will select the
single worst-case scenario, e.g., the scenario with lowest budgets, highest costs, and lowest NPVs.
This is too conservative to be useful (i.e. if we are living in this world, it is very likely that the plant
would be uneconomical no matter what decisions are made). However, with moderate values of "
we obtain solutions that hedge against deviations from q without being excessively conservative.

Importantly, we do not view nature as malevolent, despite occasional evidence to the contrary.
Rather, we use “minp2P ” to combat over-adapting our solution to a specific assumption about
the probability distribution. In this sense, DRO plays the role of a “regularizer” to combat over-
fitting that is analogous to regularizers used in high-dimensional statistics and statistical machine
learning. Our approach to DRO requires further mathematical and intuitive development before

151

we can analyze solutions to the DRO problem.

5.1 Defining a Distributional Uncertainty Set via the Wasserstein Distance

By the constraints denoted by p 2 P we require that nature select a probability mass function,
p, that is “close” to the nominal or empirical data-driven distribution q. We define the DUS as
follows:

P = {p : D(p, q) ",
X

!2⌦

p! = 1, p! � 0,! 2 ⌦} (26)

where D(p, q) is the distance between nature’s choice, p, and the nominal data-driven distribu-
tion, q. As indicated above, the radius parameter " governs the latitude we give nature, which in
turn governs the degree of conservatism that we face when selecting decision s 2 S.

There are multiple ways to measure the “distance”, D(p, q), between two probability distribu-
tions, which include the Kolmogorov-Smirnov distance, Kullback-Leibler divergence, chi-squared
distances, total variation, and more general -divergences. The Wasserstein distance, which is
based on the idea of optimal transport, is a particularly useful way to measure such a distance in
the context of distributionally robust optimization. For a distribution with known finite support,
the Wasserstein distance, D(p, q), between a given distribution, q�, � 2 ⌃, and a given candidate
robust distribution, p!,! 2 ⌦, is provided by the optimal value of the transportation problem:

D(q, p) = min
z

X

�2⌃,!2⌦

d�,!z�,! (27a)

s.t.
X

!2⌦

z�,! = q�, � 2 ⌃ (27b)

X

�2⌃

z�,! = p!,! 2 ⌦ (27c)

z�,! � 0, � 2 ⌃,! 2 ⌦ (27d)

The intuition behind this measure concerns the magnitude of probability mass, q�, that must be
transported distance d�,! from vector ⇠� to vector ⇠! via variable z�,!. In one extreme case, if the
two sample spaces and probability mass functions coincide, i.e., ⌦ = ⌃ and p! = q!, and d!,! = 0
for all ! 2 ⌦ then D(p, q) = 0.

152

To fully specify D(p, q) we must define d�,! = dist(⇠�, ⇠!). To do so we can select dist(·, ·),
for example, to be the two-norm distance, or a more general ⌘-norm distance, between the vectors,
⇠� and ⇠!, i.e., dist(·, ·) = ||⇠� � ⇠!||⌘.

With the Wasserstein distance, if we are given distribution, q, we can then define:

P = {p : D(p, q) ",
X

!2⌦

p! = 1, p! � 0,! 2 ⌦} (28)

for a given radius ". Here, we think of P as a ball, or neighborhood, of probability distributions
centered on q, where the neighborhood has radius ". With ⌃ ⇢ ⌦, if " = 0 then P is the singleton
q, and larger values of " lead to increasingly large neighborhoods. In the context of robust opti-
mization, if " = 0 then we will simply be solving the nominal stochastic optimization model, and
as " grows large we will consider increasingly conservative models.

We can now represent the set P via the following so-called extended-variable set of constraints:

X

�2⌃,!2⌦

d�,!z�,! " (29a)

X

!2⌦

z�,! = q�, � 2 ⌃ (29b)

X

�2⌃

z�,! = p!,! 2 ⌦ (29c)

z�,! � 0, � 2 ⌃,! 2 ⌦ (29d)

5.2 Towards a Computationally Tractable Reformulation

Due to the max min construct in the DRO model, the model is not amenable to direct solution via
optimization software. So, we reformulate the model to facilitate computation. For the moment
let s 2 S be fixed so that f(s, ⇠!) is just a known numerical value for each ! 2 ⌦. Then, nature’s

153

problem may be written:

min
p,z

X

!2⌦

p!f(s, ⇠!) (30a)

s.t.
X

�2⌃,!2⌦

d�,!z�,! " : [��] (30b)

X

!2⌦

z�,! = q�, � 2 ⌃ : [⌫�] (30c)

X

�2⌃

z�,! = p!,! 2 ⌦ : [�!] (30d)

z�,! � 0, � 2 ⌃,! 2 ⌦ (30e)

Here, �, ⌫�, and �! denote dual variables. In this model, nature optimizes over z and over p to
select a worst-case distribution within radius " of q.

Taking the dual of the linear DRO program, and substituting out the dual variable �! =
�f(s, ⇠!), we obtain the following:

max
�,⌫

��"+
X

�2⌃

⌫�q� (31a)

s.t.� �d�,! + ⌫� f(s, ⇠!), � 2 ⌃,! 2 ⌦ (31b)
� � 0 (31c)

For a better understanding of the model, consider two extreme cases, " = 0 and " = 1.
If " = 0 then there is no penalty in the objective function for allowing � to grow large. As
gamma grows large, the constraint becomes vacuous for all � 6= !; however, for � = ! we have
d�,� = ||⇠� � ⇠!|| = 0, and hence the constraint reduces to ⌫� f(s, ⇠!), and coupled with the
objective function the optimal value reduces to

P
� q

�f(s, ⇠�) =
P

! p
!f(s, ⇠!), i.e., it reduces to

the objective function value of the nominal stochastic optimization model, as it must with " = 0.

In the other extreme, as " grows sufficiently large we must have � = 0 to avoid a huge penalty
in the objective function. Thus, for each � 2 ⌃, the constraint reduces to ⌫� f(s, ⇠!), i.e., the
objective function reduces to:

X

�

min
!

f(s, ⇠!)q� = min
!

f(s, ⇠!)
X

�

q� = min
!

f(s, ⇠!) (32)

154

Again, this matches what it must: if " = 1 then nature has enough latitude to place a proba-
bility of one on the single worst-case scenario.

Specializing s 2 S to be the constraints for prioritization, and specializing f(s, ⇠!) to define
the NPV under scenario ! 2 ⌦, the DRO variant of the stochastic capital budgeting problem is as
follows:

max
x,y,�,⌫

��"+
X

�2⌃

⌫�q� (33a)

s.t.� �d�,! + ⌫�
X

i2I

X

j2Ji

a!ijx
!
ij, � 2 ⌃,! 2 ⌦ (33b)

yii0 + yi0 i � 1, i < i
0
, i, i

0 2 I (33c)
JiX

j=1

x!
ij �

JiX

j=1

x!
i0j + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (33d)

X

i2I

X

j2Ji

c!ijktx
!
ij b!kt, k 2 K, t 2 T,! 2 ⌦ (33e)

X

j2Ji

x!
ij 1, i 2 I,! 2 ⌦ (33f)

� � 0 (33g)

5.3 LOGOS Settings for DRO Problems

DRO approach is an extension for stochastic optimization approach discussed in Section 4. Both of
them share the same input structures except the <Settings> block. In both cases, the user need
to specify a collection of scenarios via <Uncertainties> block. The <problem type>
within <Settings> block is used to select the type of DRO problems. The currently avail-
able DRO problem types are: ’droskp’, ’dromkp’, and ’dromckp’. The user can use
<radius ambiguity> to control the Wasserstein distance for DRO problems.

Example LOGOS input XML for DRO:

<Settings>
<Logos>

<solver>cbc</solver>
<solverOptions>

<StochSolver>EF</StochSolver>
<!-- epsilon radius -->

155

<radius_ambiguity>0.1</radius_ambiguity>
</solverOptions>
<sense>maximize</sense>
<problem_type>droskp</problem_type>

</Settings>
</Logos>

5.4 DRO for Single Knapsack Problem

Model Formulation:

max
x,y

max
�,⌫

(��"+
X

�2⌃

⌫�q�) (34a)

��d�,! + ⌫�
X

i2I

a!i x
!
i , � 2 ⌃,! 2 ⌦ (34b)

X

i2I

c!i x
!
i b! (34c)

yii0 + yi0i � 1, i < i0 (34d)
x!
i � x!

i0 + yii0 � 1, i 6= i0 (34e)
x!
i , y

!
ii0 2 0, 1 (34f)

� � 0 (34g)

See next section 5.5 for the example of LOGOS input file, since multi-dimensional Knapsack
problem is just a simple extension of a single-dimensional Knapsack problem, and both of them
belong to the same <problem type>: ’droskp’.

156

5.5 DRO for Multi-Dimensional Knapsack Problem

Model Formulation:

max
x,y

max
�,⌫

(��"+
X

�2⌃

⌫�q�) (35a)

��d�,! + ⌫�
X

i2I

a!i x
!
i , � 2 ⌃,! 2 ⌦ (35b)

X

i2I

c!itx
!
i b!t , t 2 T (35c)

yii0 + yi0i � 1, i < i0 (35d)
x!
i � x!

i0 + yii0 � 1, i 6= i0 (35e)
x!
i , y

!
ii0 2 0, 1 (35f)

� � 0 (35g)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

</investments>
<time_periods>

1,2,3,4,5
</time_periods>

</Sets>

<Parameters>
<net_present_values index="investments">

2.315,0.824,22.459,60.589,0.667,5.173,4.003,0.582,0.122,
-2.870,-0.102,-0.278,-0.322,-3.996,-0.246,-20.155

</net_present_values>
<costs index="investments, time_periods">

0.219,0.257,0.085,0.0,0.0,
0.0,0.0,0.122,0.103,0.013,
5.044,1.839,0.0,0.0,0.0,
6.74,6.134,10.442,0.0,0.0,
0.425,0.0,0.0,0.0,0.0,
2.125,2.122,0.0,0.0,0.0,
2.387,0.19,0.012,2.383,0.192,

157

0.0,0.95,0.0,0.0,0.0,
0.03,0.03,0.688,0.0,0.0,
0,0.2,0.763,0.739,2.539,
0.081,0.032,0,0,0,
0.3,0,0,0,0,
0.347,0,0,0,0,
4.025,0.297,0,0,0,
0.095,0.095,0.095,0,0,
5.487,5.664,0.5,6.803,6.778

</costs>
<available_capitals index="time_periods">

18,18,18,18,18
</available_capitals>

</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>10</totalScenarios>
<probabilities>
0.012, 0.019, 0.032, 0.052, 0.086, 0.142, 0.235, 0.188,

0.141, 0.093
</probabilities>
<!--
scenarios is ordered by numberScenarios *

parametersIndex,
the number of scenarios is determined by
the number of elements in <probabilities>, for this case:
numberScenarios * time_periods = 10 * 5

-->
<scenarios>
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
14, 14, 14, 14, 14,
15, 15, 15, 15, 15,
16, 16, 16, 16, 16,
17, 17, 17, 17, 17,
18, 18, 18, 18, 18,
19, 19, 19, 19, 19,
20, 20, 20, 20, 20

</scenarios>
</available_capitals>

158

</Uncertainties>

<Settings>
<mandatory>10,11,12,13,14,15,16</mandatory>
<solver>cbc</solver>
<solverOptions>

<StochSolver>EF</StochSolver>
<!-- epsilon radius -->
<radius_ambiguity>0.1</radius_ambiguity>

</solverOptions>
<sense>maximize</sense>
<problem_type>droskp</problem_type>

</Settings>
</Logos>

5.6 DRO for Multiple Knapsack Problem

Model Formulation:

max
x,y

max
�,⌫

(��"+
X

�2⌃

⌫�q�) (36a)

��d�,! + ⌫�
X

i2I

X

m2M

a!i x
!
im, � 2 ⌃,! 2 ⌦ (36b)

X

i2I

c!i x
!
im b!m, m 2 M,! 2 ⌦ (36c)

yii0 + yi0i � 1, i < i0 (36d)
MX

m=1

x!
im �

MX

m=1

x!
i0m + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (36e)

x!
i,m, y

!
ii0 2 0, 1 (36f)

� � 0 (36g)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10

159

</investments>
<capitals>

unit_1, unit_2
</capitals>

</Sets>

<Parameters>
<net_present_values index="investments">

78, 35, 89, 36, 94, 75, 74, 79, 80, 16
</net_present_values>
<costs index="investments">

18, 9, 23, 20, 59, 61, 70, 75, 76, 30
</costs>
<available_capitals index="capitals">

103, 156
</available_capitals>

</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>10</totalScenarios>
<probabilities>
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

</probabilities>
<scenarios>
101, 154,
102, 155,
103, 156,
104, 157,
105, 158,
106, 159,
107, 160,
108, 161,
109, 162,
110, 163

</scenarios>
</available_capitals>

</Uncertainties>

<Settings>
<solver>cbc</solver>
<solverOptions>

160

<StochSolver>EF</StochSolver>
<!-- epsilon radius -->
<radius_ambiguity>0.1</radius_ambiguity>

</solverOptions>
<sense>maximize</sense>
<problem_type>dromkp</problem_type>

</Settings>
</Logos>

5.7 DRO for Multiple-Choice Knapsack Problem

Model Formulation:

max
x,y

max
�,⌫

(��"+
X

�2⌃

⌫�q�) (37a)

��d�,! + ⌫�
X

i2I

X

j2Ji

a!ijx
!
ij, � 2 ⌃,! 2 ⌦ (37b)

X

i2I

X

j2Ji

c!ijktx
!
ij b!kt, k 2 K, t 2 T,! 2 ⌦ (37c)

yii0 + yi0i � 1, i < i0 (37d)
JiX

j=1

x!
ij �

JiX

j=1

x!
i0j + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (37e)

x!
i,j, y

!
ii0 2 0, 1 (37f)

� � 0 (37g)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

</investments>
<options index='investments'>

1;
1;
1;
1,2,3;

161

1,2,3,4;
1,2,3,4,5,6,7;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1

</options>
</Sets>

<Parameters>
<net_present_values index='options'>

2.046
2.679
2.489
2.61
2.313
1.02
3.013
2.55
3.351
3.423
3.781
2.525
2.169
2.267
2.747
4.309
6.452
2.849
7.945
2.538
1.761
3.002
3.449
2.865

162

3.999
2.283
0.9
8.608

</net_present_values>
<costs index='options'>

36538462
83849038
4615385
2788461538
2692307692
5480769231
1634615385
2981730768
7211538462
9038461538
649038462
650000000
216346154
212500000
3076923077
3942307692
1144230769
675721154
1442307692
99711538
4807692
123076923
138461538
86538462
108653846
75092404
6413462
147932692

</costs>
<available_capitals>

15E9
</available_capitals>

</Parameters>

<Uncertainties>
<available_capitals>

163

<totalScenarios>3</totalScenarios>
<probabilities>
0.2,0.6,0.2

</probabilities>
<scenarios>
5E9,10E9,15E9

</scenarios>
</available_capitals>

</Uncertainties>

<Settings>
<solver>glpk</solver>
<solverOptions>

<StochSolver>EF</StochSolver>
<!-- epsilon radius -->
<radius_ambiguity>0.1</radius_ambiguity>

</solverOptions>
<sense>maximize</sense>
<problem_type>dromckp</problem_type>

</Settings>
</Logos>

164

6 Risk-Based Stochastic Capital Budgeting using Conditional
Value-at-Risk

Value-at-Risk (VaR) is currently used by finance businesses to indicate the percentiles of loss
distributions. For instance, 95%-VaR is an upper estimate of losses which is exceeded with 5%
probability. The popularity of VaR is mostly related to a simple and easy to understand represen-
tation of high losses. However, VaR may have undesirable mathematical characteristics such as
a lack of subadditivity and convexity [4, 5] . Another alternative percentile risk measure is called
Conditional Value-at-Risk (CVaR), which has more attractive properties than VaR, such as sub-
additive and convex. CVaR also called mean excess loss, mean shortfall, or tail VaR, is defined
as the expected loss exceeding VaR. In general, CVaR is the weighted average of VaR and losses
exceeding VaR. In this section, we will focus on using CVaR for capital budgeting problem.

6.1 Definitions of VaR and CVaR

Let X be a random variable with a cumulative distribution function F (z) = PX z. It can be
useful to think of X as a “loss” or more generally a variable such that large values need to be avoid.
The VaR of X with confidence level ↵ (e.g., ↵ = 0.9 is:

V aR↵(X) = min z|FX(z) � ↵ (38)

which is equivalent to V aR↵(X) = F�1
X (↵) if X is a continuous random variable. By this

definition, V aR↵(X) is a (lower) ↵-percentile of the random variable X . An alternative measure
of risk is CVaR. Here, CV aR↵(X) is the conditional expectation of X given that X � V aR↵(X).
Figure 1 shows the relationship between these two measures of risk.

The typical definition of CV aR↵(X) is CV aR↵(X) = EX|X > V aR↵(X). There are alter-
native ways to define this measure, which are mathematically equivalent. Rockafellar and Uryasev
in [6] (see also [7]) defines CVaR as:

CV aR↵(X) = min
u

u+ 1/(1� ↵)E[X � u]+ (39)

where [X � u] = max(X � u, 0). Here, variable u is simply an auxiliary decision variable
whose optimal value turns out to be CV aR↵(X). The above definition is particularly useful for
computation in the context of optimization.

Researchers have argued for using CVaR over VaR as a measure of risk. Theoretically, CVaR
satisfies the assumptions of a so-called coherent risk measure, and VaR does not. In simpler terms,

165

Figure 1. Relationship between value-at-risk and conditional
value-at-risk.

minimizing VaR is concerned with the numerical value of the 95-th percentile (say) of the loss, but
it does not care about the magnitude of larger losses. CVaR takes these magnitudes into account.

6.2 CVaR in Capital Budgeting

In this section, an explicit risk measure is constructed using a weighted combination of expectation
and CVaR. This approach allows us to parametrically vary the weight on maximizing expected
NPV versus penalizing solutions that yield low-NPV scenarios, and we denote the weight by �
with 0 � 1. Let NPV (s, ⇠) denote the net present value under a prioritization decision
specified by decision s, and under a realization of the budget and profit of each project, denoted by
⇠. Then we seek to solve the following optimization model:

max
s2S

(1� �)E[NPV (s, ⇠)]� �CV aR↵[�NPV (s, ⇠)] (40)

When � = 0 the model reduces to stochastic optimization model as discussed in Section 4; i.e.,
we seek a prioritization decision, s, to maximize expected NPV, where “s 2 S” simply indicates
the constraints that a prioritized solution must satisfy. CV aR↵[X] is typically applied to a random
variable, X , which represents a loss; i.e., we seek to avoid large values of X . In this context, let
V aR↵[X] denote the ↵-level quantile of X . Thus, if ↵ = 0.75 then V aR0.75[X] is the value such
that 75% of the realizations of X have lower values of loss. Suppose for simplicity that NPV (s, ⇠)
values are positive. Large values of NPV (s, ⇠) are good, and hence large values of �NPV (s, ⇠)
(i.e., those closer to zero) are bad. Using the definition of CV aR↵[X] = E[X|X > V aR↵[X]] we
thus have that the conditional value-at-risk is the expected value of loss, given that the loss exceeds
a certain percentile. So, when � = 1 we seek to minimize the expected value of NPV given that

166

they fall below a threshold. More generally, values of � between 0 and 1 seek a trade-off between
reward and risk, captured by expected NPV and CVaR, respectively.

The full mathematical optimization model of CVaR for capital budgeting problem is as follows:

max
x,y,⌫,u

(1� �)
X

!2⌦

q!
X

i2I

X

j2Ji

a!ijx
!
ij � �[u+ 1/(1� ↵)

X

!2⌦

q!⌫!] (41a)

⌫! � �
X

i2I

X

j2Ji

a!ijx
!
ij � u,! 2 ⌦ (41b)

yii0 + yi0 i � 1, i < i
0
, i, i

0 2 I (41c)
JiX

j=1

x!
ij �

JiX

j=1

x!
i0j + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (41d)

X

i2I

X

j2Ji

c!ijktx
!
ij b!kt, k 2 K, t 2 T,! 2 ⌦ (41e)

X

j2Ji

x!
ij 1, i 2 I,! 2 ⌦ (41f)

yii0 , x
!
ij 2 0, 1 (41g)

⌫! � 0,! 2 ⌦ (41h)

6.3 LOGOS Settings for CVaR Problems

CVaR approach is an extension for stochastic optimization approach discussed in Section 4. Both
of them share the same input structures except the <Settings> block. In both cases, the user
need to specify a collection of scenarios via <Uncertainties> block. The <problem type>
within <Settings> block is used to select the type of CVaR problems. The currently available
CVaR problem types are: ’cvarskp’, ’cvarmkp’, and ’cvarmckp’. The user can use
<risk aversion> (i.e. �) and <confidence level> (i.e., ↵) to control CVaR problem.

Example LOGOS input XML for CVaR:

<Settings>
<Logos>

<solver>cbc</solver>
<solverOptions>

<StochSolver>EF</StochSolver>
<risk_aversion>0.1</risk_aversion>
<confidence_level>0.95</confidence_level>

167

</solverOptions>
<sense>maximize</sense>
<problem_type>cvarskp</problem_type>

</Settings>
</Logos>

6.4 CVaR for Single Knapsack Problem

Model Formulation:

max
x,y,⌫,u

(1� �)
X

!2⌦

q!
X

i2I

a!i x
!
i � �[u+ 1/(1� ↵)

X

!2⌦

q!⌫!] (42a)

⌫! � �
X

i2I

a!i x
!
i � u,! 2 ⌦ (42b)

X

i2I

c!i x
!
i b!,! 2 ⌦ (42c)

yii0 + yi0i � 1, i < i0 (42d)
x!
i � x!

i0 + yii0 � 1, i 6= i0 (42e)
x!
i , y

!
ii0 2 0, 1 (42f)

⌫! � 0,! 2 ⌦,� 2 [0, 1] (42g)

See next section 6.5 for the example of LOGOS input file, since multi-dimensional Knapsack
problem is just a simple extension of a single-dimensional Knapsack problem, and both of them
belong to the same <problem type>: ’cvarskp’.

168

6.5 CVaR for Multi-Dimensional Knapsack Problem

Model Formulation:

max
x,y,⌫,u

(1� �)
X

!2⌦

q!
X

i2I

a!i x
!
i � �[u+ 1/(1� ↵)

X

!2⌦

q!⌫!] (43a)

⌫! � �
X

i2I

a!i x
!
i � u,! 2 ⌦ (43b)

X

i2I

c!itx
!
i b!t , t 2 T (43c)

yii0 + yi0i � 1, i < i0 (43d)
x!
i � x!

i0 + yii0 � 1, i 6= i0 (43e)
x!
i , y

!
ii0 2 0, 1 (43f)

⌫! � 0,! 2 ⌦,� 2 [0, 1] (43g)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

</investments>
<time_periods>

1,2,3,4,5
</time_periods>

</Sets>

<Parameters>
<net_present_values index="investments">

2.315,0.824,22.459,60.589,0.667,5.173,4.003,0.582,0.122,
-2.870,-0.102,-0.278,-0.322,-3.996,-0.246,-20.155

</net_present_values>
<costs index="investments, time_periods">

0.219,0.257,0.085,0.0,0.0,
0.0,0.0,0.122,0.103,0.013,
5.044,1.839,0.0,0.0,0.0,
6.74,6.134,10.442,0.0,0.0,
0.425,0.0,0.0,0.0,0.0,
2.125,2.122,0.0,0.0,0.0,

169

2.387,0.19,0.012,2.383,0.192,
0.0,0.95,0.0,0.0,0.0,
0.03,0.03,0.688,0.0,0.0,
0,0.2,0.763,0.739,2.539,
0.081,0.032,0,0,0,
0.3,0,0,0,0,
0.347,0,0,0,0,
4.025,0.297,0,0,0,
0.095,0.095,0.095,0,0,
5.487,5.664,0.5,6.803,6.778

</costs>
<available_capitals index="time_periods">

18,18,18,18,18
</available_capitals>

</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>10</totalScenarios>
<probabilities>
0.012, 0.019, 0.032, 0.052, 0.086, 0.142, 0.235, 0.188,

0.141, 0.093
</probabilities>
<scenarios>
11, 11, 11, 11, 11,
12, 12, 12, 12, 12,
13, 13, 13, 13, 13,
14, 14, 14, 14, 14,
15, 15, 15, 15, 15,
16, 16, 16, 16, 16,
17, 17, 17, 17, 17,
18, 18, 18, 18, 18,
19, 19, 19, 19, 19,
20, 20, 20, 20, 20

</scenarios>
</available_capitals>

</Uncertainties>

<Settings>
<mandatory>10,11,12,13,14,15,16</mandatory>
<solver>cbc</solver>
<solverOptions>

170

<StochSolver>EF</StochSolver>
<!-- lambda for risk aversion -->
<risk_aversion>0.1</risk_aversion>
<!-- confidence level -->
<confidence_level>0.95</confidence_level>

</solverOptions>
<sense>maximize</sense>
<problem_type>cvarskp</problem_type>

</Settings>
</Logos>

6.6 CVaR for Multiple Knapsack Problem

Model Formulation:

max
x,y,⌫,u

(1� �)
X

!2⌦

q!
X

m2M

X

i2I

a!i x
!
i,m � �[u+ 1/(1� ↵)

X

!2⌦

q!⌫!] (44a)

⌫! � �
X

m2M

X

i2I

a!i x
!
i,m � u,! 2 ⌦ (44b)

X

i2I

c!i x
!
im b!m, m 2 M,! 2 ⌦ (44c)

yii0 + yi0i � 1, i < i0 (44d)
MX

m=1

x!
im �

MX

m=1

x!
i0m + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦ (44e)

MX

m=1

x!
im 1 (44f)

x!
im, y

!
ii0 2 0, 1 (44g)

⌫! � 0,! 2 ⌦,� 2 [0, 1] (44h)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1,2,3,4,5,6,7,8,9,10

</investments>

171

<capitals>
unit_1, unit_2

</capitals>
</Sets>

<Parameters>
<net_present_values index="investments">

78, 35, 89, 36, 94, 75, 74, 79, 80, 16
</net_present_values>
<costs index="investments">

18, 9, 23, 20, 59, 61, 70, 75, 76, 30
</costs>
<available_capitals index="capitals">

103, 156
</available_capitals>

</Parameters>

<Uncertainties>
<available_capitals>

<totalScenarios>10</totalScenarios>
<probabilities>
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

</probabilities>
<scenarios>
101, 154,
102, 155,
103, 156,
104, 157,
105, 158,
106, 159,
107, 160,
108, 161,
109, 162,
110, 163

</scenarios>
</available_capitals>

</Uncertainties>

<Settings>
<solver>cbc</solver>
<solverOptions>

<StochSolver>EF</StochSolver>

172

<risk_aversion>1.0</risk_aversion>
<confidence_level>0.95</confidence_level>

</solverOptions>
<sense>maximize</sense>
<problem_type>cvarmkp</problem_type>

</Settings>
</Logos>

6.7 CVaR for Multiple-Choice Knapsack Problem

Model Formulation:

max
x,y,⌫,u

(1� �)
X

!2⌦

q!
X

j2Ji

X

i2I

a!ijx
!
ij � �[u+ 1/(1� ↵)

X

!2⌦

q!⌫!] (45a)

⌫! � �
X

j2Ji

X

i2I

a!ijx
!
ij � u,! 2 ⌦ (45b)

X

i2I

X

j2Ji

c!ijktx
!
ij b!kt, k 2 K, t 2 T,! 2 ⌦ (45c)

yii0 + yi0i � 1, i < i0 (45d)
Ji�1X

j=1

x!
ij �

Ji�1X

j=1

x!
i0j + yii0 � 1, i 6= i

0
, i, i

0 2 I,! 2 ⌦, andi 6= i0 (45e)

JiX

j=1

x!
ij = 1 (45f)

x!
i,j, y

!
ii0 2 0, 1 (45g)

⌫! � 0,! 2 ⌦,� 2 [0, 1] (45h)

Example LOGOS input XML:

<Logos>
<Sets>

<investments>
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

</investments>
<options index='investments'>

1;

173

1;
1;
1,2,3;
1,2,3,4;
1,2,3,4,5,6,7;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1

</options>
</Sets>

<Parameters>
<net_present_values index='options'>

2.046
2.679
2.489
2.61
2.313
1.02
3.013
2.55
3.351
3.423
3.781
2.525
2.169
2.267
2.747
4.309
6.452
2.849
7.945
2.538
1.761

174

3.002
3.449
2.865
3.999
2.283
0.9
8.608

</net_present_values>
<costs index='options'>

36538462
83849038
4615385
2788461538
2692307692
5480769231
1634615385
2981730768
7211538462
9038461538
649038462
650000000
216346154
212500000
3076923077
3942307692
1144230769
675721154
1442307692
99711538
4807692
123076923
138461538
86538462
108653846
75092404
6413462
147932692

</costs>
<available_capitals>

15E9
</available_capitals>

</Parameters>

175

<Uncertainties>
<available_capitals>

<totalScenarios>3</totalScenarios>
<probabilities>
0.2,0.6,0.2

</probabilities>
<scenarios>
5E9,10E9,15E9

</scenarios>
</available_capitals>

</Uncertainties>

<Settings>
<solver>glpk</solver>
<solverOptions>

<StochSolver>EF</StochSolver>
<risk_aversion>0.1</risk_aversion>
<confidence_level>0.95</confidence_level>

</solverOptions>
<sense>maximize</sense>
<problem_type>cvarmckp</problem_type>

</Settings>
</Logos>

176

7 Plugin for the RAVEN Code

The deterministic model can be repeatedly solved by changing the input values (i.e., <available
capitals> [bkt] and <net present values> [aij]). This will allow for what-if sensitivity
analysis to identify the crucial drivers behind the optimal project selection decision. Monte Carlo
simulation permits a powerful variant of this approach in which we model aij and bkt as random
variables, sample from their distributions, and perform a form of uncertainty quantification in terms
of the resulting distributions governing the binary decisions selected, xij , and the overall NPV of
the selected portfolio.

Example RAVEN input <ExternalModel> XML:

<Models>
<ExternalModel name="singleKnapsack"

subType="LOGOS.CapitalInvestmentModel">
<variables>available_capitals,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,

MaxNPV</variables>
<ModelData>

<Sets>
<investments>

i1,i2,i3,i4,i5,i6,i7,i8,i9,i10
</investments>

</Sets>
<Parameters>
<net_present_values index="investments">

18,20,17,19,25,21,27,23,25,24
</net_present_values>
<costs index="investments">

1,3,7,4,8,9,6,10,2,5
</costs>
<available_capitals>

15
</available_capitals>

</Parameters>
<Settings>
<solver>glpk</solver>
<sense>maximize</sense>

</Settings>
</ModelData>

</ExternalModel>
</Models>

177

As the name suggests, an external model is an entity that is embedded in the RAVEN code at run
time. This object allows the user to import the LOGOS module that will be treated as a predefined
internal RAVEN object. In other words, the External Model will be treated by RAVEN as a normal
external model. Check the RAVEN user manual for a more detailed description. Note: The value
for attribute subType should always be ’LOGOS.CapitalInvestmentModel’.

<variables> specifies a list of variable names that need to match variables used/defined in
the LOGOS model. In the above example, the variable ’available capitals’ is sampled
by RAVEN, and its value is used by LOGOS instead of using the default values specified by
<ModelData>. The decision variables ’i1,i2,i3,i4,i5,i6,i7,i8,i9,i10’ and the
objective variable ’MaxNPV’ are collected from the output of the LOGOS model, and can be
stored in the RAVEN data objects. The XML node <ModelData> is used to specify the LOGOS
optimization problem, which should be consistent with the LOGOS input XML file.

7.1 Test Automation

Automated regression testing is a development methodology generally used to verify the correct-
ness and performance of software after each modification. This methodology is integrated directly
into GitHub and GitLab for RAVEN and RAVEN-supported plugins. In this case, testing is per-
formed automatically as part of the continuous integration system (CIS) process whenever a user
commits a change to the repository. Tests of changes across multiple platforms are executed with
each pull request. Results from each test execution are maintained in an approved records reposi-
tory in the CIS database, along with results from the timing executions.

7.2 Testing System Prerequisites

The module test system consists of scripts written in Bash shell language and Python. It may
be used on any platform supported by RAVEN (i.e. Linux, Mac, and Windows). The following
conditions must be satisfied for the module test system to function properly:

• RAVEN should be installed and updated. This is because RAVEN is used to run the module
tests;

• The system running the tests must be configured with the software prerequisites necessary to
build and run RAVEN. These include a Python interpreter, Python libraries (h5py, matplotlib,
numpy, scipy, and scikit-learn), and development tools (C++ compiler, Miniconda package
manager for Python, and Git source code control);

• RAVEN must be built with the appropriate compiler before it can be used to run the tests;

178

Figure 2. Folder tree of the Logos repository.

• The LOGOS submodule must be initialized and fully updated. Additional prerequisites in-
clude PYOMO, glpk, and coincbc;

7.3 Test Location and Definition

LOGOS is a RAVEN-supported plugins and managed by Git. RAVEN plugins afford an option to
associate a workflow or a set of RAVEN external models to RAVEN without having them included
in the RAVEN main repository. The benefits include modularity, access restriction, and regression
testing for compatibility with RAVEN as it continues to grow. In this case, we are able to treat this
repository as separate, yet still be able to use one from within the other. The main structure of the
LOGOS repository is shown in Figure 2. The folder tests contains the input of the tests, in addition
to the corresponding output (in the gold folder) used for assurance that the behavior of the code is
not changed for new modifications. These tests can also be collected in subfolders based on their
characteristics.

The RAVEN repository contains a complete testing system for providing regression testing for
itself and its plugins. The LOGOS module tests are defined in the same manner as for RAVEN. A
single test consists of a RAVEN input file along with associated data needed to perform that run.
This can include input data, external models, and Python files. These may be placed in the tests

directory or a related subdirectories. Each directory that contains tests to be run by the framework
must contain a test specification file named “tests”. The syntax of these files is defined by the
RAVEN test framework, which controls how each test is run and sets the criteria used to determine
whether it passed or not. An example of a test specification file is presented here:

179

[Tests]
[./skp_optimization]

type = 'RavenFramework'
input = 'test_skp.xml'
UnorderedCsv = 'skp/test_skp.csv'

[../]
[]

In the above example, one test, named “skp optimization”, is defined using the RAVEN test module
(defined in the test file as “type = ‘RavenFramework’”). Comparison criteria are also defined in
the “tests” file. In most cases, one or more output files generated by running the specified input
file with RAVEN are compared against a gold standard provided by the developer and stored in the
repository. Typically, comparisons are performed on numeric values contained in CSV files up to a
defined tolerance. When these file comparisons are specified by the test developer, reference files
must have the same name and be placed in the gold subdirectory below that containing the “tests”
file.

7.4 Running the Tests

The integrated tests can be run separately, as indicated by following this pathway:

path/to/raven/raven_framework path/to/LOGOS/tests/TestName

7.5 Continuous Integration System (CIVET)

CIVET, developed at INL, is used for continuous integration, verification, enhancement, and test-
ing of RAVEN and LOGOS. Each time a developer proposes modification of the contents of the
LOGOS repository, CIVET will cause the automated tests to be run on the modified version. These
tests must all pass before a proposed change can become part of the official repository. In this way,
the LOGOS project is protected from the accidental introduction of flaws into software that re-
quired such a significant investment of resources to develop.

180

8 SSC Cashflow and NPV Models

Imagine a portfolio of candidate projects, in which some of the decisions involve either replacing
an item now or postponing replacement and facing potentially higher maintenance and replacement
costs. We choose to assume that the item must either be replaced now or in the future, and it is in
this context we describe the appropriate cashflow calculations. We then extend the discussion to
allow the planned replacement to occur in year 2 or 3, for example, rather than in year 1.

We assume that doing nothing is not an option, since the items under consideration are of
significant importance and, if not replaced in due course, would impose an unacceptable risk to
either safety or production.

Notation:

• p : probability of item failure for one year

• CP : cost of planned replacement

• CU : cost of unplanned replacement

• CD : cost of shutdown per day

• D : number of days plant is off-line, if a shutdown occurs

• N : number of years

• R : discount rate

We could incorporate additional parameters, such as weekly or monthly inspection costs, fixed
costs of shutdown in addition to the daily costs specified above, etc. That said, the setting we
describe allows us to illustrate key ideas in the cashflow calculations for computing NPV.

We further assume that, if we do not replace the item, its failure time is a random variable that
follows a geometric distribution where the probability of failure in one year is denoted by p (i.e.,
the probability of survival over one year is 1 � p). Thus, if the plant faces a 20-year decision
period, the probability of survival up to year t is (1� p)t, and the probability of failing in year t is
given by p (1� p)t�1.

Here is pedantic but useful construct for thinking about the calculations that follow is to visual-
ize a coin flip for each year, yielding a fail or no fail event for that given year. Immediately after the
coin flip, appropriate costs are incurred. In other words, this discrete view of time with Bernoulli
trials is useful to simplify the logic of the calculations, rather than viewing time as a continuum
and teasing out what happened when during a given year.

181

If the item is not replaced today (time t = 1), we can compute the expected replacement cost
in any year t = 1, 2, . . . , N � 1 as:

Expected Replacement Cost in Year t = CUp (1� p)t�1 (46)

Here, we incur this cost only if the coin flips yielded “no fail” events in years t = 1, 2, . . . , t�
1, then a “fail” event in year t (i.e., we incur the cost through the geometric random variable’s
probability mass of having the first failure in year t, which is given by p (1� p)t�1).

Since we assume the item must be replaced in year N if it has not already failed, the expected
replacement cost does not depend on the result of a coin flip in year N , in the same way that
replacement in year 1 precludes dependence on the year 1 coin flip. Rather, we incur this cost with
certainty in year N , as long as the item had not failed in previous years t = 1, 2, . . . , N � 1; In
other words, the expected cost is given by:

Expected Replacement Cost in Year N = CP (1� p)N�1 (47)

where the planned replacement cost is used.

In order to illustrate the computation of the cash flows, we further assume that, if the item is
not replaced now, the plant faces a loss of revenue due to a shutdown at a cost of CD per day. In
this case, the expected downtime cost incurred in year t = 1, 2, . . . , N � 1 is given by:

Expected Downtime Cost in Year t = DCDp (1� p)t�1 . (48)

Again, we assume that the planned replacement in year t = N precludes dependence on the
coin flip and therefore also precludes incurring any downtime cost in that year, though we ac-
knowledge other assumptions are possible. Thus, for practical purposes, there is no coin flip in
year N.

More generally, if the item is not replaced now, the plant will face the possibility of increased
costs due to reliability issues. Such costs include increased inspection costs, downtime costs for a
week-long shutdown, lost revenue from a 6-hour shutdown, costs associated with the emergency
replacement of an item, etc. We can express the above costs in the following functional form:
Re Cost (p, t, C1, C2,··· ,CM), where C1, C2,··· ,CM are costs relevant for the considered item, and,
in general, p could be a vector that incorporates multiple types of shutdown. In our case, the ex-
pected downtime cost in year t = 1, 2, . . . , N is given by a function: Re Cost (p, t, CP , CU , CD, D,N)
, with just a scalar value for p.

There are two relevant time-series of cash flows: one for replacing the item now and another
for replacing it later, either at failure or at the horizon year N . First, consider replacing the item

182

Figure 3. Graphical representation of option 1: replace now.

Figure 4. Graphical representation of option 2: replace later.

today; in this case, we simply incur the cost of planned replacement at time t = 1 (i.e., we incur
cost CP .)

The second time-series of cash flows is for replacing the item in the future. In this case,
for every year t, we have the expected replacement cost and downtime cost. So, for any year
t = 1, 2, . . . , N � 1, the cash flows will be computed as:

Cash Flow Replaced in Year t = �
⇥
(CU +DCD) p (1� p)t�1⇤ (49)

and for the final year as:

Cash Flow Replaced in Year N = �
h
CP (1� p)N�1

i
. (50)

Note the minus sign in front of the cash flows because all of them are costs (i.e., cash outflows).
The timelines of the two options are illustrated as follows:

The NPV of option 1 is:

NPV option 1 = �CP (51)

The NPV of option 2 is:

183

NPV option 2 = �
"
N�1X

t=1

(CU +DCD) p (1� p)t�1

(1 +R)t�1 +
CP (1� p)N�1

(1 +R)N�1

#
(52)

We can compare these options in two ways. The first is to simply compute the NPV as the
difference between the NPV of option 1 and that of option 2 (i.e., NPV = NPV option 1 �
NPV option 2). The resulting equation is:

NPV = �CP +

"
N�1X

t=1

(CU +DCD) p (1� p)t�1

(1 +R)t�1 +
CP (1� p)N�1

(1 +R)N�1

#
(53)

If the project in question is the only one under consideration, and if NPV > 0, the decision is
to replace the item today; otherwise, we replace it later.

We now extend the above logic to the planned replacement occurring in year T0. We had
assumed T0 = 1, but now we allow for delaying this planned replacement to a later year, albeit
at the risk of incurring a failure prior to T0, along with associated unplanned replacement and
downtime costs. If the planned replacement happens at time T0, the corresponding time-series of
cash flows will become as follows: one for replacing the item either at failure before T0 or at T0,
and another for replacing it later, either at failure or at the horizon year N .

The first time-series of cash flows is for replacing the item at T0. In this case, for every year
t = 1, 2, . . . , T0 � 1, we have the expected replacement cost and downtime cost. So, for any year
1, 2, . . . , T0 � 1, the cash flows will be computed as:

Cash Flow Replaced in Year t = �
⇥
(CU +DCD) p (1� p)t�1⇤ (54)

for t = T0 the expected cash flow is:

Cash Flow Replaced in Year T0 = �
h
CP (1� p)T0�1

i
(55)

The timeline of this option is illustrated as follows:

NPV option 1 = �
"
T0�1X

t=1

(CU +DCD) p (1� p)t�1

(1 +R)t�1 +
CP (1� p)T0�1

(1 +R)T0�1

#
(56)

Note that, if T0 = 1, then the first term yields zero, and the NPV of option 1 reduces to that
discussed above (i.e., it equals �CP .)

184

Figure 5. Graphical representation of option 1: planned replace-
ment at T0.

The second time-series of cash flow is for attempting to delay replacement of the item to time
N , and incurring the risk of unplanned replacement and downtime in the meantime. It is the same
as we calculated before.

NPV option 2 = �
"
N�1X

t=1

(CU +DCD) p (1� p)t�1

(1 +R)t�1 +
CP (1� p)N�1

(1 +R)N�1

#
(57)

We can compute NPV as:

NPV = NPV Option 1� NPV Option 2 (58)

=

"
N�1X

t=T0

(CU +DCD) p (1� p)t�1

(1 +R)t�1 +
CP (1� p)N�1

(1 +R)N�1 � CP (1� p)T0�1

(1 +R)T0�1

#
(59)

A new RAVEN External Model with subType ’LOGOS.IncrementalNPV’ was created
to compute the NPV described above.

Example RAVEN Input <ExternalModel> XML:

<ExternalModel name="rvi_model" subType="LOGOS.IncrementalNPV">
<variables>fp,rvi_npv_a,rvi_npv_b</variables>
<alias variable="rvi_p_failure" type="input">fp</alias>
<Cp>19.82</Cp>
<Cu>39.64</Cu>
<fp>0.05</fp>
<Cd>1.</Cd>
<D>30</D>
<options>

185

<Td>1, 4</Td>
<output>rvi_npv_a,rvi_npv_b</output>

</options>
<discountRate>0.03</discountRate>
<startTime>2019</startTime>
<lifetime>20</lifetime>

</ExternalModel>

In order to use this external model to compute NPV, ’LOGOS.IncrementalNPV’ should
be always used for subType. Except for the common nodes <variables> and <alias>, this
entity accepts the following sub-nodes:

• <Cp>, float, required parameter, specifies the cost of planned replacement.

• <Cu>, float, required parameter, specifies the cost of unplanned replacement.

• <Cd>, float, required parameter, specifies the cost of shutdown per day.

• <D>, integer, required parameter, specifies the number of days plant is off-line, if a shut-
down occurs.

• <fp>, float, required parameter, specifies the probability of item failure over one year.

• <discountRate>, float, required parameter, specifies the discount rate.

• <inflation>, float, optional parameter, specifies the inflation rate.
Default: 0.0

• <tax>, float, optional parameter, specifies the tax rate.
Default: 0.0

• <HardSavings>, float, optional parameter, specifies the hard savings that would be
added to the NPV calculation.
Default: 0.0

• <count>, integer, optional parameter, specifies the number of the same items/components
that need to be replaced at the same time.
Default: 1.0

• <startTime>, integer, required parameter, specifies the start time of project.

• <lifetime>, integer, required parameter, specifies the lifetime of the project.

• <options>, optional parameter, specifies options to compute NPVs of planned replace-
ments occurring in different years relative to the start time.

186

– <Td>, comma separated integers, required parameter, specifies the lengths of delay-
ing the planned replacement.

– <output>, comma separated strings, required parameter, specifies the output vari-
ables corresponding to the different specified lengths of delays in <Td>. In order to
communicate with RAVEN, these variables need to be listed under node <variables>.
Note: These variables are defined by the user and would be used to store the calculated
NPVs.

The parameters Cp, Cu, fp, Cd, inflation, and tax can be sampled by RAVEN. If the user
specifies these parameters in the input XML <ExternalModel>, the values for these parameters
will be replaced by the sampled values from RAVEN.

Example LOGOS Incremental NPV output CSV:

fp,rvi_npv_a,rvi_npv_b
...

Note: In order to compute the NPVs, the TEAL plugin is required. Refer to https://
github.com/idaholab/raven/wiki/Plugins for details on how to access and install
the plugins.

The whole calculation flow is depicted in Fig. 6.

187

https://github.com/idaholab/raven/wiki/Plugins
https://github.com/idaholab/raven/wiki/Plugins

Figure 6. Risk-informed capital budgeting via RAVEN and
RAVEN plugins.

188

9 Knapsack Models

LOGOS contains a set of Knapsack models that can be used coupled with RAVEN when the desired
optimization problem requires the use of specific models to generate knapsack required parameters.
More specifically, all these models would be contained in a RAVEN EnsembleModel and RAVEN
optimization methods (e.g., Genetic Algorithms) would be employed to find the optimal solution.

9.1 Simple Knapsack Model

This model considers the classical Knapsack Model characterized by a set of elements that can
be chosen (or not). The goal is to maximize the sum of the chosen element values provided that
the sum of element cost values satisfy capacity constraint (specified in the variable defined in the
<capacity> node).

The ID of the variables that represent cost, value, and choice of each element are indicated in
the <map> node. The model generates two variables:

• the validity of the chosen solution (specified in the <outcome> node): either valid (i.e., 0),
or invalid (i.e., 1) if the capacity constraint is not satisfied,

• totalValue (specified in the <choiceValue> node): sum of the values of the chosen ele-
ments

When calculating the <choiceValue> variable, if the <capacity> constraint is not sat-
isfied, then the <choiceValue> variable is penalized by multiplying the project value by -
<penaltyFactor>.

Example LOGOS input XML for SimpleKnapsackModel Model:

<ExternalModel name="knapsack"
subType="LOGOS.SimpleKnapsackModel">
<variables>element1Status, element2Status, element3Status,

element4Status, element5Status,
element1Val ,element2Val ,element3Val

,element4Val ,element5Val,
element1Cost ,element2Cost ,element3Cost

,element4Cost,element5Cost,
validity,totalValue,capacityID</variables>

<capacity>capacityID</capacity>
<penaltyFactor>1.</penaltyFactor>
<outcome>validity</outcome>

189

<choiceValue>totalValue</choiceValue>
<map value='element1Val' cost='element1Cost'

>element1Status</map>
<map value='element2Val' cost='element2Cost'

>element2Status</map>
<map value='element3Val' cost='element3Cost'

>element3Status</map>
<map value='element4Val' cost='element4Cost'

>element4Status</map>
<map value='element5Val' cost='element5Cost'

>element5Status</map>
</ExternalModel>

9.2 MultipleKnapsack Model

This model considers the Multiple Knapsack Model characterized by a set of elements that can be
chosen (or not) over a set of multiple knapsacks. The goal is to maximize the sum of the chosen
element values provided that the sum of element cost values satisfy capacity constraints of each
knapsack.

The capacity of each knapsack is defined in the <knapsack> node.

The ID of the variables that represent cost, value, and choice of each element are indicated in
the <map> node. The model generates two variables:

• the validity of the chosen solution (specified in the <outcome> node): either valid (i.e., 0),
or invalid (i.e., 1) if the capacity constraint is not satisfied,

• totalValue (specified in the <choiceValue> node): sum of the values of the chosen ele-
ments

When calculating the <choiceValue> variable, if the capacity constraints are not satisfied,
then the <choiceValue> variable is penalized by multiplying the project value by -<penaltyFactor>.

Example LOGOS input XML for MultipleKnapsack Model:

<Models>
<ExternalModel name="knapsack"

subType="LOGOS.MultipleKnapsackModel">
<variables>e1Status,e2Status,e3Status,e4Status,e5Status,

e1Val ,e2Val ,e3Val ,e4Val ,e5Val,
e1Cost ,e2Cost ,e3Cost ,e4Cost ,e5Cost,

190

validity,totalValue,
K1_cap,K2_cap,K3_cap</variables>

<knapsack ID='1'>K1_cap</knapsack>
<knapsack ID='2'>K2_cap</knapsack>
<knapsack ID='3'>K3_cap</knapsack>
<penaltyFactor>1.</penaltyFactor>
<outcome>validity</outcome>
<choiceValue>totalValue</choiceValue>
<map value='e1Val' cost='e1Cost' >e1Status</map>
<map value='e2Val' cost='e2Cost' >e2Status</map>
<map value='e3Val' cost='e3Cost' >e3Status</map>
<map value='e4Val' cost='e4Cost' >e4Status</map>
<map value='e5Val' cost='e5Cost' >e5Status</map>

</ExternalModel>
</Models>

191

Document Version Information

This document has been compiled using the following version of the plugin Git repository:
dea9e0974d2543c30319046c402a2c7f73c40177 mandd Fri, 9 Jul 2021 16:51:39 -0600

192

References

[1] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, S. Sen, C. Wang, and J. Chen,
“Raven user manual,” Tech. Rep. INL/EXT-15-34123, March 2017.

[2] A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P. W. Talbot, D. P. Maljovec, and
C. Smith, “Raven theory manual and user guide,” tech. rep., Idaho National Laboratory (INL),
2017.

[3] A. Koç, D. P. Morton, E. Popova, S. M. Hess, E. Kee, and D. Richards, “Prioritizing project
selection,” The Engineering Economist, vol. 54, no. 4, pp. 267–297, 2009.

[4] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, “Thinking coherently,” Risk, vol. 10, pp. 68–
71, 1997.

[5] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, “Coherent measures of risk,” Mathematical

Finance, vol. 9, no. 3, pp. 203–228, 1999.

[6] R. T. Rockafellar and S. P. Uryasev, “Optimization of conditional value at risk,” Journal of

Risk, vol. 2, pp. 21–42, 2000.

[7] G. C. Pflug, “Some remarks on the value at risk and the conditional value at risk,” in Proba-

bilistic Constrained Optimization: Methodology and Applications, pp. 278–287, 2000.

193

194

APPENDIX C – VERT USER MANUAL

MANUAL
INL/EXT-21-63022

Revision 0

Printed July 13, 2021

VERT User Manual

J. Condie, J. Miller, S. Ercanbrack, C. Pope

Prepared by

Idaho National Laboratory

Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by

Battelle Energy Alliance for the United States Department of Energy

under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for unlimited release.

195

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
E

P
A

R
TMENT OF EN

E
R

G
Y

•� •�U
N

I
T

E
D

STATES OF A
M

E
R

I
C

A

196

INL/EXT-21-63022
Revision 0

Printed July 13, 2021

VERT User Manual

Jason Condie
Idaho State University

condjaso@isu.edu

Jaden Miller
Idaho State University

milljad2@isu.edu

Spencer Ercanbrack
Idaho State University

ercaspen@isu.edu

Chad Pope
Idaho State University

popechad@isu.edu

197

Contents
1 Terms and Acronyms . 199
2 Introduction . 200
3 Installation . 201

3.1 Overview . 201
3.2 RAVEN . 201

3.2.1 Git SCM . 201
3.2.2 C compiler . 213
3.2.3 Conda . 215
3.2.4 RAVEN . 217

3.3 SAPHIRE . 225
3.4 VERT . 228

4 Using VERT. 229
4.1 VERT Basics . 229
4.2 VERT Demonstration . 231

5 Modifying VERT . 249
6 SAPHIRE . 252

6.1 SAPHIRE Overview . 252
6.2 SAPHIRE Basics . 252

6.2.1 Basic Events . 255
6.2.2 Generating a Basic Event Report* . 257
6.2.3 Fault Trees . 257
6.2.4 Generating Fault Tree Cut Sets* . 262
6.2.5 Event Trees . 264
6.2.6 Post Processing . 266

6.3 VERT Modifications in SAPHIRE . 269
7 RAVEN . 270

7.1 RAVEN Overview . 270
7.2 Input Structure . 270

8 Test Cases and Results . 277
8.1 Overview . 277
8.2 BWR . 277
8.3 BWR (Upgraded) . 280

9 Appendix . 284
References . 284

198

1 Terms and Acronyms

BWR boiling water reactor

CAFTA computer-assisted fault tree analysis

GRA generation risk assessment

INL Idaho National Laboratory

LWR light water reactor

NERC-GADS North American Electric Reliability Corporation - Generating Availability Data
System

SAPHIRE systems Analysis Program for Hands-On Integrated Reliability Evaluations

NPP nuclear power plant

PWR pressurized water reactor

RAVEN Risk Analysis Virtual ENvironment

SSCs systems, structures, and components

VERT Versatile Economic Risk Tool

199

2 Introduction

The Versatile Economic Risk Tool (VERT) is a program capable of performing economic risk
analyses on nuclear power plants (NPPs). VERT utilizes and builds on generation risk assessment
(GRA) methodologies to quickly and effectively estimate lost revenue caused by the unavailability
of systems, structures, and components (SSCs) in a power plant. Idaho State University and Idaho
National Laboratory (INL) are the drivers behind the continuous development of VERT. VERT
has been implemented for several proof-of-concept case studies. A parametric study, taking data
from 1980 to 2020 on plant component unavailability from the North American Electric Reliability
Corporation’s Generating Availability DATA System (NERC-GADS), was conducted to evaluate
a generic NPP’s performance.

VERT uses the Systems Analysis Program for Hands-on Integrated Reliability Evaluations (SAPHIRE)
program from INL as the framework for the event and fault tree analyses. SAPHIRE is a prob-
abilistic risk analysis (PRA) software tool that gives the user the ability to create and solve fault
trees and event trees using a graphical interface. The INL began development of SAPHIRE in
the mid-1980s, when the enormous potential of computer applications and software started being
recognized.

VERT uses the Risk Analysis Virtual ENvironment (RAVEN) to introduce parametric variabil-
ity based on the model developed in SAPHIRE. RAVEN is a software framework able to perform
parametric and stochastic analyses based on the response of complex system codes. The initial
development was aimed at providing dynamic risk analysis capabilities to the thermohydraulic
code RELAP-7, currently under development at INL. Although the initial goal has been fully ac-
complished, RAVEN is now a multi-purpose stochastic and uncertainty quantification platform,
capable of communicating with any system code. [1, 2]

This user manual will cover the installation and use of SAPHIRE, RAVEN, and VERT. The manual
will cover all aspects necessary to use VERT to perform an economic analysis for a NPP model.

200

3 Installation

3.1 Overview

VERT requires the installation of both SAPHIRE and RAVEN to run. It also requires the installa-
tion of Python to be able to alter any of the code. RAVEN uses Miniconda to install the necessary
Python libraries. RAVEN will also need the use of Git SCM and a C compiler. The installation of
RAVEN will follow the path of:

1. Installing prerequisites (Git, conda, and C compilers)

2. Clone RAVEN from Github

3. Compile and build RAVEN

For a windows intallation, this guide will follow the RAVENWiki found at:

https://github.com/idaholab/raven/wiki/installationWindowsNew

For any other operating system please follow the link below and select the appropriate option:

https://github.com/idaholab/raven/wiki/installationMain [2]

Miniconda is a free minimal installer for conda. It is a small, bootsrap version of Anaconda that
includes only conda, Python, the packages they depend on, and a small number of other useful
packages, including pip, zlib, and a few others. [3]

A compiler is a program that processes statements written in a particular programming language
and turns them into machine language or ”code” that a computer’s processor uses.

Git is a free and open source distributed version control system designed to handle everything
from small to very large projects.

3.2 RAVEN

3.2.1 Git SCM

Get the latest Git SCM for windows from https://gitforwindows.org/ by clicking on
the ”Download” button.

201

https://github.com/idaholab/raven/wiki/installationWindowsNew
https://github.com/idaholab/raven/wiki/installationMain
https://gitforwindows.org/

The following components must be installed.

Select ”Use Vim as the default editor.”

202

Select ”Let Git decide” for the default branch name.

203

Select ”Use Git and optional Unix tools from the Command Prompt.”

Select ”Use the OpenSSL library.”

204

Select ”Check out Windows-style, commit Unix-style line endings.”

205

Select ”Use MinTTY (The default terminal of MSYS2).”

206

Select ”Default (fast-forward or merge).”

207

Select ”Git Credential Manager Core.”

208

Only check ”Enable file system caching.”

209

Do not check ”Enable experimental support for pseudo consoles” and click ”Install.”

210

Installing screen for verification.

211

No need to look at release notes or launch now. Click ”Finish.”

212

3.2.2 C compiler

For the C compiler, this manual will use Microsoft’s Visual Studio Community Edition. Go to
https://visualstudio.microsoft.com/downloads/ to download the community
edition.

213

https://visualstudio.microsoft.com/downloads/

After downloading and running the Visual Studio installer, it will ask what features to install.
For building RAVEN, ”Desktop development with C++” is needed at a minimum [2, 3].

Once done, the computer will need a restart.

214

3.2.3 Conda

Go to https://conda.io/miniconda.html to download Python 3.8 - It is important to
VERT that this is installed in the root directory or C: drive.

215

https://conda.io/miniconda.html

In advanced options, check ”Add Miniconda3 to my PATH environment variable,” then click ”In-
stall.”

Installation screen for verification.

216

No need to follow the links, so uncheck both ”Anaconda Individual Edition Tutorial” and ”Getting
Started with Anaconda,” then click ”Finish.”

3.2.4 RAVEN

Choose the root drive or C: to install RAVEN. This should be in the same spot as the Miniconda3
folder.

217

Open the GitBash terminal and use command ”cd” to get into the folder directory where you
want to install RAVEN (e.g., C:).

In the GitBash terminal, go to the file pathway for your projects. To see the current path, use
”pwd.” Use the command ”ls” to see the contents of the directory you are currently in. Then, use
”cd/c” to enter into the root directory. If you need to go back to the other directories, use command
”cd.”

218

Once in the correct directory, enter ”git clone https://github.com/idaholab/raven.
git”. This will clone RAVEN from INL’s RAVEN GitHub repository. [4]

219

https://github.com/idaholab/raven.git
https://github.com/idaholab/raven.git

To install the Python libraries, first open the windows command prompt. Find where your conda
was installed by typing ”which conda” to get the pathway result.

Your exact path will be slightly different depending on how conda was installed and possi-
bly your user-name. The result above is simply an example. Whatever your result is, copy it and

220

modify it as follows:

1. Remove the last two entries (the part after miniconda3)

• Example: /c/Users/Test/miniconda3/

2. Add /etc/profile.d/conda.sh

• Example: /c/Users/Test/miniconda3/etc/profile.d/conda.sh
This is the location of your conda definitions used during the next step.

In GitBash, enter your projects pathway. Type ”cd raven”. Then, type:
”./scripts/establish conda env.sh --install --conda-defs <yourCondaDefsLocation>” with your
conda pathway replacing ”<yourCondaDefsLocation>”. [4]

This step installs the libraries to the RAVEN pathway. The completed screen for verification shown
below. If you can not install the libraries, see Installing RAVEN Libraries. [4]

221

https://github.com/idaholab/raven/wiki/installing_raven_libraries

Compiling RAVEN:
In GitBash under the RAVEN pathway, type in ”./build raven”.

Completion screen for verification.

222

Test the RAVEN installation by typing ”./run tests -j2” under the RAVEN pathway in the Git-
Bash terminal.

Completion screen for verification. Most of the tests should pass, several may skip, but few to

223

none should fail.

Go to the file explorer, and there will be a RAVEN folder in the projects directory. In the RAVEN
folder, double click on ”raven framework.bat” to run RAVEN, producing the following screen:

224

This completes the installation of RAVEN.

3.3 SAPHIRE

To get the current version of SAPHIRE 8, which is distributed through the SAPHIRE Users Group,

• Send a completed and signed non-disclosure agreement (NDA) to the U.S. Nuclear Reg-
ulatory Commission (USNRC) for approval prior to receiving an authorization to join the
SAPHIRE Users Group.

• Locate a copy of the SAPHIRE NDA form on the Obtaining the Code page at the USNRC’s
public website.

Once an NDA is on file with the USNRC, INL will proceed with establishing the SAPHIRE Users
Group membership. Members will be granted access to the SAPHIRE Users Group website where
they can download the current executable for SAPHIRE 8 and receive customer support. Customer
support and access to updated SAPHIRE releases will continue throughout the membership period.

For U.S. Government departments and agencies, the U.S. NRC may grant exceptions to the re-
quirement for SAPHIRE Users Group membership. These requests still require a completed and
signed NDA form.

225

https://www.nrc.gov/about-nrc/regulatory/research/obtainingcodes.html

Once you have secured a copy of SAPHIRE, install it directly to the C: drive or the root drive. [5]

Installation screen for verification.

226

Open SAPHIRE for verification.

227

At this point, the installation of SAPHIRE is complete, and the program can be closed.

3.4 VERT

To obtain a copy of VERT, please contact Jaden Miller (milljad2@isu.edu).

Run the mainVERT.exe file by double clicking it.

The VERT installation is now complete.

228

4 Using VERT

4.1 VERT Basics

The VERT window contains all the necessary steps to run VERT. The figure below has a number
next to each of the VERT functions to run the user through what they do. It is important that the
user does so in the order indicated, as the functions will build off each other.

229

1. System Type - The selection of the type of system VERT will be using; left click either
PWR or BWR.

2. File Name - The file name of the SAPHIRE project.

3. RAVEN Directory Name - The name of the project folder in the RAVEN directory that
contains the VERT.exe and the data.csv files.

4. MWh Cost - The user can select whether the cost per megawatt hour is fixed or variable
throughout the year. If fixed, a single-entry box will appear. If variable, four boxes will
open, allowing the user to specify a quarterly price.

5. Power Plant Output - The user can select from a constant or variable power output per year.
If fixed, a single-entry box will appear. If variable, four boxed will open, allowing the user
to specify a quarterly price.

6. Charts - This will generate the initial risk folder where the risk of the project has been
quantified according to the risk formula in MWh/yr and the cause codes. If successful, the
box to the right will say ”Complete,” and a new folder called ”initial risk” will be generated
in the RAVEN project folder.

7. Run PP - This will generate a custom fault tree postprocessing script that will populate in a
new window. If successful, the box to the right will say ”Complete.”

8. Run Macro - This will create the Macro file and place it into the correct directory. If
successful, the box to the right will say ”Complete.”

9. Includes the following sections:

a. XML Name - This will be the file name for the XML file that is generated.

b. Working Dir - This will be the folder name where the run and output information are
stored.

c. Time Steps - The number of times RAVEN will iterate through SAPHIRE, typical
numbers range from 20 - 25.

d. Upper Bound - The number of years to be analyzed.

10. Degradation - This generates the degradation equations associated with the project and
places them in the proper directory. This will create the ”Dump” folder and place it into the
RAVEN project folder. If successful, the box to the right will say, ”Complete.”

11. ZIP IT - This will zip the SAPHIRE project into a compressed folder placed into the
SAPHIRE project folder. If successful, the box to the right will say ”Complete.”

230

12. Raven Input - This will create the .xml file that will be run in RAVEN. If successful, the
box to the right will say ”zip found,” the box to the right of that will say ”macro found,” and
the last box will say ”created file.”

4.2 VERT Demonstration

This demonstration will ensure that VERT is properly installed and running correctly. The test will
use the VERT-DEMO file to ensure a short computational time. The demo file needs to be extracted
to the raven directory. This demo file can be received from Jaden Miller (milljad2@isu.edu) [6].

231

The file VERT-DEMO-Model.zip is the SAPHIRE demo model. The zip file needs to be relo-
cated to the SAPHIRE directory and extracted there.

Right click on the VERT-DEMO-Model.zip file and select ”Extract Here.” This will create the
VERT-DEMO folder.

232

Once extracted, it should look like this.

The test model samples a single componont from each sub-system to reduce computational time
requirements. To open the model, create a new SAPHIRE project. If not prompted on opening
SAPHIRE, left click the ”File” tab and select ”New” and then ”Project.” [6]

233

The project can be named anything. For this example, it is named VERT-MTEST.

To load the project, left click on ”File” then ”Load/Extract.” Click on ”Open” and go to the ”Mard”

234

folder under VERT-DEMO and select VERT-DEMO.MARD.

Launch VERT and select BWR. Then, input the file name, which will be the project name chosen
in SAPHIRE.

Fill out the ”Raven Directory Name” box with ”VERT-DEMO.” Select a constant MWh cost, and
enter in 33.50 for a constant cost of $33.50 per megawatt hour. Then, select the constant power
output, and enter 1100 for a constant power output of 1,100 MWe.

235

Fill in ”XML Name” and ”Working Dir” (named TEST and TEST1, respectively, in this exam-
ple). Fill in ”Time Steps”, using 10 for this example, and then enter 2 in the ”Upper Bound” box.
Click on ”Charts” to generate the initial risk folder.

236

We now need to create a basic event report. In SAPHIRE, click on a basic event in the basic
event window and then press Ctrl + A. This will highlight all the basic events in our boiling-water
reactor model. Left click on ”Publish,” and select ”Basic Event Report.” Select ”Basic Event List-
ing,” ”Excel Format,” and 0% cutoff. Then, click on ”Publish.”

237

Save this Excel file to the VERT-DEMO folder in the RAVEN directory. It will need to be saves as
a CSV file and not an XLS file. The name will also have to be changed to ”BE” (the full filename
would therefore be ”BE.csv.” To do this, click on ”File” in the Excel sheet then ”Save As.”

The next step imposes the VERT ruleset onto the SAPHIRE postprocessing rules. Click the ”Run
PP” button in VERT to generate the postprocessing rules. In SAPHIRE, left click on ”Project”
then ”FT(Post-processing)” to bring up the SAPHIRE postprocessing window. Copy and place the

238

VERT post-processing script into the SAPHIRE post-processing window. Then, left click ”File”
in SAPHIRE and ”Save.”

Now we must solve the SAPHIRE model by highlighting one of the fault trees and pressing Ctrl +
A to select them all. Right click on the fault tree and select ”Solve.” Choose a Global Probability of
1.000E-12. Set the quantifiation method to ”Rare Event” and check the ”Copy Cut Sets to Nominal
Case (All Models).” Then, click ”Solve.”

239

SAPHIRE must now be closed. In VERT, click on ”Run Macro” and then ”Degradation” to gener-
ate the ”DUMP” folder. Then, click the ”ZIP IT” button to create the .zip file. This must be placed
in the SAPHIRE directory. Finally, click the ”Raven Input” button to generate the .xml file. The
”Raven Input” can take a few minutes to process.

240

Now we must input the .xml file in RAVEN to run the analysis. Open RAVEN by double clicking
on the ”raven framework.bat” file and type in the name of the .xml file.

This can be done in the GitBash command window by entering the command ”bash.exe raven framework
<xml filename here>.”

241

Completion screen for verification.

242

This will generate a series of files for the runs, graphs, and an Excel sheet that shows the probabil-
ities of events with a cost that is placed within the RAVEN directory. Check your results against
those here to ensure proper working order of VERT.

243

244

245

246

247

248

5 Modifying VERT

VERT uses the data collected from the GADS program to build the initial risk models and cause
codes. These can be found in the DATA.csv file that is included in the generic projects and the
demo. This data can be edited through Excel for a tailored response to the project. [7]

Nuclear Reactor
Description Cause Code Range
Core/Fuel 2010-2090
Control Rods and Drives 2110-2160
Reactor Vessel and Internals 2170-2199
Reactor Coolant System 2200-2399
Steam Generators and Steam System 2400-2599
Core Cooling/Safety Injection 2600-2649
Electrical Safety Systems 2650-2699
Containment System 2700-2799
Chemical and Volume Control/Reactor Water Cleanup 2805-2819
Nuclear Cooling Water Systems 2820-2839
Auxiliary Systems 2840-2890
Miscellaneous (Reactor) 2900-2999

Balance of Plant
Description Cause Code Range
Condensing System 3110-3199
Circulating Water Systems 3210-3299
Condensate System 3310-3399
Feedwater System 3401-3499
Heater Drain Systems 3501-3509
Extraction Steam 3520-3529
Electrical 3600-3689
Auxiliary Systems 3810-3899
Miscellaneous (Balance of Plant) 3950-3999

Generator
Description Cause Code Range
Generator 4500-4580
Exciter 4600-4609
Cooling System 4610-4650
Controls 4700-4750
Miscellaneous (Generator) 4800-4899

249

Steam Turbine
Description Cause Code Range
High Pressure Turbine 4000-4099
Intermediate Pressure Turbine 4100-4199
Low Pressure Turbine 4200-4250
Valves 4260-4269
Piping 4270-4279
Lube Oil 4280-4289
Controls 4290-4309
Miscellaneous (Steam Turbine) 4400-4499

The VERT code is stored within a GitHub repository and can be accessed with permissions
from Jaden Miller (milljad2@isu.edu). The code is written in Python and all functions outside of
SAPHIRE and RAVEN can be edited there. The base code contains the equations for the conse-
quences and risks where:

• consequences = capacity(MWe)*Derate Fraction*(Mean time to repair + Time to restore
power)*electricity costs [7]

• risk = likelihood*consequences [7]

The risk requires the input of SAPHIRE to generate the likelihood figure.

The base code also contains the functionality for the main VERT window. This includes the post-
processing generation that cn be changed here for a change in generation of the script or in the

250

SAPHIRE post-processing editor for a single project. The basic events and fault trees must be
edited within SAPHIRE. The base code contains a generator for the .xml file for RAVEN to run.
Modifications to the code will result in a change to the generation of the .xml file or can be altered
in the .xml file itself using a text editor to make a change for a single project. Current builds of
VERT use a uniform distributions and a grid sampler.

VERT can integrate degradation into the component analysis. VERT is currently capable
of supporting two different equation types: linear and exponential lambda degradation (failure
rates). [7]

�(t) = �0(1 + bt)

�(t) = �0e
bt

This can be found in the DATA.csv file shown in the figure below.

The letter ”e” in the example above denotes that VERT will use the exponential degradation mod-
eling with the letter ”l” denoting linear. The secondary number is the ”b” value from the equations.
Users can change the values to choose the degradation modeling they wish to include.

Changes regarding both SAPHIRE and RAVEN will be discussed in the following sections.

251

6 SAPHIRE

6.1 SAPHIRE Overview

This manual will cover the information necessary to use SAPHIRE in conjunction with VERT.
This will also provide the reader with a basic tutorial of SAPHIRE itself. This will include how
to navigate through SAPHIRE as well as creating and populating a project. For a more advanced
explanation, please see the SAPHIRE user manual, SAPHIRE Version 8 Volume 3: User’s Guide.
VERT uses SAPHIRE for the framework of the basic events and fault trees. It will provide the user
a custom post-processing script to run the fault trees. [5]

6.2 SAPHIRE Basics

This is the main window of SAPHIRE. The tool bar on the top (Number 4) contains the command
lists for SAPHIRE. Window 1 contains the basic events list for the project; this can be resized and
sorted according to the list selected from the list filter. Window 2 contains the fault trees for the
project, and these will be made up from the basic events. Window 3 contains the event trees, which
are made up of the fault trees. You can enter any chosen event, fault tree, or event tree by double
clicking on it from the window. To create a new project, left click on ”File,” select ”New,” and
click on ”Project.”

252

https://www.nrc.gov/docs/ML1119/ML11195A300.pdf

This will bring up the new project window. In the ”Storage Info” tab, the name field will be
the file name of the project. The description is a tag to note what the project is. The full name will
be displayed for published projects.

253

The general tab contains fields for the project creator, the creation date, version of the model,
the default initiating event frequency units, site hazard curve, and any user-defined fields (e.g.,
facility, location, company). The additional tab has entries for the general philosophy behind the
model, restricted use of the model, and warnings of the correct usage of the model. The SPAR
tab has checkboxes to determine if it is a SPAR model or to use the SPAR-H adjustment equation
listed on pg. 27 of NUREG/CR-6883. [5]

Once the project is created, SAPHIRE will store all the files in a project folder located where
the user has determined. Inside, the folder subfolders are used to manage the data. [5]

• INIs - This folder stores .ini files related to project settings (e.g., bookmarks and general user
settings).

• Mard - This folder stores any MAR-D files that are exported from SAPHIRE 8. MAR-D
provides another interface to load or extract data files that define the PRA database. The files
are in a ”flat-file” or ASCII file format. This is the legacy module for transferring files and
is still fully supported in SAPHIRE 8.

Typical uses of MAR-D include the:

– Transfer of PRA information between data bases

* Extracting MAR-D files from one SAPHIRE project and loading them (via MAR-
D) into another SAPHIRE project. (The SAPHIRE project may be a new or previ-
ously existing project.)

– Import of other PRA code information

* Formatting the model information from another PRA code to use MAR-D file
formats and creating a SAPHIRE project by loading the files via MAR-D.106.

– Edit of PRA files using a text editor

* Extracting MAR-D files from a SAPHIRE project, editing the files to make changes
to the model or model descriptions, and loading those files (via MAR-D) back into
the SAPHIRE project.

– Archiving PRA files [5]

* Saving the MAR-D files for long term storage in a text format rather than the native
binary SAPHIRE format.

• Publish - This folder stores any report files that are exported from SAPHIRE 8

• Shared - This folder contains information that is shared among the main project and all
workspaces. For example, project-related diagrams are stored in the ”Diagrams” subfolder.
By sharing this information in a central place, the shared information is not duplicated each
time a new workspace is created. This is also where the macro folder is located.

254

• Temp - This folder is used by SAPHIRE 8 during analysis. No project information files
should be stored in this folder.

• Workspaces - This folder is used to store all workspaces that are saved. [5]

6.2.1 Basic Events

Unique terms used in SAPHIRE basic event editing are discussed below.

• Failure Model - SAPHIRE provides 14 unique calculation types to describe how the basic
event succeeds or fails.

• Developed Event - A developed event is an event in SAPHIRE that is either an event tree top
or fault tree gate. Regular fault tree basic events are not considered developed events.

• Delete Term - In SAPHIRE, the process known as ”delete term” refers to the removal of
sequence success cut sets from the list of failure cut sets when generating sequence cut sets.
As an example of the ”delete term,” consider a sequence where Top Event A is successful
and Top Event B is failed. Any cut sets that would Fail A should not be allowed in the cut
sets for B, so those cut sets are removed from the sequence [5].

To create a new basic event, double click on ”New Basic Event” in the basic event window or click
on ”File,” select ”New,” and click on ”Basic Event.” This will bring up the ”Add Basic Event”
window.

255

There are fields for the name and description of the event. Events can be set as a template so
that a family of events can be changed simultaneously by changing the template. They can be
assigned to a default template, which is listed from the user-created templates. The fields in the
failure model window can be changed to fit the event being created by the user. [5] In the attributes
tab, there are fields for an alternate name and alternate description. Drop-down lists for the event
types and the event display types to designate the event. The applicability tab contains checkboxes
for the user to determine what the event is applicable to. Once the event has been created, you
can reenter into the basic event by right clicking on it from the event window and clicking ”Edit
Event” or by double clicking on the name. A new tab called summary will appear, which shows a
summary of the event, including uncertainty, if the parameters have been specified. [5]

256

6.2.2 Generating a Basic Event Report*

this is supposed to be a sub-sub-sub-section;may have to change later

To generate a basic event report, select the basic event or events for SAPHIRE to generate the
report on and left click on ”Publish.”

This will bring up the basic event reports window. The ”Report Type” allows the user to select
the type of report they want to generate. The ”Format” window allows the user to choose the file
format the report will generate in. The ”Document Structure” window previews what the report
will look like in the selected format. The Cutoff Percentage allows the user to set a global cutoff
percentage for detail display. Clicking on ”Publish” will generate the report.

6.2.3 Fault Trees

SAPHIRE enables the building of a fault trees through a graphical editor. A new fault tree can be
constructed by double clicking on ”New Fault Tree” in the fault tree window or by left clicking
on ”File,” selecting ”New,” and clicking on ”Fault Tree.” This will bring up the ”New Fault Tree”
window.

257

There is a field for the name and description. The user can set the default truncation value for
the tree and a designation to set the tree as either a main tree or a subtree. The quantification
method for the tree can be set here. Once the attributes have been set, clicking on ”OK” will bring
up the graphical fault tree editor. [5]

258

The magnifying glasses on the top left will allow the user to zoom in or our and move around
the graphical area. At the top, the hand allows you to select and drag the event around and connect
it to other gates or events. The ”BE” allows the creation of a new basic event. ”AND” creates an
AND gate, ”OR” creates an OR gate, ”N-of-M” creates an N of M gate and ”DT” creates a delete
term.

The figure below shows an example of a fault tree. The events are stacked, indicating they all
flow into the same gate.

259

By double clicking on any of the gates, the user can change the attributes of that gate in the ”Edit
Fault Tree Gate” window.

260

Double clicking on the basic event will bring up the basic event editor.

This basic event will be added to the basic event window and can also be edited there. To delete a

261

gate or basic event, right click on the gate and select ”Delete.” Once done with the fault tree, the
user must save it by clicking on ”File” and selecting ”Save.” This will place the fault tree into the
fault tree window on the main page.

6.2.4 Generating Fault Tree Cut Sets*

This is supposed to be a sub-sub-sub-section;may have to change later

To generate the cut sets for the fault tree, select one or more fault trees from the fault tree window.
This will highlight them in blue. Right click on a highlighted fault tree, then select ”Solve.” This
will bring up the ”Solve Cut Sets” window.

262

Select the desired truncation parameters and solution steps in the dialog box and choose ”Solve”
to begin generating cut sets. [5]

To truncate solutions according to cut sets, locate the ”Probability Truncation” box and choose
one of the following options:

• None - no truncation will be performed.

• Global - uses the cutoff value in the adjacent cut off field. This field defaults to the value set
in the user settings of the project.

• System-specific - uses the cutoff value stored with the fault tree record (via the ”Edit Fault
Tree”! ”Edit Properties” option).

To truncate solutions according to size, (this option is generally not used; ”Option” defaults to
”None”) the following options can be used:

• Size - Cut sets containing more items than a user-specified limit (specified in the adjacent
text box) will be discarded.

• Zone - Cut sets having more zone flagged events than specified in the adjacent text box will
be discarded.

• None - The number of events in a cut set will not affect whether the cut set is retained or
discarded. This is the default option.

263

Check one or more of the following boxes to indicate which steps should be performed. Options
that are not available (i.e., no recovery rules have been set up) will be grayed out. The steps will
be performed in their logic order from top to bottom. [5]

• Solve for Cut Sets - If this box is checked, the fault tree logic will be solved for minimal cut
sets using the truncation options specified.

• Apply Post-Processing Rules - If this box is checked, any post-processing rules associated
with this fault tree will automatically be applied after the fault tree cut sets have been gener-
ated.

• Update/Quantify Cut Sets - When this box is checked, cut sets will be re-quantified using
the truncation options specified. This option is useful for eliminating non-minimal cut sets
introduced when recovery rules have been applied or to quickly re-quantify the cut sets when
the basic event data have been altered.

• Copy Cut Sets to Nominal Case - When this box is checked, cut sets will be saved as the
nominal case.

6.2.5 Event Trees

Event trees are logical representations of significant plant responses to initiating events with each
sequence resulting in either a safe condition (such as a safe shutdown) or an accident condition
(such as core damage). Event trees are developed by starting with an initiating event and branching
to the right as various safety functions are questioned for success (up branch) or failure (down
branch). Event trees provide a traceable way to perform the following functions. [5]

• Identify accident sequences

• Identify essential safety system functions

• Quantify sequence frequencies

Some key terms used in event tree development are [5]:

• Initiating Event - An initiating event is an operational occurrence (such as a loss-of-cooling
accident or transient) that threatens fuel safety and may require a safety system response to
avoid core damage.

• Top Event - Safety systems (or human actions) intended to respond to the initiating event.

• Branching - A branch underneath a top event indicates success with an up branch and failure
with a down branch.

264

• Pass - When there is no branching beneath a top event, the top event is not relevant to the
sequence.

• Sequence - This is the branching path, from initiating event to end state, which is a unique
combination of system failures and successes.

• End State - This is a group of accident sequences that share certain characteristics, or out-
comes, that the analyst delineates. These may be related to the ability to perform a safety
function or the timing of functional failures.

The figure below shows an example of an event tree.

The boxes at the top represent the fault trees. Each circle is the conclusion of the fault tree with
either a success or failure until the end state is reached.

To create a new event tree, either double click on the new event tree link in the event tree win-
dow or left click on ”File,” select ”New,” and click on ”Event Tree.” This will bring up the ”New
Event Tree Properties” window.

265

There are fields for the event tree name, a description, and a group drop-down list. The event
tree can be designated as a main tree or a subtree.

The event tree editor works the same way as the fault tree editor. To insert a new top event,
click on one of the two ”Top” buttons located near the top of the event tree editor window. Another
way to insert a top event is to left click on a top event in the event tree, select ”Insert,” and then
select ”Before” or ”After.” To add a new branch, click on the branch you want to select and then
either click on the ”Down” or ”Up” button located near the top of the event tree editor window.
Alternatively, click on the branch, click on ”Insert,” and select either ”Above” or ”Below.” Once
finished, the user must save the event tree by left clicking on ”File” and then ”Save.” The user will
be able to access or edit the tree from the main window. [5]

6.2.6 Post Processing

This section presents the post-processing rules editors. These editors allow for the creation of rules
that affect existing cut sets in a ”post-processing” fashion. The rule-based editors are available for
both fault tree and sequence cut sets. [5]

Project-level post-processing rules applied to all event trees and fault trees are accessed from the
main screen top menu bar ”Project Edit Rules ET (Post Processing)” or ”Project Edit Rules FT
(Post Processing).” Rules applied to individual event trees and fault trees are accessed by right
clicking on the appropriate tree and selecting ”Edit Cut Set Rules.” The SAPHIRE post-processing
rules are ”free-form” logic rules that allow for the alteration or deletion of fault tree or sequence
cut sets. [5]

The post-processing rules can be used for PRA techniques, such as [5]:

• The automated inclusion of sequence recovery events

• The inclusion of common-cause failure cut sets

266

• The elimination of mutually-exlusive events (e.g., impossible combinations of events).

The rules follow a format similar to the structure that is found in traditional programming lan-
guages (e.g., BASIC or PASCAL). As such, the ability exists to define ”macros” and ”if...then”
type of structures. [5]

The post-processing rules may be developed for a particular fault tree, all fault trees, a particu-
lar sequence, a single event tree, or all sequences.

The rules are entered in a free-form text editor within SAPHIRE. Note that the rules can be
exported and loaded through MAR-D. The use of the post-processing rules could result in non-
minimal cut sets. [5]

Thus, the typical steps in performing an analysis using the post-processing rules are [5]:

1. Finalize logic models and data changes by saving any modified trees.

2. Solve fault tree or sequence cut sets.

3. Apply post-processing rules to applicable fault trees or sequences.

4. Perform a cut set update to fault tree or sequence cut sets.

The rule editor searches existing fault trees or sequence cut sets for cut sets matching the search
criteria defined in the rule. The rule is used to modify the cut sets matching the search criteria. [5]

267

The table below shows an example of the ”if-then-elsif” structure (the example below deletes the
cut set if both diesel generators are out for maintenance. If the two diesel generators fail randomly,
add a common-cause event) [5]:

if (DG-1-MAINT*DG-2-MAINT) then
DeleteRoot;
elseif (DG-1-RAND*DG-2-RAND) then
(copy the original cut set, remove the two failure events, then add CC CopyRoot;)
DeleteEvent=DG-1-RAND; DeletEvent=DG-2-RAND;
AddEvent=DG-CCF-1AND2;
Endif

The ”AddEvent” keyword can be selected from the right side of the rules editor and denotes that
an event will be added to the cut set being evaluated.

268

The ”DeleteEvent” keyword indicates that an event will be deleted from the cut set being evaluated.

The ”DeleteRoot” keyword indicates that the original cut set (i.e., the cut set that satisfied the
search criteria) will be deleted.

6.3 VERT Modifications in SAPHIRE

The generic models of the pressurized-water reactor and boiling-water reactor come with basic
events loaded with probabilities and cause codes gained from the GADS data. The fault trees
follow a generic power plant sub-system. Users can build and link event trees to the fault trees to
run scenarios for the specified event. These can be updated to reflect information the user wishes
to model within VERT following the guide above. The user may also change the post-processing
script in the script editor to reflect an individual project. If more details are needed to modify the
SAPHIRE project, please see SAPHIRE Version 8 Users’ Guide

269

https://inldigitallibrary.inl.gov/sites/sti/sti/4886698.pdf

7 RAVEN

7.1 RAVEN Overview

This manual will provide a basic understanding of VERT’s usage of RAVEN. This will include the
basics of the RAVEN script in XML format and the distribution and sampling methods used by
VERT, along with covering the necessary SAPHIRE interface. VERT will have RAVEN complete
multiple runs through the SAPHIRE interface to iterate on the models in a time-dependent manner.
This interface will also be covered in the manual.

7.2 Input Structure

The RAVEN code does not have a fixed calculation flow, since all of its basic objects can be
combined in order to create a user-defined calculation flow. Thus, its input (XML format) is
organized in different XML blocks, each with a different function. The main input blocks are [2]:

• <Simulation>: The root node containing the entire input; all of the following blcoks fit
inside the ”Simulation” block

• <RunInfo>: Specifies the calculation settings (number of parallel simulations, etc.)

• <Files>: Specifies the files to be used in the calculation

• <Distributions>: Defines disributions needed for describing parameters, etc.

• <Samplers>: Sets up the strategies used for exploring an uncertain domain

• <Optimizers>: Sets up the strategies for minimizing/maximizing an objective function

• <DataObjects>: Specifies internal data objects used by RAVEN

• <Databases>: Lists the HDF5 databases used as input/output to a RAVEN run

• <OutStreams>: Visualization and printing system block

• <Models>: Specifies codes, ROMs, post-proessing analysis, etc.

• <Functions>: Details interfaces to external user-defined functions and modules, and inter-
faces the user will be building and/or running

• <Steps>: Combines other blocks to detail a step in the RAVEN workflow, including I/O and
computations to be performed

270

Each block within RAVEN also makes use of a verbosity system, which allows a user to control
the level of output sent to the user interface. These settings are declared globally as attributes in the
node and locally in each block. VERT currently uses a debug verbosity where all errors, warnings,
and debug messages are displayed. [2]

The nodes below are the XML nodes used within VERT:

• <WorkingDir>, string, required field, specifies the absolute or relative (with respect to the
location where the .xml file is located) path to a directory that will store all the results of
the calculations and where RAVEN looks for the files specified in the <Files> block. If
”runRelative=’True’” is used as an attribute, it will be relative to where RAVEN is run.

• <batchSize>, integer, optional field, specifies the number of parallel runs executed simulta-
neously (e.g., the number of driven code instances, such as RELAP5-3D, that RAVEN will
spawn at the same time). Each parallel run will use NumThreads * NumMPI cores.

• <Sequence>, comma-separated string, a required field, is an ordered list of the step names
that RAVEN will run.

The <Files> block defines any files that might be needed within the RAVEN run. This could
include inputs to the model, pickled ROM files, or CSV files for post-processors, to name a few.
Each entry in the <Files> block is a tag with the file type. Files given through the input XML at
this point are all <Input> type. [2]

• name, required string attribute, user-defined name of the file. This does not need to be the
actual filename; this is the name by which RAVEN will identify the file. Note that as with
other objects, this name can be used to refer to this specific entity from other input blocks in
the XML.

VERT uses a uniform distribution, which is a continuous distribution with a rectangular-shaped
probability density function. It is often used where the distribution is only vaguely known, but
upper and lower limits are known. The specifications of this distribution must be defined within a
<Uniform> XML block. This XML node accepts one attribute [2]:

• name, required string attribute, user-defined name of this distribution. Note that as with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• <lowerBound>, float, required parameter, domain lower boundary.

• <upperBound>, float, required parameter, domain upper boundary.

271

Note that since the uniform distribution is a rectangular-shaped probability density function, the
truncation does not have any effect; this is why the children nodes are the ones generally used for
truncated distributions.

The sampler is probably the most important entity in the RAVEN framework. It performs the
driving of the specific sampling strategy and, hence, determines the effectiveness of the analysis,
from both an accuracy and computational point of view. VERT uses the grid sampling approach.
The idea is to construct an N-dimensional grid where each dimension is represented by one un-
certain variable. This approach performs the sampling at each node of the grid. The sampling of
the grid consists of evaluating the answer from the system under all possible combinations among
the different variables’ values with respect to a predefined discretization metric. In RAVEN, two
discretization metrics are available: cumulative distribution function and value. Thus, the grid
meshing can be input via probability or variable values. Regarding the N-dimensional distribu-
tions, the user can specify for each dimension the type of grid to be used (i.e., value or cumulative
distribution function). Note that the discretization of the cumulative distribution function, for only
the grid sampler, is performed on the marginal distribution for the specific variable considered. [2]

In the <Grid> input block, the user needs to specify the variables to sample. As already men-
tioned, these variables are specified within consecutive <variable> XML blocks:

• <variable>, XML node, required parameter can specify the following attributes:

– name, required string attribute, user-defined name of this variable

– shape, comma-separated integers, optional field, determines the number of samples and
shape of samples to be taken. For example, shape=”2,3” will provide a 2 x 3 matrix
of values, while shape=”10” will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note that a model interface must
be prepared to handle non-scalar inputs to use this option. [2]

This <variable> recognizes the following child nodes [2]:

• <distribution>, string, required field, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block. In addition, if ”NDDis-
tribution” is used, the attribute ”dim” is required. Alternatively, this node must be omitted if
the <function> is supplied.

• <function>, string, required field, name of the function that defines the calculation of this
variable from other distributed variables. Its name needs to be contained in the <Functions>
block. This function must implement a method named ”evaluate.” Alternatively, this node
must be omitted if the <distribution> node is supplied.

272

• <grid>, space separated floats, required field, the content of this XML node depends on the
definition of the associated attributes:

– type, required string attribute, user-defined discretization metric type: 1) ”CDF”, the
grid will be specified based on cumulative distribution function probability thresholds,
and 2) ”value”, the grid will be provided using variable values.

– construction, required string attribute, how the grid needs to be constructed, indepen-
dent of its type (i.e., ”CDF” or ”value”).

Based on the construction type, the content of the <grid> XML node and the requirements for
other attributes change [2]:

• construction=”equal”. The grid is going to be constructed equally spaced (type=”value”) or
equally probable (type=”CDF”). This construction type requires the definition of additional
attributes.

• steps, required integer attribute, number of equally spaced or probable discretization steps.

This construction type requires that the content of the <grid> node represent the lower and up-
per bounds (either in probability or value). Two values need to be specified; the lowest one
will be considered as the ”lowerBound” and the largest, the ”upperBound.” The lower and up-
per bounds are checked against the associated <distribution> bounds. If one or both of them falls
outside the distribution’s bounds, the code will raise an error. The ”stepSize” is determined by
”stepSize=(upperBound-lowerBound)/steps. [2]

For using the SAPHIRE interface within RAVEN, all the files needed for the code to run should be
specified. The files typically needed are [2]:

• SAPHIRE macro input file with file extension ’.mac’.

• SAPHIRE compressed project inputs with file extension ’.zip’.

273

In the <models> block, the SAPHIRE executable needs to be specified. The figure below is
an example from the demonstration.

The <Code> XML node contains the information needed to execute the specific external code.
This XML node accepts the following attributes [2]:

• name, required string attribute, user-defined identifier of this model. Note that as with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

• subType, required string attribute, specifies the code that needs to be associated with this
model.

This model can be initialized with the following children nodes [2]:

• <executable>, string, required field, specifies the path of the executable to be used.

• <clargs>, string, required field, allows the addition of command-line arguments to the exe-
cution command. This node is used to specify the input files that are required by SAPHIRE.
This node accepts the following attributes:

– type, string, required attribute, specifies the type of command-line argument to add.
The current option is ”input”.

– arg, string, required field, specifies the flag to be used before the entry.

274

– extension, string, required field, specifies the type of file extension to use. This links
the <Input> file in the <Steps> to this location in the execution command. Currently
only accepts ”.zip” and ”.mac”.

– delimiter, string, required field, used to link the ”arg” and the <Input> with the exten-
sion given by ”extension”.

• <outputFile>, string, optional field, used to specify the output file name (CSV only). In this
case, the code interface always produces a CSV file named ”fixed output.csv”

• <codeOutput>, string, optional field, used to specify the output file generated by SAPHIRE
that will be processed via the code interface. The following attributes can be specified:

– type, string, required attribute, the actual type of the provided file. The only type
accepted here is ”uncertainty”.

The figure below is an example of the XML file generated in the demonstration from earlier.

275

276

8 Test Cases and Results

8.1 Overview

This section will present two test cases of a generic boiling-water reactor. The first was calculated
over a 10-year period using 30 time steps. The cost per megawatt-hour for electricity was set as
$33.50 and the power output was set as 1,000 MWe. The second test case models the behavior if
the cause code 3410 in the feedwater sub-system was replaced by a component with a reliability
an order of magnitude higher than the previous component and with a variable cost per megawatt-
hour and variable power output. The cost per megawatt-hour was set as follows: $127 Jan.-Mar.,
$133 Apr.-Jun., $132 Jul.-Sep., and $128 Oct.-Dec. The power output was set as follows: 948
MWe Jan.-Mar., 906 MWe Apr.-Jun., 963 MWe Jul.-Sep., and 920 MWe Oct.-Dec. over a 2-year
period with 20 time steps. [7]

8.2 BWR

277

278

279

8.3 BWR (Upgraded)

280

281

282

283

9 Appendix

Document Version Information

This document has been compiled using the following version of the plug-in git repository:

284

References

[1] A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P. Talbot, D. Maljovec, and C. Smith,
“Raven user guide,” Tech. Rep. INL/EXT-18-44465, April 2020.

[2] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, S. Sen, C. Wang, and J. Chen,
“Raven user manual,” Tech. Rep. INL/EXT-15-34123, March 2017.

[3] “Miniconda.”

[4] A. Alfonsi, C. Wang, and J. Chen, “title of page.”

[5] C. Smith and S. Wood, “Systems analysis programs for hands-on integrated reliability evalua-
tions (saphire) version 8 volume 3: User’s guide,” Tech. Rep. NUREG/CR-7039.

[6] J. Miller and S. Ercanbrack, “Vert tests using a demo model.”

[7] J. Miller, S. Ercanbrack, and C. Pope, “The versatile economic risk tool (vert),”

285

