Risk-Informed Plant Health and Asset Management Project

Diego Mandelli (INL) diego.mandelli@inl.gov

- Context
 - Industry Equipment Reliability (ER) and Asset Management (AM) programs can be labor intensive and expensive
 - Opportunity to significantly enhance the collection, analysis, and use of this information to provide more cost-effective plant operation
- Vision
 - Advanced monitoring technologies have been successfully implemented to assess equipment performance in many industries
 - Increased deployment of these technologies has the potential to reduce costs associated with monitoring and regulatory compliance at operating nuclear plants
- Our Work
 - Develop and apply data analytics tools coupled with risk-informed methods to manage plant assets over the remaining years of plant operation

- Develop Risk Informed Plant System Health (RI-PSH) methods and tools to provide relevant information to decision-makers to enhance plant economics while maintaining safety
 - Risk analytics platform
 - Data analytics tools coupled with risk-informed methods to manage plant assets
 - Leverage INL developed tools and open-source libraries

- Objectives
 - Leverage advanced technology to enhance plant operations
 - Enhance system performance and equipment reliability
 - Reduce operational costs
 - Inform plant equipment maintenance and investment decisions
 - Integrate and balance safety and economic risk

- Focus is improved / more economical equipment performance and reliability over the remaining life of the plant
- Technologies address different aspects of issue that relate to two distinct timeframes
 - Equipment Reliability
 - Short to intermediate term (1 5 years)
 - Impact on operations and maintenance (O&M) costs
 - Focus on engineering / technical elements
 - Long-Term Operations / Asset Management
 - Intermediate to long term (> 5 years)
 - Impact on both O&M and capital planning costs
 - Focus on business / financial elements
- Development and deployment of methods / tools intended to be accelerated via collaboration with host utility partners
 - Utility provides access to data and Subject Matter Experts (SMEs)
 - Provides host utility early access to technology development / deployment and allows them to leverage lab expertise to address issues important to the plant

RI-PSH Platform: Under the Hood

Philosophy:

- Develop computational tools
 - Satisfy industry needs
 - Designed for general purpose applications

RI-PSH Platform

LOGOS Asset management

SR²ML Reliability models

TEAL Economic models

VERT

Plant generation models

RAVEN:

Near future direction: open-source release

- Main computational driver
- Uncertainty quantification and optimization capabilities

- Libraries of models designed for specific use-cases
- Easy interface to RAVEN

Plugins repositories:

- Source code
- Documentation (e.g., user manual)
- Regression tests

SRAW Pre-defined workflows

- A Models Based System Engineer (MBSE) approach to system reliability
- Models-of-models philosophy
 - Integration of reliability and economic models

- Observations from literature on state-of-the-art maintenance optimization methods ۲
 - Often rely on assumptions that are far from reality 1.
 - Does "system failure probability" provide information that is usable by a system 2. engineer?
- System engineers are familiar with a different reliability concept: margin to failure

System engineer definition

what are its consequences

what can go wrong

how distant it is

Goals for reliability modeling in RI-SHM

how likely it is

what can go wrong

Data centric construction of reliability models 0

Regulatory definition

Provide information of system health in terms of margin to failure 0

- Main target: Optimization methods (discrete and continuous forms)
- Propagation of uncertainties
- Data analysis

LWRS Application 1: Maintenance Optimization

- Goal: balance unavailability and cost of Preventive Maintenance (PM) activities (system level)
- Objective: determine optimal time between PM activities
 - Minimize PM cost
 - Maintain system unavailability under fixed limits (constraints)
- Method: constrained optimization
- Integration of
 - Component unavailability model
 - Component cost model
 - System unavailability model
 - System cost model

- Goal: determine optimal maintenance posture, i.e., maintenance strategy for each component
- Objective: balance system costs and performance (availability)
- Method
 - Trade space exploration: evaluate system costs and availability for several candidate maintenance postures
 - 2. Identify Pareto frontier
 - 3. Impose availability/cost constraints
- Integration of
 - Component unavailability model
 - Component cost model
 - System unavailability model
 System cost model

- Goal: identify optimal schedule for projects ۲ (e.g., ones selected in Application 2)
- Input data
 - Candidate projects 0
 - Options for each project (timing, duration, 0 and costs
 - Budget constraints per year per resource 0 (e.g., capital funds, O&M funds)
 - С

- Method
 - Linear integer optimization 0
- Output data
 - Selection/prioritization of projects 0
 - Optimal project schedule optimization 0

10.00

D	Allow data uncertainties				O&M	al budget budget
	Project-option	Year 1	Year 2	Year 3		
	FeedwaterHeater - Option A	0.219 0.075	0.257 0.080	0.234 0.085		Capital cost O&M cost
	FeedwaterHeater - Option B		0.225 0.075	0.267 0.080		
	FeedwaterHeater - Don't Do	0.08	0.09	0.1		