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ABSTRACT

The recent trend to use a best estimate plus uncertainty (BEPU) approach to

nuclear reactor safety analysis instead of the traditional conservative approach can

produce very large amounts of data. Hence, the need for methodologies able to

handle high volumes of data in terms of both cardinality (due to the high number of

uncertainties included in the analysis) and dimensionality (due to the complexity of

systems) arises.

Clustering methodologies offer powerful tools that can help the user to identify

groups of scenario that are representative of the original data set and, thus, can

reduce the effort involved in data analysis. Scenario clustering aims to: a) identify

the scenarios that have a similar behavior (i.e., identify the most evident classes),

b) decide for each event sequence to which cluster it belongs (i.e., classification), and

c) perform the analysis of each cluster. The main objective of this dissertation is

to show how it is possible to accomplish these three objectives by using clustering

methodologies to the scenarios generated by safety analysis codes.

Several clustering algorithms are developed, evaluated and compared using different

types of data sets. Mode-seeking clustering algorithms such as Mean-Shift are proven

to be well suited for the scenario analysis. The Mean-Shift algorithm is a kernel-based,

non-parametric density estimation technique that is used to find the modes of an

unknown distribution, which correspond to regions with highest data density. The
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obtained cluster centers represent the most representative scenarios from the original

data set and the analysis can be now carried out on the smaller set of representative

scenarios.

The specific types of data under consideration are those generated using the dy-

namic event tree (DET) approach for nuclear power reactor transients which are

described by a large set of state variables (i.e., temperature, pressure of specific

nodes in the plant simulator) and information regarding the status of specific compo-

nents/systems. Several examples are presented in order to illustrate the applications

of clustering algorithms to data generated by DET. In addition, pre-processing of the

raw data and data reduction techniques are described and compared.
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CHAPTER 1

INTRODUCTION

1.1 Problem Description

A recent trend in the nuclear power engineering field is the implementation of

heavily computational and time consuming algorithms [1, 2, 3] and codes [4, 5, 6]

for both design and safety analysis. In particular, the new generation of system

analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural

behavior, system dynamics and human behavior, as well as uncertainty quantification

and sensitivity analyses associated with these phenomena1. The use of dynamic

probabilistic risk assessment (PRA) methodologies allows a systematic approach to

uncertainty quantification.

Dynamic methodologies in PRA [7] account for possible coupling between triggered

or stochastic events through explicit consideration of the time element in system

evolution, often through the use of dynamic system models (simulators). They are

usually needed when the system has more than one failure mode, control loops, and/or

1LWR Sustainability Program (INL/EXT-07-13543, ‘‘Strategic Plan for Light Water Reactor
Research and Development,’’ Idaho National Laboratory, November 2007).
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hardware/process/software/human interaction [8]. Dynamic methodologies are also

capable of modeling the consequences of epistemic2 and aleatory3 uncertainties [9].

Dynamic PRA methods include Dynamic Logical Analytical Methodology (DY-

LAM) [10], Dynamic Event Tree Analysis Method (DETAM) [2], ADS [11], Analysis of

Dynamic Accident Progression Trees (ADAPT) [1, 12], Sequence Diagrams (ESDs) [13],

Petri Nets [14], Dynamic Flowgraph Methodology (DFM) [15], Discrete Dynamic

Event Trees (DDET) [16], Markov/Cell-to-Cell Mapping Technique [17] and Monte

Carlo Dynamic Event Tree (MCDET) [18]. The list is not exhaustive and only

provides some samples of dynamic PRA methods. A more comprehensive discussion

of dynamic methods is given in [8].

The DYLAM, DETAM, ADS and ADAPT are among methodologies that use

dynamic event trees (DETs) to account for aleatory uncertainties. ADAPT can

also account for epistemic uncertainties within the DET framework. A DET is an

expansion on traditional static event trees (ETs), and seeks to incorporate timing and

process relationships into the stochastic system model. Static ETs have a fixed and

predetermined event sequence defined by the analyst.

Figure 1.1 shows a simplified ET for a large break loss of cooling accident (LOCA).

In order to reach a safe state of the plant, the reactor protection system trips the

reactor and performs the cooling of the reactor through the emergency cooling system

(ECCS). A failure in any of these two systems will cause core damage (CD). Note

that in the ET pictured in Fig. 1.1, the sequencing of events (and accompanying

branchings) are already pre-fixed in the system logic designed by the analyst.

2Uncertainties that derive from some level of ignorance, or incomplete information, of the system
or the surrounding environment.

3Uncertainties due to the inherent variation associated with the physical system or the environment
under consideration.
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Figure 1.1: Example of event tree.

The DETs are generated by the direct coupling between the a dynamic model of

the plant constructed using plant simulators such as RELAP [4], MELCOR [5] and the

stochastic behavior of system components (including software/firmware), parameters

and human action. The branching conditions in a DET are generated by user specified

rules, such as activation/non-activation upon demand of components or correct/faulty

crew action depending on specific plant conditions. The plant simulator evaluates the

temporal behavior of the plant and determines the timing and nature of each branch.

Subsequently, each system included in the analysis (e.g., reactor protection system,

emergency core cooling system) is demanded according to its control logic (e.g., when

a setpoint is reached) and not in a predefined order.

The major challenges in using DETs (as well as other dynamic methodologies)

are the heavier computational and memory requirements compared to the classical

ET analysis. This is due to the fact that each branch generated can contain time

evolutions of a large number of variables (about 50,000 data channels are present in

MELCOR) and a large number of scenarios can be generated from a single initiating

3



event (possibly on the order of hundreds or even thousands). Such large amounts of

information are usually very difficult to organize in order to identify the main trends

in scenario evolutions and the main risk contributors for each initiating event4 [20].

1.2 Objectives and scope

This dissertation addresses this problem of data analysis by clustering the scenarios

into groups (or clusters) and analyzing the properties of the scenarios contained in

each cluster by:

1. identifying the scenarios that have a ‘‘similar’’ behavior (i.e. identify the most

evident clusters), and,

2. deciding for each sequence which cluster it belongs (i.e., classification).

Data analysis is still a relatively young branch of computer science. Especially

after the development and the wide spread use of workstations, it has been possible

to develop more advanced and precise simulation models albeit with the potential to

generate huge quantities of data.

Clustering methodologies [21] offer convenient tools to post-process large data

sets that include a large variety of information (e.g., transient profiles, component

states, human performances). The idea of clustering can be summarized as the process

of finding partitions of the original data set and characterizing each partition by a

representative data point. With regard to the output of safety analysis codes (such

as RELAP, MELCOR), each element of the data set is a scenario (or, equivalently,

4Note that also in the early PRA analysis in NUREG-1150, the problem of data analysis has
been faced and post processing of the scenarios generated for each of the three PRA levels has been
performed using classification methods [19]. Chapter 2 describes in details how this classification has
been performed.
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a transient) which represents a unique simulation of the system considered under

specified conditions.

In this dissertation, a systematic clustering approach is developed using the Mean-

Shift algorithm which capable of handling large volume of scenarios generated by

DETs.

The volume of data is not the only concern that needs to be addressed. The

following are also of concern:

1. Different types of attributes (e.g., time, process variables, component variables)

2. Clusters with arbitrary shapes

3. Noise and outliers

4. Interpretability and usability

As indicated in [22], three important factors need to be considered in scenario

analysis:

� Type of data

� Type of analysis

� Type of variables chosen to characterize each scenario

The data generated by dynamic methodologies such as DETs for the analysis of

nuclear power plants are usually inhomogeneous (i.e., both discrete and continuous)

due to the fact that they contain

� the temporal description of the state variables of each node of the simulator

(e.g., temperature, pressure, level or concentration of particular elements), and,
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� the status of system components, both hardware and software (e.g., aperture of

a valve or status of a digital control system), and sub-systems (e.g., Emergency

Core Cooling System) of the plant under consideration.

While the former data type is generally continuous, the latter is typically discrete.

Regarding the type of analysis, it is possible to group the set of scenarios into two

possible modes when dealing with nuclear transients:

� End State Analysis which groups scenarios into clusters based on the end state

of the scenarios (e.g., NUREG-1150 [23])

� Transient Analysis which groups scenarios into clusters based on their time

evolution [22].

Lastly, it is possible to characterize each scenario based on

� the status of a set of components [24], and,

� the temporal behavior of a set of state variables [22] (e.g., node pressure,

temperature).

This dissertation focuses on the clustering of scenarios using the time evolution of

state variables to characterize each scenario. Although targeting scenarios generated

by DETs, the methodology developed can be applied to any data set.

1.3 Annotated bibliography

From the literature it is possible to organize clustering methodologies into two

classes based on their approach to the clustering problem (see Fig. 1.2):

� Hierarchical (see Fig. 1.3)
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� Partitional (see Fig. 1.4)

Hierarchical algorithms organize data into a structure according to a proximity

matrix in which each element (j, k) is some measure of the similarity (or distance)

between the items to which row j and column k correspond. Usually, the final result

of these algorithms is a binary tree, also called dendrogram, in which the root of

the tree represents the whole data set and each leaf is a data point. An example of

hierarchical clustering is pictured in Fig. 1.3 [25] for a data set containing seven points

in a 2-dimensional space. The hierarchical clustering algorithm is also described in

detail in Section 5.1.

Figure 1.2: Taxonomy of the clustering techniques [25].

On the other hand, partitional clustering seeks for a single partition of the data

set as shown in Fig. 1.4 instead of nested sequence of partitions as shown for the

hierarchical methodologies. Partitional clustering methodologies can be divided

furthermore into five classes:

7



Figure 1.3: Example of hierarchical clustering [25].

Squared error: Squared error algorithms assign each point to the cluster whose

center (also called centroid) is nearest. The center is the average of all the

points in the cluster, that is, its coordinates are the arithmetic mean for each

dimension separately over all the points in the cluster. The most famous and

used methodology is the K -Means algorithm [26] which is described in detail in

Section 5.2.

Fuzzy: Fuzzy clustering is very similar to K -Means but each point has a degree of

belonging to every cluster, as in fuzzy logic, rather than belonging completely

to just one cluster [27]. Thus, points on the edge of a cluster may be in the
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Figure 1.4: Example of partitional clustering.

cluster to a lesser degree than points in the center of cluster. For each point

~x there is a coefficient uk(~x) which gives the degree of being in the kth cluster.

An example of fuzzy clustering methodology is the Fuzzy C -Means algorithm

which is described in detail in Section 5.3.

Mode Seeking: These methodologies are based on the assumption that the distri-

bution of the points in the state space can be described through a probability

density function (pdf ). The goals is to find the modes, i.e., the regions in the

state space with higher data densities. An example of this kind of methodology

is the Mean-Shift methodology [28] which is described in detail in Chapter 6.

Graph Theoretical: Graph theory based methodologies aim to build a graph of the

data set often called Minimal Spanning Tree [29, 30]. Clusters are determined

by deleting the the longest edges of the graph as also shown in Figure 1.5 for a

limited set of data. Conceptually this approach is very similar to the hierarchical

one.
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Figure 1.5: Example of graph theory clustering process.

Neural Network: Neural network methodologies are essentially inspired by the bio-

logical neural network [31]. The learning process associated with the training of

an artificial neural network (ANN) allows to associate patterns (input variables)

to clusters (output nodes) through a series of weights that are updated at each

iteration.

In the nuclear industry, intelligent transient analysis algorithms able to analyze

nuclear transients have been developed in recent years using methodologies mainly

based on fuzzy logic [32] and artificial neural networks. Politecnico di Milano [24, 33]

and the Paul Scherrer Institut (PSI) [34] have developed methodologies based on

fuzzy clustering. Note that the these works implement classification algorithms and

not clustering ones. Classification implies that clusters (or equivalently, classes)

have been set a priori by the user and the algorithm performs the scenario-to-cluster

membership. In clustering, however, the algorithm determines the clusters based on a

set of similarity rules specified by the user.
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It is important to highlight that the need for techniques capable to group scenarios

has been faced also in the classic PRA environment such as in the NUREG-1150 [23].

The number of scenarios generated by ETs depends on the number of branching

conditions which can be quite large. In that respect, a classification methodology

has been used in NUREG-1150 in order to reduce the original data set to a more

manageable size. Chapter 2 shows how this classification has been performed.

1.4 Contributions of this dissertation

This work has been structured in the following manner:

� Chapter 2 gives an overview on how the classification has been performed in

NUREG-1150 [23].

� Chapter 3 gives a description of clustering applied to scenario analysis.

� Chapter 4 shows how the data are pre-processed before performing the clustering.

This chapter also introduces the problem of dimensionality reduction and the

need to reduce the number of variables that describe each scenario. Both linear

and non-linear methodologies are shown and results are compared.

� Chapter 5 compares several clustering methodologies and shows the decision

process that leads to the selection of the Mean-Shift algorithm as the most suited

for the scope of this dissertation.

� Chapter 6 shows in detail the Mean-Shift algorithm and how it is implemented.

An example is given using the simple level controller model described in [35].

� Chapter 7 shows the results of the clustering algorithm described in Chapter 6

applied to several DET data sets.
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� Chapter 8 presents a summary of the work and the conclusions that can be drawn

from the analysis reported in Chapter 7. In addition, ideas and opportunities

for future work are listed.
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CHAPTER 2

SCENARIO ANALYSIS IN CLASSICAL PRA

PRA is a process that is commonly used to evaluate the potential risks of a system.

The objectives of this process are to determine three main goals: a) the failures that

can occur, b) the likelihood for these failures to occur, and, c) the consequences

that these failures will have on the system. PRA applied nuclear power plants has

been developed since 1974 when the U.S. Nuclear Regulatory Commission (NRC)

published the first milestone in the safety analysis community, the Reactor Safety

Study WASH-1400 [36], followed in more recent years by the Severe Accident Risks:

An Assessment for Five U.S. Nuclear Power Plants (NUREG-11505 [23].

Classical safety analysis described in NUREG-1150 is divided into 3 levels:

Level 1: Starting from an initiating event (e.g., station black-out or loss of coolant

accident) the analysis is carried out until the reactor core damage condition is

reached.

Level 2: Starting from a situation of core damage, the analysis is carried out until

containment is breached (radioactive release occurs).

5Actually, NUREG-1150 simply provides the results of the analysis for 5 US power plants.
NUREG-4550 shows in much more detail the overall methodology used in NUREG-1150.
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Level 3: Starting from a situation of radioactive release outside the containment

the analysis evaluates the effects of the release on the population and on the

environment.

For each level, the corresponding ET is built. Branching conditions (e.g., activation of

specific systems) are specified by the user and branch probabilities may be determined

by fault trees, depending on the system configuration.

Due to the complexity of nuclear power plants, the number of branching conditions

is very high and, hence each level generates a large number of scenarios and, thus,

authors of NUREG-1150 originally faced the problem of managing this large amount

of data.

The problem has been addressed by performing the following at the end of each

analysis:

1. Characterize each scenario by considering the status of a specific subset of

systems

2. Define a priori a set of classes (i.e. groups of scenarios)

3. Perform the scenario-to-class membership (binning)

4. Continue into the next level by considering the classes chosen in Step 2

This process is usually called classification instead of clustering.

In NUREG-1150 , eight characteristics based on the status of particular systems

have been considered for the Level 1 analysis of the Zion plant:

1. Status of reactor cooling system (RCS)
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2. Status of Emergency cooling system (ECCS)

3. Containment heat removal

4. AC Power

5. Contents of Reactor Water Storage Tank (RWST)

6. Heat removal from steam generators

7. Cooling of reactor coolant pump (RCP) seals

8. Status of containment fan coolers

All the scenarios generated in Level 1 analysis that lead to core damage and with

frequency higher than 10−9 have been characterized by these eight characteristics

listed above. Note that no information on the transient temporal behavior has been

considered but only the component status which characterizes each scenario.

The scenarios have, then, been grouped into five classes:

1. Station Blackout

2. LOCAs

3. Transients

4. Steam generator tube rupture (SGTR)

5. Event V

where each group has been characterized by the mean, median and 5th−95th percentile

of the frequencies.
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After the Level 2 analysis has been performed, leading to so called Accident

Progression Even Trees or APETs [23], a similar binning process is performed. Twelve

characteristics are used to specify these Accident Progression Bins (APBs):

1. Time of containment failure

2. Periods of which sprays operate

3. Occurrence of core-concrete Interactions

4. RCS pressure before vessel breach

5. More of vessel breach

6. Steam generator tube rupture

7. Amount of core available for CCI

8. Fraction of Zirconium oxidized in-vessel

9. Fraction of the core in high pressure melt ejection

10. Size or type of containment failure

11. Number of large holes in the RCS after vessel breach

12. Time of core damage

Five APBs have been defined:

1. Early containment failure

2. Late containment failure
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3. Alpha

4. Bypass

5. No containment failure

Results are summarized by expressing the conditional probabilities of accident

progression in terms of these bins as shown in Fig. 2.1.

Figure 2.1: Example of binning results for Zion Plant [23].
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CHAPTER 3

CLUSTERING: AN OVERVIEW

A loose definition of clustering is the process of organizing objects into groups

whose members are, in some way, similar. A cluster is therefore a collection of objects

which are similar to each other and are dissimilar to the objects belonging to other

clusters [37].

Figure 1.4 shows an elementary example of partitional clustering [25] applied to

a 2-dimensional set of data. Here it is possible to identify the 3 clusters into which

the data can be divided. The similarity criterion is distance. Two or more objects

belong to the same cluster if they are ‘‘close’’ according to a specified distance. The

approach of using distance metrics to clustering is called distance-based clustering

and is used in this work.

The notion of distance implies that the data points lay in a metric space [38]:

Definition 1 (Metric Space). A metric space is a space X provided with a function

d: f : X ×X → R satisfying the following properties ∀~x, ~y ∈ X :

� d(~x, ~y) > 0

� d(~x, ~y) = d(~y, ~x)
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� d(~x, ~y) 6 d(~x, ~z) + d(~z, ~y)

The function d(~x, ~y) is usually called the distance function. In a 2-dimensional Eu-

clidean space (R2), the distance between points can be calculated using the Pythagorean

theorem which is the direct application of the Euclidean distance and is a special case

of the most general Minkowski distance d2(~x, ~y) =
√

(x1 − y1)2 + (x2 − y2)2 between

two points ~x = (x1, x2) and ~y = (y1, y2) in R2.

In the literature [38], it is possible to find several types of distances other than

the Euclidean and the Minkowski distance as shown in Table 3.1. The approach

of using distance metrics is called distance-based clustering and will be used in this

dissertation.

Table 3.1: Summary of the commonly used measures [38].

Measure Form

Minkowski distance dn(~x, ~y) = (
δ∑

k=1

|xk − yk|n)
1
n

Euclidean distance d2(~x, ~y) = (
δ∑

k=1

|xk − yk|2)
1
2

Taxicab distance d1(~x, ~y) =
δ∑

k=1

|xk − yk|

Supremum distance d0(~x, ~y) = maxk|xk − yk|
Mahalanobis distance dM(~x, ~y) = (~x− ~y)TS−1(~x− ~y)

From a mathematical viewpoint, the concept of clustering [37] aims to find a

partition C = {C1, . . . , Cl, . . . , CL} of the set of I scenarios X = { ~x1, . . . , ~xi, . . . , ~xI}
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where each scenario ~xi is represented as a δ-dimensional vector (see Section 4.1). Each

Cl (l = 1, . . . , L) is called a cluster. The partition C of X is given as follows6:


Cl 6= ∅, l = 1, . . . , L

⋃L
l=1Cl = X

(3.1)

The clustering process presented in this dissertation consists of the following

steps [19]:

1. Variable selection. This first step consists of the identification of the variables

that are considered useful for characterization of the data. For a transient in a

nuclear plant, these variables may be both process variables such as temperature,

pressure or level in specific points of the system and hardware/software/firmware

states. The choice of the variables of interest therefore specifies the dimensions

of the state space (see Chapter 4).

2. Transient representation format. The chosen variables may be different in

both nature (e.g., temperature and pressure) and scale (i.e., the range of these

variables might differ in terms of order of magnitude). Hence, it may be necessary

to perform a scaling operation on the chosen variables. This work uses the

Principal Component Analysis (PCA) [39] as a tool to process the data before

clustering is performed (see Chapter 4).

3. Clustering algorithm design. The clustering algorithm along with metric and

other parameters of the algorithm are chosen (see Chapter 5).

6In most clustering algorithms each scenario belongs to only one cluster. However this is not
always the case. In fuzzy clustering methodologies [33] a scenario may be allowed to belong to more
than one cluster with a degree of membership ui,j ∈ [0, 1] which represents the member coefficient of
the j scenario for the ith cluster and satisfies the following properties:∑K

i=1 ui,j = 1, and
∑N

j=1 ui,j < N, ∀j
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4. Clustering. The clustering algorithm is applied to the data set and cluster

centers are determined (see Chapter 6).

5. Post-processing. The cluster centers are converted back into the original format

of the data.

6. Interpretation of the results. Given the cluster centers obtained in the previous

step, the goal is to provide the user with meaningful insight into the original

data set. Further classification analysis may be required in order to gain such a

meaningful insight (see Chapter 7).

Table 3.2 gives a summary of the data analysis methodologies that have been used

in PRA and shows how the clustering methodology described in this work (i.e., Ohio

State University in Table 3.2) fits in.

Table 3.2: Summary of the data analysis methodologies applied to PRA.

Methodology Type Data Timing Metric

Nureg-1150 Classification System Components No No
Politecnico di Milano Classification System Components Yes Distance
Paul Scherer Institut Classification System Components Yes Distance
Ohio State University Clustering State Variables Yes Distance
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CHAPTER 4

DATA PRE-PROCESSING AND DIMENSIONALITY
REDUCTION

Before performing clustering, it is often necessary to pre-process the data (see

Chapter 3). This chapter describes in detail the pre-processing step which includes

the following:

� choice of the data representation

� variable reduction

� data normalization and transformation

Section 4.1 shows how each scenario is represented. In Section 4.2, data normaliza-

tion and data transformation are discussed. Section 4.3 shows how the dimensionality

of the data sets (i.e., the product of the variables chosen to represents the scenarios

and the number of times these variables have been sampled) can be reduced. For very

complex systems this dimensionality is extremely high which leads to high computa-

tional cost in the clustering process. In that respect, reduction of the dimensionality

of the data set would be needed in most practical applications. Section 4.4 and 4.5,

respectively, show the linear and the non-linear algorithms that can be used for data

reduction.
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4.1 Data Representation

Since the temporal evolution of each scenario is typically described by the time

evolution of all system state variables (e.g., pressure and temperature at a computa-

tional node), each scenario ~xi (i = 1, . . . , I) is represented by M state variables xim

(m = 1, . . . ,M) plus time t (ranging from 0 to T ) as the state vector

~xi = [xi1(t1), . . . , xiM(t1), . . . , xi1(tK), . . . , xiM(tK)] (4.1)

where xim(tk) corresponds to the value of the variable xm (e.g., temperature, pressure

at a computational node) sampled at time tk (e.g., t1 = 0 and tK = T ) for scenario i.

Note that the dimensionality δ of each scenario is δ = M ·K and can be extremely

high for complex systems7 (i.e., large number of state variables and large number of

samples). When dealing with transient codes such as RELAP [4] or MELCOR [5] the

state space would theoretically include all the variables of all the discretization nodes

(on the order of tens of thousands). Thus, a smaller set of variables of interest needs

to be chosen.

As indicated in Chapter 3, distance metric is employed to measure the similarity

(or, equivalently, the dissimilarity) of data points. In this study, the Euclidean distance

d(~xi, ~xj) is used as a measure of the similarity between two data points ~xi and ~xj:

d(~xi, ~xj) = (
M ·K∑
d=1

|xi(d)− xj(d)|2)
1
2 (4.2)

7Note that it is assumed here that all the simulation have same time length (i.e., t = 0, . . . , T ).
This is not often the case, especially for simulations generated by DET. Several options have been
evaluated in order to overcome this limitation by extending scenarios that ended at time t′ < T
using:

� the last simulated value of the scenario,

� arbitrary constant value (e.g., 0), or,

� an arbitrary decreasing function

from t′ to T .
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4.2 Data Normalization and Data Transformation

The expression of d(~xi, ~xj) in Eq. 4.2 assumes that each data point ~xi (see Eq. 4.1)

is lying in a multidimensional space characterized by a set of orthogonal axes. How-

ever, due to the possible correlation among the chosen variables, the assumption of

orthogonality is not often justified.

This problem can be solved in two ways:

1. By using the original set of axes and generalized metrics such as the Mahalanobis

distance (see Table 3.1)

2. By transforming the set state space using principal component analysis (PCA)

[39]

The Mahalanobis distance [19] is a distance measure introduced in 1936 by P.C. Ma-

halanobis and it differs for the Euclidean metric in that that it takes into consideration

the correlation of the data set and is independent of the scale of the measurements8.

Given two vectors ~x and ~y, the Mahalanobis distance dM(~x, ~y) is defined as:

dM(~x, ~y) =
√

(~x− ~y)TS−1(~x− ~y) (4.3)

where S is the covariance matrix of the data set. When the axis of these vectors are

orthogonal to each other, then S is a diagonal matrix and the Mahalanobis distance

results in the normalized Euclidean distance:

dM(~x, ~y) =

√√√√ δ∑
i=1

(xi − yi)
σ2
i

(4.4)

8The need for an independent scale of measurements is another relevant issue when dealing with
similarity measures as well.
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where σi is the standard deviation of the i -th variable over the sample set.

On the other hand, PCA aims to transform the original set of δ possibly oblique

coordinate axes into a new set of δ orthogonal axis allowing the use of any of the

metrics shown in Table 3.1. This new set of δ orthogonal axes can be obtained

by finding the eigenvectors of the covariance matrix S and the data points can be

projected into the new coordinate system. Since the Euclidean distance has been

chosen as metric, PCA have been implemented in order to project the original data

set into a coordinate system having orthogonal axes.

Another issue that arises when dealing with nuclear transients is the fact that the

variables of interest may differ in units (e.g., pressure, level or temperature), as well

as ranges. This problem can be solved in two ways:

� normalize each dimension into the [0, 1] interval, or

� normalize each dimension by dividing it by its standard-deviation.

4.3 Dimensionality Reduction: an Overview

As indicated in Section 4.1, the dimensionality δ of each data point (i.e., each

scenario) is equal to the product of the number of variables (i.e., M) chosen to represent

each scenario multiplied by the number of times each variable has been sampled. In

order to reduce the computational time due to the high data dimensionality, the use

of dimensionality reduction techniques was to reduce the number of variables M9.

The raw data generated by DET methodologies contain the temporal behavior of

a vast set of variables (e.g., temperature, pressure). These variables are often heavily

9Other possible options are to reduce the number of sample instants K or to observe the local
properties of the covariance matrix S.
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Figure 4.1: Example of linear (a) and non-linear (b) correlation among 2 variables.

correlated and, consequently, the information contained in the set of M variables

comprising the full state space can be condensed to a set of N variables where N < M .

The objective of the dimensionality reduction process is to determine those N variables

by finding the correlations among the original M variables10.

Linear algorithms, such as PCA [39] or multidimensional scaling (MDS) [40], have

the advantage that they are easier to implement but they can only identify linear

correlation among variables. On the other hand, methodologies such as Local Linear

Embedding [41] and ISOMAP [42] are more computationally intensive but they are

able to identify non-linear correlations.

Figure 4.1 shows two examples of linear and non-linear correlations. In both cases

points are distributed in a 2-dimensional space (i.e., characterized by 2 variables: x,

y) but they are lying in a 1-dimensional space.

10Note that those N variables are not necessarily a subset of the original M variables but, more
likely, a combination of those M variables.
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Dimensionality reduction is the process of finding a bijective mapping function F

F : RD 7→ Rd (where d < D) (4.5)

which maps the data points from the D-dimensional space into a reduced d-dimensional

space (i.e. embedding on a manifold) in such a way that the distances between each

point and its neighbors are preserved. In our applications D = M + 1, i.e. M state

variables plus time t.

4.4 Dimensionality Reduction: Linear Algorithms

This section describes the two most important algorithms for dimensionality

reduction:

1. PCA (see Section 4.4.1), and,

2. MDS (see Section 4.4.2).

4.4.1 Principal Component Analysis (PCA)

The main idea behind PCA [39] is to perform a linear mapping of the data set onto

a lower dimensional space such that the variance of the data in the low-dimensional

representation is maximized.

This is accomplished by determining the eigenvectors and their corresponding

eigenvalues of the data covariance matrix11 S. The eigenvectors that correspond

to the largest eigenvalues (i.e., the principal components) can be used as a set of

basis functions. Thus, the original space is reduced to the space spanned by a few

eigenvectors.

11Given a data set in form of a vector Z, rows correspond to data dimensions (D) and columns
correspond to data observations (Λ), the covariance matrix S is determined as: S = 1

Λ−1Z
′Z.
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Figure 4.2 shows an example of dimensionality reduction using PCA for a data

set distributed in a 2-dimensional space. After performing the eigenvalue-eigenvector

decomposition of the covariance matrix, the algorithm chooses the eigenvector having

the largest eigenvalue (i.e., λ1) as subspace to project the original data.

The algorithm is very easy to implement but, on the other hand, PCA is not able

to identify non-linear correlations of more complex data sets.

Figure 4.2: Example of dimensionality reduction using PCA (reduction from D=2 to d=1).

4.4.2 Multidimensional Scaling (MDS)

Multidimensional scaling [40] is a popular technique used to analyze the properties

of data sets. The scope of this methodology is to find a set of dimensions that preserve

distances between data points.

This is performed by:

1. Creating dissimilarity matrix D = [dij] where dij is the distance between two

points xi and xj.

2. Finding the hyper-plane that preserves the dissimilarity matrix D (i.e., the

nearness of points)
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As in PCA analysis, the algorithm can be easily implemented but it is not able to

identify non-linear correlations of more complex data sets.

4.5 Dimensionality Reduction: Non Linear Algorithms

Since PCA and MDS are linear algorithms and, thus, limited to the data sets

which include only linear correlations among variables it was decided to consider

non-linear algorithms such as those based on manifold analysis. In particular, the

ISOMAP [42] algorithm have been considered.

The ISOMAP12 algorithm provides a simple method for estimating the intrinsic

geometry of a data manifold based on a rough estimate of each data point’s neighbors

on the manifold. ISOMAP is one representative of isometric mapping methods, and

extends MDS by incorporating the geodesic distances13 (distance along the manifold)

imposed by a weighted graph. ISOMAP is distinguished by its use of the geodesic

distance induced by a neighborhood graph embedded in the classical scaling. The

algorithm is implemented by the following two steps:

1. Estimate the geodesic distance between points in inputs using shortest-path

distances on the data set’s k nearest neighbor14. The connectivity of each data

point in the neighborhood graph is defined as its nearest k Euclidean neighbors

in the high-dimensional space.

2. Use MDS to find points in low-dimensional Euclidean space whose interpoint

distances match the the distances found in Step 1.

12http://isomap.stanford.edu/

13In graph theory, the distance between two vertices in a graph is the number of edges in a shortest
path connecting them. This is also known as the geodesic distance.

14ISOMAP defines the geodesic distance to be the sum of edge weights along the shortest path
between two nodes.
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Section 7.5 shows dimensionality reduction results using ISOMAP to a large data

set generated by a DET methodology such as ADAPT [12].
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CHAPTER 5

COMPARISON OF CLUSTERING METHODOLOGIES

This chapter describes in detail the following clustering methodologies that have

been investigated:

� Hierarchical (see Section 5.1)

� K -Means (see Section 5.2)

� Fuzzy C-Means (see Section 5.3)

� Mode-Seeking (see Section 5.4)

Section 5.5 shows how these 4 methodologies have been tested using three different

data sets and how Mode-Seeking methodology is chosen as the most effective for the

scope of this dissertation. Section 5.6 gives a short overview of the most relevant

clustering methodologies for high dimensionality data as possible future research

options.

5.1 Hierarchical methodologies

These methodologies organize the data set into a hierarchical structure according

to a proximity matrix. Each element d(i, j) of this matrix contains the distance
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between the the ith and the jth cluster center. The final results of this technique is a

tree commonly called a dendrogram (see Fig. 1.3). This kind of representation has

the advantages of providing a very informative description and visualization of the

data structure even for high values of dimensionality.

The procedure to determine the dendrogram for a data set of I points in an

δ-dimensional space is the following:

1. Start the analysis with a set of I clusters (i.e., each point is considered as a

cluster).

2. Determine the proximity matrix M (dimension: I × I): M(i, j) = d(~xi, ~xj)

where ~xi and ~xj are the position of the ith and the jth cluster.

3. For each point p find the closest neighbor q from the proximity matrix M

4. Combine the points p and q

5. Repeat Steps 2, 3 and 4 until all the points of the data set are in the same

cluster

The advantage of this kind of algorithm is the nice visualization of the results that

show the underlying structure of the data set. However, the computational complexity

for most of the hierarchical algorithm is of the order of O(I2) (where I is the number

of points in the data set).

5.2 K -Means

K -Means clustering algorithms belong to the more general family of Squared Error

algorithms. The goal is to partition I data points ~xi (i = 1, . . . , I) into K clusters
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in which each data point maps to the cluster with the nearest mean. The stopping

criterion is to find the global minimum of the error squared function χ defined as:

χ =
K∑
i=1

∑
xj∈Ci

|~xj − ~µi|2 (5.1)

where ~µi is the centroid (i.e., the center) of the cluster Ci.

The procedure to determine the centroids ~µi of K clusters (C1, . . . , CK) is the

following:

1. Start with a set of K random centroids distributed in the state space

2. Assign each pattern to the the closest centroid

3. Determine the new K centroids according to the point-centroid membership

µi =
1

Ni

∑
~xj∈Ci

~xj (5.2)

where Ni corresponds to the number of of data points in the ith cluster.

4. Repeat Steps 2 and 3 until convergence is met (i.e., until a minima of the χ

function is reached)

K -Means algorithm is one of the most popular and used methodologies also due

to the fact that is very easy to implement and the computational time is directly

proportional to the cardinality of data points (i.e., O(I) where I is the number of

data points). The main disadvantage is that the algorithm is sensitive to the choice

of the initial partition and may converge to a local minimum of the error squared

function [21]. Another disadvantage of this algorithm is that is only able to identify
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clusters having spherical or ellipsoidal geometry. Thus, K -Means is not able to identify

clusters of points having arbitrary shapes. Moreover, the number of cluster K to be

obtained is specified by the user prior the clustering process.

5.3 Fuzzy C-Means

Fuzzy C -Means clustering is a clustering methodology that is based on fuzzy sets

and, hence, it allows a data point to belong to more that one cluster [27, 43]. Similar

to the K -Means clustering, the objective is to find a partition of C fuzzy centers to

minimize the function J defined as following:

J =
I∑
i=1

C∑
j=1

umij |~xi − ~µj|2 (5.3)

where:

� umij ∈ [0, 1] is the membership coefficient of the data point ~xi for the jth cluster

having centroid ~µj,

� m ∈ [0,∞) is the fuzzification parameter (usually set to m = 2), and,

� µj is the centroid of the jth cluster center

The procedure to determine the centroids (or, equivalently, cluster centers) ~µj

(j = 1, . . . , C) of C clusters is the following:

1. Initialize the U = [umij ] matrix

2. Calculate the set of C centroids as following:

µj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

(5.4)
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3. Update the matrix U = [umij ] as following:

umij =
1∑C

k=1(
|xi−µj |
|xi−µk|

)
2

m−1

(5.5)

4. Repeat Steps 2 and 3 until convergence, i.e. if |U (K+1) − U (K)| < ε

Fuzzy C -Means clustering is very similar to the K -Means. As seen for the K -Means,

Fuzzy C -Means can also converge to a local minima of the convergence criterion

function [27]. Like K -Means, it is not able to identify cluster of points having arbitrary

shapes but only clusters having ellipsoidal or spherical geometry and the number of

clusters C to be obtained is specified by the user prior the clustering process. Fuzzy

C -Means algorithms can be useful when the boundaries among clusters are ambiguous

and not well defined.

5.4 Mode-Seeking

Mode-seeking approaches look at the density distribution of data points lying in

a metric space. Clusters are viewed as regions of the space with high point density

separated by regions of low point density. Clusters can be identified by searching for

regions of high density, called modes.

For the comparison a Mode-seeking algorithm referred to as the Mean-Shift [44]

has been chosen and it is extensively described in Chapter 6.

The advantage of this class of algorithms is that they are able to identify clusters

with arbitrary shapes and, hence, they are not limited to topological figures such as

spheres or ellipsoids. Moreover, compared to K -Means (see Section 5.2) and Fuzzy

C -Means (see Section 5.3), the number of clusters is not specified a-priori by the user
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but it is the algorithm that determines this number based on the areas with higher

point concentration.

5.5 Comparison of Methodologies

In order to compare the four methodologies listed above, three different data sets

have been selected:

1. A set of 300 points grouped in 3 spherical clusters (see Fig. 5.1(a)),

2. A set of 200 points distributed in 2 rings (see Fig. 5.1(b)),

3. A set that considers scenarios that have been generated for the analysis of a

pressurized water reactor. The initiating event investigated was that of a station

blackout (SBO) and the MELCOR code was linked to the ADAPT tool to

determine the evolution of each DET scenario. The simulations using MELCOR

model the transient from the occurrence of the SBO through the core melting

phase and up to the point of containment failure and release of radionuclides to

the environment. All the 104 scenarios generated in this DET led to containment

failure at some point in the scenario evolution. For the purposes of this paper,

we choose 4 state variables of interest (see Fig. 5.2):

(a) Core water level [m]: L,

(b) System pressure [Pa]: P,

(c) Intact core fraction [%]: CF,

(d) Fuel temperature [K]: T.
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Figure 5.1: Representation of the Data set 1 (a) and 2 (b).

Each state variable has been sampled 100 times, which gives an accurate

description of all the 104 transients. As described in Section 4.1, each scenario

~xi is a multidimensional vector:

~xi = [L(1), . . . , L(100), P (1), . . . , P (100), CF (1), . . . , CF (100), T (1), . . . , T (100))]

(5.6)

In order to compare the results for the methodologies presented in Sections 5.1

through 5.4, for Data sets 1 and 2, the cluster centers obtained from each methodology

are compared with the original ones. Tables 5.1 and 5.2 show the comparison of the

cluster centers for K -Means, Fuzzy C -Means and Mean-Shift.

For Data set 1 it is possible to note a general agreement between the three

methodologies (Table 5.1). However, Table 5.2 shows major disagreements for the

K -Means and the Fuzzy C -Means methodologies. The reason for these discrepancies

for the two methodologies is due to the fact that the shape of the two clusters is

not spherical or ellipsoidal and, thus, both the K -Means and the Fuzzy C -Means
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Figure 5.2: Representation of the Data set 3.
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Table 5.1: Cluster centers comparison for Data set 1.

Original K-Means Fuzzy C-Means Mean-Shift

(0,0,0) (-0.0173,0.018, -0.034) (-0.019,0.003,-0.031) (-0.012, 0.0055,-0.036)
(6,0,0) (5.9510,-0.001,-0.059) (6.38,0.128,-0.201) (6.16,0.075,-0.043)
(3,6,6) (2.974,6.01,6.118) (2.51,5.4878,5.98) (3.02,5.893,6.011)

Table 5.2: Cluster centers comparison for Data set 2.

Original K-Means Fuzzy C-Means Mean-Shift

(0,0,0) (0.142,3.632,1.01) (-0.737,3.866,0.422) (0.101, -0.0732,0.127)
(0,5,0) (0.573,15.59,-0.311) (0.246,15.4894,-0.342) (0.121,5.182,-0.095)

algorithms have problems to find 2 clusters with more complex shapes such as the

two rings pictured in Fig. 5.1(b).

Hierarchical clustering for both Data sets 1 and 2 has also been performed. Fig-

ure 5.3 shows the dendrogram for Data set 1 where it is possible to identify the 3

clusters and the hierarchical structure based on the reciprocal distance of the points.

Regarding Data set 2, the algorithm was not able to identify the two clusters for the

same reason presented for K -Means and Fuzzy C -Means.

For Data set 3, the exact solution is not available and so one methodology has been

chosen as a comparison reference using the scenarios shown in Fig. 5.2. Mean-Shift

methodology has proven to be more flexible in terms of identifying clusters with

arbitrary shapes and, consequently, it has been decided to use the cluster centers

obtained from Mean-Shift as a reference. Clustering using Mean-Shift has been

performed with value of bandwidth equal to 20 obtaining 8 cluster centers pictured in
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Figure 5.3: Dendrogram derived from the Hierarchical clustering algorithm for Data set 1.

Fig. 5.4. Then, clustering of the third data set using K -Means and Fuzzy C -Means has

been performed using the number of clusters obtained with the Mean-Shift as input

(i.e., 8). Results are shown in Fig.s 5.5 and 5.6 for K -Means and Fuzzy C -Means,

respectively.

Five out of 8 clusters had notable differences in terms of both cluster centers

(pictured in Fig. 5.5 and 5.6) and scenario memberships. From the comparison of the

results shown for the Data sets 1 and 2, the 8 clusters obtained using the Mean-Shift

methodology have geometrical shapes that cannot be modeled using K-Means and

Fuzzy C-Means. However, all the three methodologies were able to identify outliers

which are scenarios that belong to clusters having only very few elements.

Hierarchical clustering has the advantage that it is able to show the distribution

of the data points through a dendrogram. This is useful when the dimensionality of

the data points is greater than 3 and hence, it is not easy to graphically visualize
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Figure 5.4: Cluster centers obtained using Mean-Shift for Data set 3.
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Figure 5.5: Cluster Centers obtained using K-Means for Data set 3.
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Figure 5.6: Cluster Centers obtained using Fuzzy C-Means for Data set 3.
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the data set distribution. However, this ability is lost when the data points are

distributed in clusters having complex geometries. K -Means and Fuzzy C -Means

methodologies have the same disadvantage since they are able to identify mainly

spherical or ellipsoidal cluster of points. However, Mean-Shift algorithm is able to

overcome this limitation.

5.6 High dimensionality

An issue that has been emerging in recent years is the increase in the dimensionality

of data sets. It started to appear in medical applications for the analysis of genetic

data. In the literature, [45] gives a very comprehensive description of the problems

when dealing with high-dimensional data and approaches towards this challenging

aspect of clustering. Kriege in [45] introduces the fact that with increasing values of

dimensionality δ, the set of data points becomes more sparse and, hence, it is harder

to define clusters as a partition of a subset of data points.

Moreover, for algorithms that implement metric distances (see Table 3.1) as

measure of similarity, another issue arises: depending on the distribution of the data

points in the state space and given an arbitrarily chosen point, the relative difference

of the distances of the closest and the farthest point (dmin and dmax respectively)

tends to 0:

lim
δ→∞

dmax − dmin
dmin

= 0 (5.7)

This would imply that as the dimensionality δ increases, distances between points

becomes uniform.

The last issue is more of a geometric effect that can be explained by considering

the ratio of the volume of the sphere with radius r and the volume of a cube in
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an Euclidean metric space15. This ratio tends to 0 as the dimensionality increases.

Hence, it seems that as the dimensionality increases the distance measures become

meaningless.

As indicated in Section 4.1, each transient is represented by a multidimensional

vector where the dimension would be equal to the number of the variables (e.g.,

temperature, pressure or level of particular components of the plant) chosen to

represent the scenarios multiplied by the number of times these variables have been

sampled over time. Hence, for any level of safety analysis of a nuclear power plant

(or even part of it) that has been carried out over a mission time of the order of hours

(or even days), the dimensionality of each data point would be very high.

In order to solve the clustering problem for high dimensional data sets using a

Mean-Shift algorithm (or any of the ones listed above) two options would be to: a)

act on the pre-processing of the raw data as indicated in Section 4.3, or, b) employ

more advanced algorithms able to deal with high dimensionality data.

Only recently studies have been performed towards clustering of high dimensionality

data sets and several algorithms have been proposed, including

� PROCLUS [46]

� FINDIT [47]

� COSA [48]

� CLIQUE [49]

� ENCLUS [50]

15This issue is also commonly known as ‘‘curse of dimensionality’’.

45



� MAFIA [51]

� P3C [52]

This dissertation focuses attention on dimensionality reduction techniques prior

to data clustering rather than using algorithms that are more suited for having high

dimensional data.
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CHAPTER 6

MEAN-SHIFT METHODOLOGY

This Chapter describes in detail the theoretical basis of the Mean-Shift algorithm

(Section 6.1 and 6.2). Section 6.3 shows an initial testing of clustering using the

Mean-Shift algorithm applied to the data set generated by a DET for the analysis of a

simple level controller [35]. Section 6.4 shows how the algorithm has been optimized

for multi-core processors using both Matlab and C++.

6.1 Theoretical basis

The Mean-Shift algorithm [44] is a non-parametric iterative procedure that can

be used to assign each point to one cluster center through a set of local averaging

operations [44]. The local averaging operations provide empirical cluster centers

within the locality and define the vector which denotes the direction of increase for

the underlying unknown density function (see Section 5.4).

The underlying idea is to treat each point ~xi (i = 1, . . . , I) of the dataset as an

empirical probability distribution function using kernel K(~x) : RM ·K → R. This

multivariate kernel density resides in a multidimensional space where regions with

high data density (i.e., modes) correspond to local maxima of the density estimate
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fI(~x) [53] (see Fig. 6.1) defined by

fI(~x) =
1

Ihd

I∑
i=1

K

(
~x− ~xi
h

)
, (6.1)

where ~x ∈ RM ·K and h is often referred as the bandwidth associated with the kernel.

The kernel in Eq. 6.1 serves as a weighting function [53] associated with each data

point and is expressed as:

K(~x) = ckk(‖~x‖2), (6.2)

where k(x) : [0,∞] → R is referred as the kernel profile and ck is a normalization

constant. The profile satisfies the following properties:

� k(x) is non negative

� k(x) is non increasing (i.e., k(a) ≥ k(b) if a < b)

� k(x) is piecewise continuous and
∫∞
0
k(x) dx <∞

In order to estimate the data points with highest probability from an initial

estimate (i.e., the modes of fI(~x)), consider the gradient of the density function

∇xfI(~x) = 0 [44] where

∇xfI(~x) =
2ck
Ihd+2

I∑
i=1

(~x− ~xi)k
′
(
‖~x− ~xi

h
‖2
)

=
2ck
Ihd+2

(
I∑
i=1

g

(
‖~x− ~xi

h
‖2
))

︸ ︷︷ ︸
A

(∑I
i=1 ~xg

(
‖~x−~xi

h
‖2
)∑I

i=1 g
(
‖~x−~xi

h
‖2
) − ~x)︸ ︷︷ ︸

B

, (6.3)

which points in the direction of the increase in kernel density estimate. The kernel

K(~x) is also referred to as the shadow of G(~x) = cgg(‖~x‖2) [54] where cg, similar to ck,

is a normalization constant and g(x) is the derivative of k(x) over x, i.e., g(x) = k′(x).

In Eq. 6.3 the first term denoted as A is a scalar proportional to the density estimate
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Figure 6.1: Density function.

computed with the kernel G(~x) and does not provide information regarding where the

mode resides. Unlike A, the vector quantity B, which is the second term in Eq. 6.3,

is difference between the weighted mean

m(~x) =

∑I
i=1 ~xg(‖~x−~xi

h
‖2)∑I

i=1 g(‖~x−~xi
h
‖2)

. (6.4)

and the initial estimate ~x. This term points in the direction of local increase in

density using kernel G(~x), hence provides a means to find the mode of the density.

Note that all points used to compute a particular mode are considered to reside in the

same cluster.

Since each each data point ~xi (or scenario) is considered as an empirical probability

distribution function, this consideration allows to include in the scenario clustering

analysis also the possible uncertainty associated with each scenario.
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6.2 The Mean-Shift Algorithm

In order to show how the clustering is performed, consider an example system

whose dynamics can be described by 3 variables that include time t, pressure p

and temperature T. Also, assume that a DET analysis quantifying the impact of

uncertainties in the system yields the trajectories shown in Fig. 6.2. The S(t) plane

in Fig. 6.2 represents the state of these scenarios at a particular time instant.

Figure 6.2: Representation of example scenarios generated by a DET in a 3-dimensional
space.

Note that the dataset on the S(t) plane consists of points distributed in a two

dimensional space R2. Starting from an arbitrary data point (e.g., point SA in Fig. 6.3),

the algorithm defines the locality using a circular region centered around this point

(or a hyperspherical region depending on the number of dimensions). The radius of

this region is equal to the bandwidth h of the chosen kernel (see Section 6.1). The

objective is to consider points residing in this region for estimating their weighted

average which corresponds to the center of mass of these points (point m(SA) in
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Figure 6.3: Determination of a cluster center in a 2-dimensional space using a Mean-Shift
algorithm.

Fig. 6.3) where

m(SA) =

∑I
i=1 ~xig(‖SA−~xi

h
‖2)∑I

i=1 g(‖SA−~xi
h
‖2)

. (6.5)

The weighted average or the center of mass m(sA) is used as the new position for

SA for the next iteration, such that the density in the new center of mass is always

higher than its previous position. Convergence is reached when the distance between

the new center of mass and the old one is below a fixed threshold16 (point SC in

Fig. 6.3). Upon reaching this stopping condition:

� point SC is considered the center of a cluster, and,

� the original point SA is uniquely associated to the cluster centered by point SC .

During this process, several derivative kernels G(~x) can be used as indicated in [28],

including

16Usually the threshold is a fixed value chosen to be a small fraction of h (typically h
100 or h

1000 )
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Flat Kernel: (Fig. 6.4(a)) G(~x) =

{
1 if ‖~x‖ 6 h

0 if ‖~x‖ > h
(6.6)

Cone Kernel: (Fig. 6.4(b)) G(~x) =

{
(1− ‖~x‖) if ‖~x‖ 6 h

0 if ‖~x‖ > h
(6.7)

Gauss Kernel: (Fig. 6.4(c)) G(~x) = e−
‖~x‖2

h2 (6.8)

As indicated earlier, the purpose of G(~x) is to assign different weights to different

points during the estimation of the center of mass. Kernels such as the Gauss and

the Cone kernel assign higher weights to the points located at the center of kernel

which implies that the calculated center of mass is biased toward the center of the

kernel. Thus, the distance between two consecutive calculated positions of the center

of mass is smaller if Gauss or Cone kernels are used compared to the uniform kernel.

Consequently, convergence can be reached faster using kernels such as the Gauss or

the Cone ones.

When this procedure is repeated for all the points in the data set it is possible to

obtain

� the center of all the clusters and the list of all the points that belong to that

specific cluster, and,

� the cluster to which each point belongs (as mentioned earlier, each point belongs

to one cluster only).

Figure 6.5 shows the flow diagram of the proposed approach. Starting from a

dataset generated by the DET tool, the user selects variables of interest (Feature
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Figure 6.4: Graphical representation of the 2-D K(~x) kernels (left) and the corresponding
G(~x) kernel.

53



Selection in Fig. 6.5). Following the choice of bandwidth, type of kernel, and the

distance metric, the clustering is iteratively performed (Clustering in Fig. 6.5). Sensi-

tivity of the grouping of scenarios can be then examined for different types of kernels,

values of bandwidth and metrics (Post-Processing in Fig. 6.5).

Figure 6.5: General Scheme of the Mean-Shift Methodology algorithm.

6.3 Water level controller analysis

As a simple system to illustrate the deployment of the algorithm shown in Fig. 6.5,

the heated tank example presented in [55] and shown in Fig. 6.6 is used here.

The liquid level L is actively controlled through the actuation of three components:

two inlet pumps and one outlet valve, hereafter called Units 1, 2 and 3, respectively.

Each unit is a multi-state component operating either correctly ON or OFF, stuck

ON or stuck OFF. At time t = 0, the system is assumed to be in its nominal state

(ON,OFF,ON), with nominal values of T = 30.93C of the liquid temperature and
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L = 7m. The temperature T is assumed to directly affect the failure rates λ of the

components as given by [55]:

λ(T ) =
b1e
−bd(T−20) + b2e

−bd(T−20)

b1 + b2
λ(i) (6.9)

where bi and λ(i) are constant and characteristic of each component.

A power source heats up the fluid to keep it at the nominal temperature. The

liquid level is kept between 6 and 8 m through the control laws reported in [17] (also

see Table 6.1). Two possible Top Events that need to be considered are Low Level

(L < 4m) and High Level (L > 10m).

Table 6.1: Water level controller control laws.
Case Controller 1 Controller 2 Controller 3

6m ≤ L ≤ 8m ON OFF ON
L ≤ 6m ON ON OFF
L ≥ 8m OFF OFF ON

For testing the algorithm described in Section 6.2, the variables that describe the

evolution of each scenario were chosen to be the temperature T , level L and time t.

Thus the state space is three-dimensional.

In the DET analysis, the branching is dictated by the failure of the three active

components (i.e. Units 1, 2 and 3 in Fig. 6.6). The Mean-Shift algorithm has been

applied to the set of transients generated in [56] and shown in Fig 6.7.

Each transient contains information about the time evolution of temperature and

level and the status of the three controllers as well. Every transient has been converted

into a vector ~xi as shown in Eq. 4.1 with
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Figure 6.6: Scheme of the water heated tank.

Figure 6.7: Plots of the scenarios generated by DET for the level controller.
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� M = 2 (i.e., 2 state variables: temperature and level),

� time is ranging from 0 to 5 hours (i.e., T = 5h), and,

� level, temperature sampled every hour (i.e., K=5): t1 = 0h, t2 = 1h, t3 = 2h,

t4 = 3h, t5 = 4h and t6 = 5h.

Thus, each scenario is characterized by a vector having dimensionality equal to 10

(M ·K = 10).

Clustering was performed for the scenarios leading to Low Level and High Level

separately. Figures 6.8, 6.9 and 6.10 show the cluster centers (i.e., the representative

scenarios) for the these Top Events. As can be seen from the figures, the clustering

process becomes more refined by decreasing the value of the bandwidth and the

number of clusters obtained increases. Asymptotically, the number of clusters equals

the number of scenarios with decreasing bandwidth.

6.4 Parallel implementation

The Mean-Shift algorithm has been developed initially using Matlab. It was found

to be more appropriate to rewrite the algorithm and design it for parallel computing

in a more suitable form using C++.

In the literature it is possible to find two major approaches for parallel programming

applied to C++:

� OpenMP [57]

� MPI 17

17‘‘MPI: The Complete Reference’’ by Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press (http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Snir96.pdf)
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Figure 6.8: Cluster centers for High Level (top) and Low Level (bottom): h = 11.
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Figure 6.9: Cluster centers for High Level (top) and Low Level (bottom): h = 9.
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Figure 6.10: Cluster centers for High Level (top) and Low Level (bottom): h = 7.
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For the scope of this dissertation the use of directives of OpenMP are more suited

due to fact that OpenMP supports shared memory computation. OpenMP (Open

Multi-Processing) is an application programming interface (API) that supports multi-

platform shared memory multiprocessing programming in C, C++, and Fortran on

many architectures, including Unix and Microsoft Windows platforms. It consists of

a set of compiler directives, library routines, and environment variables that influence

run-time behavior. OpenMP is an implementation of multi-threading, a method

of parallelization whereby the master ‘‘thread’’ (a series of instructions executed

consecutively) ‘‘forks’’ a specified number of slave ‘‘threads’’ and a task is divided

among them. The threads then run concurrently, with the runtime environment

allocating threads to different processors.

The Mean-Shift algorithm described in Section 6.2 is performed for each data point

in a single thread. During this process the algorithm initially looks at all the points

within the bandwidth. Thus, a shared memory parallel implementation is a natural

choice. Such an implementation of the Mean-Shift algorithm in C++ using OpenMP

directives is performed in two steps:

1. For each thread, implement the algorithm of Section 6.2 for each data point

separately to find the center of the cluster associated with the data point

2. Determine the global cluster centers from the set of centers determined in Step 1

The code is presented in Appendix B while results are shown in Section 7.6.
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CHAPTER 7

LEVEL 2 PRA ANALYSIS

This chapter presents the results obtained by the algorithm described in Section 6.2

and shown in Appendix A for four different cases:

1. Sodium-Cooled Fast Reactor (SFR) [58] recovery after an aircraft crash scenario

(see Section 7.1)

2. Zion plant [23] during a station blackout (see Section 7.2 and Section 7.4)

3. Analysis of the pump seal leakage model (see Section 7.3)

Sections 7.5 and 7.6 show results of the dimensionality reduction algorithm de-

scribed in Section 4.5 and the parallel implementation of Mean-Shift described in

Section 6.4 respectively, for the data set of Section 7.3.

7.1 SFR Aircraft Crash Analysis

After the analysis of the water level controller presented in Section 6.3, a more

complex system, the reactor vessel auxiliary cooling system (RVACS) of the sodium-

cooled fast reactor [58] has been analyzed. The RVACS is schematically shown in

Fig. 7.1. The RVACS is a passive decay-heat removal system that removes heat by
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Figure 7.1: RVACS system applied to SFR.

natural circulation of air in the gap between the vessel and a duct surrounding the

vessel. With this system, the reactor decay heat is released to the atmosphere through

four towers or stacks.

The Analysis of Dynamic Accident Progression Trees (ADAPT) tool [1] has been

used here as the DET generator tool while the system dynamics are modeled using

RELAP5 [4]. At time zero with the plant operating at 100% power, an aircraft crashes

into the plant. Three of the four towers are assumed to be destroyed, producing debris

that blocks the air passages (hence, impeding the possibility to remove the decay

heat). The reactor trips, off-site power is lost, the pump trips and coasts down.
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A recovery crew and heavy equipment are used to remove the debris. Figure 7.2

illustrates the strategy that is followed by the crew in reestablishing the capability

of the RVACS to remove the decay heat. Crew arrival and tower recovery times

are stochastic variables and can have any value within the specified bands. Several

assumptions have been made for the purpose of the analysis:

� A tower is assumed to have no heat removal capacity until the rubble has been

removed. At that point it is assumed to regain full capacity

� There is a one hour period following the crash in which a fire is being extinguished

� There is a uniform probability of work being initiated between one and nine

hours after the crash

� The workers remove debris from one tower at a time

� After work begins on a tower there is a minimum time of two hours to recover

the tower

� There is a uniform distribution of recovery between two and ten hours. The

team then moves on to the next tower

� The recovery time of each tower is assumed to be independent of the other

towers

As indicated above, the uncertainties in crew arrival time and tower recovery have

been modeled by assigning to each one a uniform probability distribution function [59].

Example branching times were chosen to correspond to the probabilities 0.001, 0.25,

0.5, 0.75, and 1.0 on the corresponding cumulative distribution function. When one of
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Figure 7.2: Crew recovery strategy for the aircraft crash scenario.

these branching times is reached in the RELAP simulation, a bifurcation in the system

evolution occurs in which one branch represents the realization of the specific event

(e.g., crew arrival) and the other branch represents non-realization of the specific

event. The latter branch then continues until the time corresponding to the next

branching point is reached on the cumulative distribution function.

Only one Top Event has been considered: temperature T of the core reaches the

limit of 1000 K, associated with clad failure by eutectic formation. Figure 7.3 shows

the temporal behavior of the temperature of the core for all the 610 scenarios generated

by ADAPT. Mission time for this system analysis has been fixed to 2× 105s18.

Each transient includes information about:

18In the original data set, scenarios that reach a core temperature of 1000 K are stopped even
though they did not reach 2×105s. Consequently, the time length of scenarios may change depending
if they have reached 1000 K or not. For those scenarios that reach 1000 K before 2× 105s, it has
been decided to extend in time these scenario up to 2× 105s with the last value simulated.
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� Time profile of core temperature

� Crew arrival time

� Recovery time of tower i (i = 1, 2, 3)

Clustering analysis of the data set pictured in Fig. 7.3 has been performed using the

values of temperatures sampled at specific time instants. Each scenario was represented

by K = 68 time points sampled uniformly over a time horizon of T = 2× 105s.

Table 7.1 shows the number of clusters obtained for different values of bandwidth

h. For very large values of h (e.g., h = 4) the algorithm determines a single cluster

which contains all the 610 scenarios. On the other hand, for very small values of h

(e.g., h = 0.001) the algorithm determines 610 clusters; each of them contains a single

scenario. For both of these cases no additional information can be extracted from the

clusters since the clusters reflect exactly the original data set.

Table 7.1: Number of clusters obtained for different values of bandwidth h.
h Number of clusters

4.0 1
3.0 2
2.0 4
1.5 8
1.0 22
0.5 96
0.1 300
0.01 308
0.001 610

Figure 7.4 shows the cluster centers obtained for h = 1.5. Figure 7.4 also shows,

for each of the 8 cluster centers, the cluster probability and the fraction of scenarios
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Figure 7.3: Graphical representation of the scenarios generated by ADAPT for the aircraft
crash scenario.

that belong to that cluster. Cluster probability is determined by summing all the

probabilities of the scenarios contained in that cluster. Figure 7.5 shows the cluster

centers (i.e., the representative scenarios) in black lines and the scenarios belonging

to that cluster in red lines.

At this point it is possible to analyze the properties of the clusters individually

instead of the full data set. In this respect, a second analysis has been performed for

each of the eight obtained clusters by evaluating the distribution of the crew arrival

time (red) and the recovery time of tower 1 (blue), 2 (green) and 3 (magenta) as

function of time for the scenarios belonging to each cluster. Figure 7.6 shows, for each

of the 8 clusters, the distribution of the crew arrival time and tower recovery time for

all the scenarios belonging to that cluster.

Figures 7.5 and Fig. 7.6 indicate the following:
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Figure 7.4: Cluster centers for the RVACS system for h = 1.5. The numbers in the legend
indicate the cluster probability and, in parenthesis, the number of scenarios that fall in each
cluster.

� Scenarios contained in Clusters 1 and 4 are characterized by very early crew

arrival (red bars in Fig. 7.6 located at 2.5× 104s) and a rapid sequence of towers

recovery which allow to cool the core rapidly (all towers are recovered before

8.5 × 104s for all scenarios contained). As shown in Fig. 7.5, the scenarios

included in both clusters lead to adequate core cooling (i.e., the maximum core

temperature do not reach 1000K) and, as expected, a rapid recovery of the

towers is sufficient condition for the safety of the plant

� Scenarios contained in Cluster 2 are characterized as well by an early crew

arrival (red bar in Fig. 7.6 located at 2.5 × 104s) and a rapid recovery of the

first tower (blue bars in Fig. 7.6 located between 3.5 × 104s and 4.5 × 104s).

However, the recovery of the remaining two towers is not as rapid (green and
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Figure 7.5: Cluster centers (black lines) and scenarios associate to it (red lines) for each
cluster.
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Figure 7.6: Distribution of crew arrival time (red) and the recovery time of tower 1(blue),
2(green) and 3(magenta).
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purple bars in Fig. 7.6). Since this cluster contains scenarios that lead to both

adequate core cooling and core damage (see Fig. 7.5 where some scenarios reach

the limit of 1000K and others are below it), it is possible to conclude that early

crew arrival and recovery of the first tower is not sufficient condition to reach

the safe state of the plant.

� Scenarios contained in Cluster 3 and 5 lead to both sufficient core cooling and

core damage (see Fig. 7.5 where some scenarios reach the limit of 1000K and so

are below it). This is due to the fact that crew arrives on the field considerably

late (red bars in Fig. 7.6 located between 3.0× 104s and 4.5× 104s) followed by

a rapid recovery of the three towers (blue, green and purple bars in Fig. 7.6).

However, the rapid recovery is not sufficient to avoid core damage.

� Cluster 6 is composed exclusively of scenarios that lead to core damage (see

Fig. 7.5 where all scenarios reach the limit of 1000K). Moreover, it also contains

all the scenarios characterized by the non recovery of the third tower (purple

bar located at 0s in Fig. 7.6). As observed for Clusters 3 and 5, crew arrives

very late on site (red bars in Fig. 7.6 located between 3.0× 104s and 4.5× 104s)

and hence the tower recovery strategy is not sufficient for adequate core cooling.

� Clusters 7 and 8 contain a very small number of scenarios (i.e., 2 and 1 scenario

respectively). Scenarios included in Cluster 7 are characterized by a late crew

arrival (see red bars in Fig. 7.6), a late recovery of the first tower (see blue

bars in Fig. 7.6) and a fast recovery of the following towers (see green and

purple bars in Fig. 7.6). This action allows to sufficiently cool the core but

temperature profile for these scenarios is very close to the limit temperature (i.e.,
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max temperature of the core for the scenarios in Fig. 7.5 is 999K). However,

the scenario included in Cluster 8 is characterized by an early crew arrival and

recovery of the first tower (see red and blue bars in Fig. 7.6). The recovery

of the remaining towers is not particularly fast (see green and purple bars in

Fig. 7.6) but it avoids to reach the limit temperature.

In conclusion, the clustering of the data set was able to identify similarities between

scenarios that are leading to both core damage and to adequate core cooling. These

similarities were identified in Clusters 2, 3 and 5. By analyzing the similarities in

scenarios contained in these three clusters it was possible to identify the following:

� Early crew arrival and early recovery of the first tower is not sufficient condition

to adequate core cooling; a late recovery of the remaining two towers leads to

core damage

� Late crew arrival time does not lead to core damage but the fast recovery of the

3 towers can be sufficient to provide adequate core cooling.

7.2 Zion Plant Analysis: Station Blackout (1)

The initiating event investigated in this section is the station-blackout (SBO) at a

U.S. Pressurized Water Reactor (PWR) and the MELCOR code [5] was linked to the

ADAPT tool [12] to determine the evolution for each DET scenario. The simulations

using MELCOR as the system code model the transient from the occurrence of the

initial condition through the core-melting phase of the accident and up to point of

containment failure and release of radionuclides to the environment. For this case,

two branching conditions were considered:
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1. Creep rupture of major reactor coolant system (RCS) components (hot leg,

pressurizer surge line, and steam generator tubes)

2. Failure of the containment vessel

For each of these phenomena, distributions were developed [1] which gave the

probability of occurrence of a phenomenon as a function of certain system variables.

For the first branching condition (creep rupture) a probability distribution was

developed [60] on the value of the component lifetime fraction which would lead to

failure. For the second branching condition (containment failure), a distribution was

developed [60] which gave the probability of containment failure as a function of

containment pressure.

Since the ADAPT methodology is discrete in nature, it is necessary to discretize

the branching condition distributions [1]. Each branching condition distribution was

discretized into seven points, namely, for each of these branching conditions, discrete

probability points were selected from the appropriate cumulative distribution functions

(CDFs), and the physical values corresponding to these probability values were used

as branching criteria. For each branching condition, discrete probability points of 1%,

5%, 25%, 50%, 75%, 95%, and 99% were chosen.

All the 176 scenarios generated in this DET led to containment failure at some

point in the scenario evolution. With regards to creep rupture, failure of the surge line

dominated this failure mode, with surge line failure also occurring in all scenarios. The

DET analysis also showed the potential failure of steam generator tubes before failure

of the surge line occurred. However, in this case, steam generator tube rupture was

modeled as the failure of a single steam generator tube and this failure did not result

in sufficient reactor coolant system depressurization to preclude future failures. As a
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result steam generator tube rupture had a limited effect on the risk in this scenario as

it resulted in little to no containment bypass. Hence, the major contributor to the

release of radionuclides to the environment is the over-pressurization and failure of

the containment structure (containment failure modes such as basmat melt-through

and other energetic containment failure events are not modeled here).

For this data set, four variables have been chosen to represent each scenario:

1. Average core coolant temperature (x1)

2. Primary system pressure (x2)

3. Containment temperature (x3)

4. Containment pressure (x4)

Since this scenario deals with both the core melting phase and the containment

failure phase of the accident, it was felt that variables should be chosen which represent

these phenomena. Variables 1 and 2 are surrogates for the progression core melt and

the integrity of the reactor coolant system. Variables 3 and 4 relate to the integrity

of the containment.

As indicated in Section 4.1, each scenario ~xi has been represented by a vector as

following:

~xi = [x1(t1), x2(t1), x3(t1), x4(t1), . . . , x1(tK), x2(tK), x3(tK), x4(tK)] (7.1)

In each simulation, the set of four variables were sampled every 500 seconds (on

mission time of tK = 12 · 104s, t1 = 0s). Since h is a parameter which must be defined
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by the user before performing the clustering analysis, clustering has been performed

for different values of h and the impact of the choice of h on the fidelity of the risk

results has been examined.

In our approach to clustering analysis, a parameter that needs to be selected by

the user is the bandwidth h. In numerical analysis a similar issue arises when the size

of the mesh grid needs to be decided and, in such a case, the objective function is

represented by the ‘‘difference’’ between the analytical and the numerical solutions.

For this study, the objective function F is represented using the CDF for the con-

tainment failure as function of time. In particular, this is accomplished by evaluating

the difference between area underneath the CDF for the full data set (CDFFullData(t))

and the CDF for the obtained clusters (CDFClusters(t)):

F =

∣∣∣∣∣
∫ 12·104
0

CDFFullData(t) dt−
∫ 12·104
0

CDFClusters(t) dt∫ 12·104
0

CDFFullData(t) dt

∣∣∣∣∣ (7.2)

In this application, F was selected to be below 5%. Hence, the chosen value of

bandwidth h is such that F 5 5%.

Clustering was performed for different values of h and compared the CDF for

containment failures for each case with the CDF obtained from the full set of data.

The timing of containment failure has a major impact on severe accident consequences.

Figure 7.7 shows the CDF for containment failure as a function of time for the full

data set (no clustering) and for the four different values of h.

The results show a convergence of the risk results generated from the aggregated

data to the raw DET results as the h decreases (see Fig. 7.8). For h = 14 (4 clusters),

the distribution is not well captured in the period before 60,000s. However, the

analysis computed with h = 13 and h = 11 does a much better job of approximating
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Figure 7.7: CDF for containment failure for the whole set of data compared to the ones
obtained from the clustering process for different values of bandwidth h.

the distribution resulting from the raw data. Finally, the analysis performed using

h = 9 (15 clusters) results in a distribution of containment failure time which closely

approximates the distribution resulting from the raw DET data (F 5 5%). Figure 7.9

shows a plot of the representative scenarios for the case where h = 9. These results

show that the clustering scheme reduced the number of scenarios to consider from 176

down to 15 clusters (each of which can be analyzed separately) while still capturing

the consequence distribution well.

7.3 Zion Plant Analysis: pump seal leakage

The purpose of this section is to analyze the impact of the pump seal leakage on

the scenarios generated by ADAPT. Three different models have been considered and
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Figure 7.8: Objective function F (Eq. 7.2) as function of the bandwidth h.

Figure 7.9: Cluster centers obtained for h = 9.
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for each of these a DET analysis for a station black out of the Zion power plant has

been performed. As a notation the three DET analysis are called experiments 135,

136 and 137. The goal of the clustering analysis is to identify differences between the

three data sets by observing differences in the cluster centers obtained by Mean-Shift

algorithm.

In all the three cases each scenario is represented by 8 variables:

� Seal LOCA flow rate [gpm]

� Hydrogen mass generated [kg]

� Core water level [m]

� System Pressure [Pa]

� Core vapor temperature [K]

� Hot leg vapor temperature [K]

� Intact core fraction [%]

� Fuel Temperature [K]

As indicated in Table 7.2, the number of scenarios differs among the three experi-

ments. This is due to the fact that differences in the pump seal leakage model induces

deviations in the dynamics of the system causing different branchings and, thus, a

different number of scenarios generated.

A plot of the scenarios for all the three experiments are given in Figs. 7.10, 7.11

and 7.12.
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Figure 7.10: Plots of the scenarios for experiment 135.
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Figure 7.11: Plots of the scenarios for experiment 136.
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Figure 7.12: Plots of the scenarios for experiment 137.
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Table 7.2: Number of scenarios contained in each experiment.

Experiment Number of scenarios generated by ADAPT

135 104
136 70
137 101

All the 8 variables have been sampled 400 times (thus K in Eq. 4.1 is equal to

400). Hence each scenario is represented a data point having a dimensionality of

400 · 8 = 3200.

Clustering has been performed using a value of bandwidth h = 20 for all the three

experiments and the results are shown in Fig s. 7.13, 7.14 and 7.15. Note the the

cluster centers shown in Fig s. 7.13, 7.14 and 7.15 are drawn by including a shaded bar

around each cluster center. The shaded bar indicates the how the scenarios belonging

to the clusters are spread around the cluster center19. Thus, these shaded bars are not

constant in time but they change depending on the temporal behavior of the scenarios

belonging to the clusters.

The following differences are observed among the three data sets:

� Cluster 1: Figures 7.16(a), 7.16(b) and 7.16(c) have this cluster in common

which is composed of a single scenario

� Cluster 2: Figures 7.16(a), 7.16(b) and 7.16(c) have this cluster in common but

in Fig. 7.16(b) the shaded bar is narrower

� Clusters 3 and 4: Figures 7.16(a), 7.16(b) and 7.16(c) have in common these

clusters composed of a single scenario.

19These shaded areas are equivalent to the error bars of a data point.
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Figure 7.13: Clusters for experiment 135. Lines denote cluster centers, shaded region
indicates how the scenarios contained spread around the cluster center. Numbers denote
clusters identifiers. 83



Figure 7.14: Clusters for experiment 136. Lines denote cluster centers, shaded region
indicates how the scenarios contained spread around the cluster center. Numbers denote
clusters identifiers. 84



Figure 7.15: Clusters for experiment 137. Lines denote cluster centers, shaded region
indicates how the scenarios contained spread around the cluster center. Numbers denote
clusters identifiers. 85



Figure 7.16: Clusters obtained from 3 different models of pump seal leakage. Lines denote
cluster centers, shaded region indicates how the scenarios contained spread around the
cluster center. Numbers denote clusters identifiers.

� Cluster 5: This cluster is in common in Fig. 7.16(a) and Fig. 7.16(c) while is

not present in case (b).

It is also noted that in the region marked as 6, Fig. 7.16(a) and Fig. 7.16(c) are

very similar while in Fig. 7.16(b) there is only one cluster scenario which includes

scenarios that after 6000 s are characterized by stable system pressure at 16 · 106 Pa.

The above results show how the clustering process allows identification of differences

arising from different modeling assumptions in a relatively simple manner.

In order to investigate how the number of sampling instants K chosen in Eq. 4.1

affects the scenario-to-cluster memberships, the sampling times were varied and the

resulting clusters were compared with the clusters obtained with K = 400 sampling

instants as described above. As can be seen from Eq. 4.1, by changing K the structure

of the data changes the structure of the state space itself. Thus, for different values

of K the following steps were carried out:

1. Cluster the data set of Experiment 105 with the new data format

2. Find the value of h which maintains the same number of clusters (i.e., 8)
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3. Compare the scenario-to-cluster membership to the original one obtained with

K = 400

Several values of K have been tested and Table 7.3 summarize the results. From

Table 7.3 it is possible to note that for K > 100 the scenario-to-cluster membership is

preserved. On the other side, for K < 100 the data representation is too coarse and

the resulting data partition is not preserved, i.e., several scenarios are associated with

the wrong clusters as can be seen from Table 7.3.

Table 7.3: Summary of the cluster-to-scenario membership obtained for different values of
K

K Cluster-to-scenario membership % of scenarios in wrong cluster

400 Preserved 0
200 Preserved 0
150 Preserved 0
100 Preserved 0
75 Not Preserved 3
50 Not Preserved 8
20 Not Preserved 12
10 Not Preserved 21

7.4 Zion Plant Analysis: Station Blackout (2)

The purpose of this section is to show another application of the clustering

algorithm developed for analysis of data sets generated by DET. Due to the fact that

the simulation mission time is fixed by the user, some scenarios might not reach the a

Top Event (e.g., core damage) only because the end of the simulation was reached

before they were able to reach that Top Event. Thus, as part of the scenario analysis,
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it could be fruitful to identify such, scenarios based on the similarities with other

scenarios that reach that Top Event before the end of the simulation.

In order to show how to perform this kind of analysis for a large data set, a data set

similar to the one used in Section 7.2 was considered. The scenarios under consideration

still originate from a SBO of the Zion plant but consist of 2225 scenarios with a total

of 844 GB of data. Based on an engineering judgement of their interdependence, each

scenario was represented using 22 state variables (e.g., pressure P and temperature

T of specific nodes in the plant simulator) as listed in Table 7.4 as opposed to the 8

used to represent SBO scenarios described in Section 7.2, with subsequent reduction

of the full dataset from 844 GB to 400 MB of data.

Table 7.4: State variables chosen for the Zion dataset (2).

id Name id Name

1 Pressurizer P [Pa] 12 Fuel cladding T in cell 519 [K]
2 Pressurizer vapor T [K] 13 Pressurizer surge line structure T [K]
3 Core volume 342 vapor T [K] 14 Steam generator tube structure T [K]
4 Core volume 352 vapor T [K] 15 Hot leg structure T [K]
5 Core volume 362 vapor T [K] 16 Containment P [Pa]
6 Core volume 347 vapor T [K] 17 Containment air T [K]
7 Core volume 382 vapor T [K] 18 Intact core fraction
8 Fuel cladding T in cell 105 [K] 19 Steam generator P [Pa]
9 Fuel cladding T in cell 207 20 Steam generator vapor T [K]
10 Fuel cladding T in cell 310 [K] 21 Total hydrogen production [K]
11 Fuel cladding T in cell 413 [K] 22 Core water level [m]

Clustering was performed using different values of h. Table 7.5 shows the number

of clusters obtained for these different values of h. In order to decide the optimal

value of h, the CDF of core damage as function of time of both the original and the
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Table 7.5: Number of clusters obtained as function of h.
h Number of clusters

40 1
30 2
25 6
20 19
15 32
0.1 2225

clustered data set have been compared. The clustered dataset obtained for h = 20

was adequately representative of the original data set. Figure 7.17 shows the CDF

for core damage for both the original dataset and the clustered dataset for h = 20.

The discrepancy between the two CDFs around 14,000 s - 15,000 s originate from

the scenarios that do not lead to core damage (non-failure scenarios) due to their

termination based on the mission time chosen (15,000 s) that are clustered with those

that do lead to core damage (failure scenarios) within the mission time. Since the

clustering was based on the similarity between scenario trajectories in the state-space

(i.e. by Eq. 4.1), the discrepancy indicates that the non-failure scenarios would have

also led to core damage if the mission time was longer. Table 7.6 shows the fraction

of scenarios that lead to core damage for the 19 clusters with h = 20.

Figure 7.18 shows the cluster centers obtained for h = 20 and plotted for core

water level and system pressure.

From Table 7.6 it is noted that the majority of the clusters contain either scenarios

that all lead to core damage (failure scenarios) or scenarios that none lead to core

damage (non-failure scenarios). However, Clusters 1, 2, 13 and 16 contained both

of these types of scenario. As indicated above, these clusters contain both types of
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Figure 7.17: Comparison of the CDF of core damage for the original data set and the
clustered data.

Figure 7.18: Cluster centers obtained for h = 20.
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Table 7.6: Analysis of the clusters obtained for h = 20

Cluster id Scenarios Scenarios that lead to CD

1 132 98
2 321 28
3 24 24
4 631 0
5 27 0
6 6 6
7 43 43
8 3 3
9 5 5
10 108 108
11 150 150
12 44 44
13 304 147
14 75 75
15 124 124
16 127 7
17 63 63
18 12 12
19 26 0
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Figure 7.19: Example of scenarios contained in Cluster 16 that lead to core damage
(red lines and that do not lead to core damage (green lines)

scenarios since the non-failure scenarios did not lead to core damage only because the

simulation ended before they reached this state. Figure 7.19 illustrates this conclusion

graphically for scenarios contained in Cluster 16. From Fig. 7.19 it is possible to

identify a set of 26 scenarios (highlighted in the circle for the plot of water level) that

have similar behavior to scenarios that lead to core damage and which would have

led to core damage if the mission time was longer.

7.5 Dimensionality reduction results

The ISOMAP algorithm described in Section 4.5 has been applied to the data set

of Experiment 135 described in Section 7.3 in order to evaluate how the dimensionality

reduction process performs for complex data sets.

The state space of the system described in Section 7.3 is composed of 8 state

variables (i.e., M = 8) and, hence, D = 9. The overall number of data points

distributed in this 9-dimensional space is 100 sampling points/scenario · 104 scenarios
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=10,400. By applying the ISOMAP algorithm it has been possible to determine a

new data set which has the same number of points but with a reduced number of

dimensions from D = 9 to d = 6.

In order to validate the new data set against the reduced one, the clusters obtained

from the two data sets have been compared. While the same number of clusters were

obtained from both the original and reduced data sets and each cluster contained the

same number of scenarios for the high- and low-dimensional cases, some differences

were observed in the cluster centers for Clusters 1, 2 and 3 (highlighted in bold in

Table 7.7).

Table 7.7: Comparison of cluster centers obtained from the original and the reduced data
sets. Entries denote scenario identifiers.

Cluster # Original data set (D = 9) Reduced data set (d = 6)

1 62 60
2 13 12
3 20 21
4 7 7
5 29 29
6 34 34
7 59 59
8 12 12

When the Euclidean distances between the scenarios in each pair (62,60), (13,12)

and (20,21) were determined it was found that these differences were very small.

The differences are possibly due to the fact that the dimensionality reduction process

described in Section 4.5 may change slightly the geometrical distribution of the original

data-set. Figure 7.17 shows the cluster centers and cluster envelopes obtained from

both the original and the reduced data sets using two sample state variables (core
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Figure 7.20: Plots of the cluster centers and cluster envelopes derived from all contained
within. The top two figures are for cluster obtained from the original data set and the
bottom figures are from the reduced data set.

water level and system pressure), Fig. 7.17 shows that not only the cluster centers

obtained from the original and the reduced data sets are similar, but their envelopes

are as well.

As a last remark, this dimensionality reduction implied an overall reduction in

computational time in the clustering process of about 30%.
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7.6 Parallel implementation results

In order to evaluate the performance of the parallel implementation of the clustering

methodology, two cases were considered:

� Parallel implementation of Mean-Shift using Matlab

� Parallel implementation of Mean-Shift using OpenMP

Two different data sets were used for the evaluation:

� Data set described in Section 7.2 (60 MB size)

� Data set described in Section 7.4 (400 MB size)

The scope of this analysis was to investigate if the parallel implementation can

be effective at reducing the computational time of the clustering process with multi-

core processors. Clustering was performed on the same machine for 1, 2 and 4 core

configurations20. Computational times as function of the number of cores used are

shown in Fig. 7.21.

As expected, Fig. 7.21 shows that the computational time strongly decreases

when a higher number of cores is employed both by using the Matlab and C++

implementation of the Mean-Shift algorithm. Moreover, Fig. 7.21 shows that the C++

version of the algorithm is slightly faster than the Matlab one.

20These series of tests were performed on a machine equipped with a quad-core processor.
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Figure 7.21: Computational time as function of number of cores used for the data set
presented in Section 7.2 (left) and Section 7.4 (right).
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The chapter summarizes the work presented in this dissertation (see Section 8.1)

and indicates possible areas for future research developments (see Section 8.2).

8.1 Conclusions

The data sets generated by DETs contain a vast quantity of information. Such

large data sets may not be easy to analyze and the retrieval of valuable information

may be a difficult task.

This dissertation presents a possible approach for scenario analysis based on the

Mean-Shift algorithm. The idea is to group the scenarios into clusters considering not

only their final state (i.e., OK state or Fail state) but also how they reach the final

state (i.e., the entire time evolution).

Each scenario is characterized by a set of state variables (e.g., temperature, level,

pressure) of specific nodes of the plant simulator sampled at specific time instants,

normalized and transformed using PCA. Other methodologies that are able to reduce

the dimensionality of the data set such as ISOMAP have been also presented. The

application of ISOMAP showed promising results in terms of number of state variables

that can be used to represent each scenario.
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Several clustering methodologies were investigated (e.g., hierarchical, K -Means,

Fuzzy C -Means and Mean-Shift) using various data sets with the Mean-Shift proving

to be most flexible in terms of ability to identify clusters having arbitrary shape and

outliers (i.e., clusters with a very small fraction of scenarios contained in it). Each

obtained cluster is characterized by its own representative scenario (cluster center) and

by the subset of scenarios that belong to that cluster. Cluster centers give indications

regarding the most relevant trends of the overall DET analysis. Several data sets

generated by DETs were analyzed using the Mean-Shift methodology.

The work showed the methodology presented is able to simplify the analysis of

large sets of transients generated by dynamic PRA methods. Grouping scenarios into

clusters can be helpful to identify trends and evaluate their characteristics. Such a

grouping is also valuable to identify differences between DET data sets generated for

different system configurations.

As a final remark, the application of the methodology presented in this disserta-

tion is not only relevant for the post-processing of data sets generated by dynamic

methodologies. In fact, any time a large data set of multi-dimensional functions (e.g.,

flux profiles) need to be analyzed, the user may find the algorithm developed in this

dissertation a valuable tool for the analysis.

8.2 Future Work

As a result of the work presented in this dissertation the following items are

recommended as directions for future work:

Algorithm Implementation: The next step is to attach the clustering algorithm

to a DET generation code such as ADAPT. The idea is to incorporate data
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preprocessing, data clustering and clusters visualization as a tool that would

automatically analyze the data sets generated by the DET algorithm.

Data Analysis: Although coming from realistic initiating events and branching

conditions for real nuclear power plants, the data sets analyzed in Chapter 7

are still limited in terms of both dimensionality (i.e., number of variables that

represent each scenario) and cardinality (i.e., number of scenarios). A good test

of the performances of the Mean-Shift clustering algorithm would be to analyze

data sets generated for complex systems where a higher number of branching

conditions is implemented in the DET. PRA applied to nuclear power plants

may include several levels of analysis (i.e., Level 1, 2 and 3) which are usually

carried out by different codes/algortihms. In this study, the DET analysis was

limited to Level 1 and 2. One possible application of clustering would be to

identify the representative scenarios obtained by the clustering algorithm from

the Level 1-2 analysis and perform the Level 3 analysis on this reduced set of

representative scenarios. In case it is required to perform the Level 3 analysis

for all the scenarios generated for the Level 1-2 analysis, it would be useful to

perform clustering on the complete data sets which include information about

both plant state and off-site consequences.

Data Pre-Processing: As shown in Chapters 4 and 6, the purpose of the data

pre-processing is dual:

� Transform the data in suitable form such that it is possible to measure a

distance between scenarios

� Reduce the number of variables that represent each scenario
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While both of these objectives have been investigated in Chapter 4, it is impor-

tant to investigate the latter further with the use of non-linear dimensionality

reduction algorithms. In particular, it would be useful to apply the algorithms

presented in Chapter 6 for larger data sets in order to identify the correlations

between variables.
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APPENDIX A

MEAN-SHIFT ALGORITHM (MATLAB)

The command

[clustCentNorm,data2cluster,cluster2data,numberOfClusters,probabilities]

= MS2Expr(signals,prob,BW,NScen,NDim);

performs the clustering of the matrix signals. The matrix signals contains the

full data set that need to be evaluated and its dimensions are21 I × δ. Other input

parameters are:

� prob: array 1× I which contains the probability for all I scenarios

� BW: bandwidth h

� NScen: number of scenarios I

� NDim: dimensionality δ

Output parameters are:

� numberOfClusters: number of clusters γ obtained

� clustCentNorm: cluster centers, i.e. matrix having dimensions γ × δ

21I is equal to the number of scenarios while δ corresponds to the dimensionality of each scenario,
see the data representation format described in Section 4.1.
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� data2cluster: array having dimension 1×I where each element data2cluster(i)

(i = 1, . . . , I) contains the scenario-to-cluster membership for scenario i

� cluster2data: cell having dimension 1× γ where each element cluster2data(j)

(j = 1, . . . , γ) contains the scenarios included in cluster j

� probabilities: array having dimension 1×γ where each element probabilities(j)

(j = 1, . . . , γ) contains the the probability of cluster j

The Matlab function MS2Expr that performs the clustering is the following:

function [clustCentNew,data2cluster,cluster2data,numberOfClusters,

probabilities] = MS2Expr(data, prob,bandWidth, NScen, NDim)

% Gauss kernel employed

% data2cluster employed

% cluster2data employed

% ---INPUT---

% data - data matrix (N Scen, Dimensions)

% bandWidth - bandwidth parameter (scalar)

% NScen - Number of scenarios i.e. number of points

% NDim - Dimensions of the vector that describe each scenario

% ---OUTPUT---

% clustCent - is locations of cluster centers (numDim x numClust)

% data2cluster - for every data point which cluster it belongs to

(numPts)

% cluster2data - for every cluster which points are in it (numClust)

% numberOfClusters - number of clusters generated

stopThresh = bandWidth/1000; % Threshold for convergence

numberOfClusters = 0;

data2cluster = zeros(NScen,1);

clusterCent = zeros(1,NDim);

for i=1:NScen % Run MS for all the points...

probe = data(i,:);

PosOld=probe;

MX = stopThresh*1.1;
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while (MX > stopThresh) % MS core: Determine m(x) until it fall below

the threshold

PosNew = zeros(1,NDim);

den = 0;

for j=1:NScen % find all the point within the sphere with

radius=bandwith/2

pointIn=data(j,:);

modX = norm(PosOld-pointIn);

if(modX < bandWidth/2)

PosNew= PosNew + pointIn* exp(-(modX*modX)/bandWidth^2);

den= den + exp(-(modX*modX)/bandWidth^2);

% den= den + 1;

% PosNew= PosNew + pointIn;

end

end

if(den==0) % no points within BW:add new cluster to the list of

cluster centers

clusterCent(numberOfClusters+1,:)=PosOld;

numberOfClusters = numberOfClusters + 1;

MX=0;

data2cluster(i)=numberOfClusters;

else

PosNew= PosNew/den;

MX=norm(PosOld-PosNew);

PosOld = PosNew;

end

end

count=0;

for m=1:numberOfClusters

if (norm(clusterCent(m,:)-PosOld)<(bandWidth/3))

clusterCent(m,:)=0.5*(clusterCent(m,:)+PosOld);

data2cluster(i,1)=m;

count=count+1;
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break

end

end

if(count==0) % add new cluster to the list of cluster centers

clusterCent(numberOfClusters+1,1:NDim)=PosOld;

numberOfClusters = numberOfClusters + 1;

data2cluster(i,1)=numberOfClusters;

end

end

cluster2data = cell(numberOfClusters,1);

for x=1:numberOfClusters

cluster2data{x}=[];

end

for y=1:NScen

temp= cluster2data{data2cluster(y)};

l=length(temp);

temp(l+1)=y;

cluster2data{data2cluster(y)}=temp;

end

probabilities = zeros(numberOfClusters,1);

for i=1:NScen

probabilities(data2cluster(i))=probabilities(data2cluster(i))+prob(i);

end

clustCentNew = zeros(numberOfClusters,NDim);

for i=1:numberOfClusters

a=cluster2data{i};

for j=1:length(a)

clustCentNew(i,:)=clustCentNew(i,:)+ data(a(j),:);

end

clustCentNew(i,:)=clustCentNew(i,:)/length(a);

end

end
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APPENDIX B

MEAN-SHIFT ALGORITHM (C++)

This appendix contains the C++ code that performs the clustering using Mean-Shift

optimized for parallel computing suing OpenMP directives:

/*

* MeanShift.cpp

* Created on: Aug 9, 2010

* Author: Diego

*/

#include <iostream>

#include <fstream>

#include <string> // in order to use string type

#include "cluster.h" // in order to use the cluster class

#include <math.h>

#include <vector>

#include <stdlib.h>

#include <cmath>

using namespace std;

void MeanShiftOperator(double *NewPosition, double *point, double **data,

double h, int card, int dim);

double LpNorm(double p, double x[], int NDim);

int FindClosestCentroid (vector<cluster> clusterSet, double NewCentroid[],

int p, int dim);

int main (){

// Variable definitions

int cardinality = 2; // Number of scenarios

int dimensionality = 2; // Number of dimensions for each scenario
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// Access data and store it in a 2D array //

double **data = new double*[cardinality];

double **centroid = new double*[cardinality];

double *pointIn = new double[dimensionality];

double datapoint;

double BW = 4;

int p=2;

for(int j = 0; j < cardinality; j++) {

data[j] = new double[dimensionality];

centroid[j] = new double[dimensionality];

}

ifstream fi;

fi.open("data.txt");

if (fi.fail()) {

fprintf(stderr, "cannot open file data.txt\n");

exit(1);

}

for(int i = 0; i < dimensionality; i++)

for(int j = 0; j < cardinality; j++) {

fi>> data[i][j];

}

// End data input session

// Perform clustering //

// Initialize the set of clusters (ClusterSet.size() gives size of

vector)

vector<cluster> ClusterSet;

#pragma omp parallel for

for(int i = 0; i < cardinality; i++) //Perform MSM for each data point

{

// perform MeanShift for point i and get the centroid for each point

MeanShiftOperator(centroid[i], data[i], data, BW, cardinality,

dimensionality);

}

for(int i = 0; i < cardinality; i++) //Perform MSM for each data point

{
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// update cluster centroid

int check = FindClosestCentroid (ClusterSet, centroid[i], p,

dimensionality);

if(check==-1)

{

cluster temp(dimensionality, centroid[i], i);

ClusterSet.push_back(temp);

}

else

{

ClusterSet[check].addPoint(centroid[i], i, dimensionality);

}

}

// End clustering //

return 0; // part of main

}

void MeanShiftOperator(double *NewPosition, double *point, double **data,

double h, int card, int dim)

{

double p=2; // Norm type

double epsilon = h*0.01; // Convergence parameter

double den=0;

double modX=0;

double m_x=0; // initialize m_x: new position - old position

double OldPosition [dim];

for (int i=0; i<dim; i++)

OldPosition[i]=point[i];

double diff[dim];

for (int j=0; j<dim; ++j)

NewPosition[j] = 0.0;

do

{

for (int i=0; i<card; i++) // find all the point within the

sphere with radius=bandwith/2
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{

double *pointIn=data[i];

for (int j=0; j<dim; j++)

diff[j] = OldPosition[j]-pointIn[j];

modX = LpNorm(p,diff,dim);

if (modX < h/2)

{

for (int j=0; j<dim; j++)

NewPosition[j] += pointIn[j] *

exp(-(modX*modX)/(h*h));

den = den + exp(-(modX*modX)/(h*h));

den= den + 1;

for (int j=0; j<dim; j++)

NewPosition[j] /= den;

}

}

for (int j=0; j<dim; j++)

diff[j]=OldPosition[j]-point[j];

m_x = LpNorm(p,diff,dim);

for (int j=0; j<=dim; j++)

OldPosition[j] = NewPosition[j];

} while (m_x > epsilon);

}

double LpNorm(double p, double x[], int NDim)

{

// Determine the p-norm of an NDim-dimensional vector x

double norm=0;

double temp=0;

if (p==0) // L infinite

{
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for (int i=0; i<NDim; i++)

{

temp = abs(x[i]);

if (temp>norm)

norm=temp;

}

}

else // Lp

{

for (int i=0; i<NDim; i++)

{

norm += pow(abs(x[i]),p);

}

norm = (pow(norm,1/p));

}

return (norm);

}

int FindClosestCentroid (vector<cluster> clusterSet, double NewCentroid[],

int p, int dim)

{

// Find the closest centroid to NewCentroid and return the position of

that point

int answer = -1;

double modX;

double distanceFromMinimum = 999;

double diff[dim];

for (int i=0; i<clusterSet.size(); i++)

{

for (int j=0; j<dim; j++)

{

diff[j] = NewCentroid[j]-clusterSet.at(i).getCentroid()[j];

}

modX = LpNorm(p,diff,dim);

if (modX<distanceFromMinimum)

{

distanceFromMinimum = modX;

answer = i;

}

}
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return (answer);

}

#include <vector>

using namespace std;

class cluster{

private:

int dimensionality;

int cardinality;

double *centroid;

vector <int> datapointsID;

public:

cluster()

{

centroid = NULL;

}

cluster(const cluster &in);

cluster(int dimensions, double center[], int pointID);

~cluster()

{

if (!centroid) delete [] centroid;

}

int getDimensionality ();

int getCardinality ();

// void setNew (int dimensions, double center[], int pointID);

void addPoint (double NewCentroid[], int pointID, int dimensions);

double* getCentroid ();

};

cluster::cluster(const cluster &in) : datapointsID(in.datapointsID)

{

dimensionality = in.dimensionality;

centroid = new double[dimensionality];

for (int i=0; i<dimensionality; i++)

centroid[i] = in.centroid[i];

}
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cluster::cluster(int dimensions, double center[], int pointID)

{

// this method add a new cluster

dimensionality = dimensions;

cardinality = 1;

centroid = new double[dimensionality];

for (int i=0; i<dimensions; i++)

centroid[i] = center[i];

datapointsID.push_back(pointID);

}

void cluster::addPoint (double NewCentroid[], int pointID, int dimensions)

{

// this method add a new point to an existing cluster and update the

cluster center

for (int i=0; i<dimensions; i++)

{

centroid[i] =

(centroid[i]*cardinality+NewCentroid[i])/(cardinality+1);

}

//dimensionality does not change;

cardinality++;

datapointsID.push_back(pointID);

}

double* cluster::getCentroid()

{

return centroid;

}

int cluster::getCardinality ()

{

return cardinality;

}

int cluster::getDimensionality ()

{
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return dimensionality;

}
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