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INTRODUCTION

The use of dynamic event trees (DETs) [1] can serve as a
powerful tool for the dynamic probabilistic risk assessment
(PRA) of nuclear power plants. DETs are similar in structure
to their static counterparts [2], except that in DET analysis,
time is explicitly modeled and both epistemic and aleatory
uncertainties can be accounted for in a phenomenologically
consistent manner. The DETs have the capability to more
accurately model the complex interactions and events which
may occur during a transient.

One of the challenges of dynamic PRA through DETs is the
management of the resulting very large data sets. One technique
currently being investigated to assist in DET analysis is to group
scenarios which have similarities to reduce to number of cases
to analyze. An aggregation method which utilizes the Mean-
Shift Methodology (MSM) [3, 4] is currently considered for
this task. The MSM is a non parametric iterative procedure that
shifts each data point to the average of the data points in its
neighborhood. The idea behind the MSM is to determine the
cluster centers (regions with the highest observation density)
and to assign each point to one cluster center only.

What results from the aggregation analysis is a set of repre-
sentative scenarios with each representative scenario represent-
ing a subset of the total scenarios which have similar features.
Using this reduced set of representative scenarios, risk results
can be constructed without the burden of considering all possi-
ble DET cases. The challenge that arises is that using a reduced
set of scenarios has the potential to reduce the fidelity of the
output risk distribution. In this work, an example case was ex-
amined using the ADAPT [5, 6] DET methodology and the risk
results were compared between the raw DET data (no scenario
aggregation) and the aggregated results using MSM. In addi-
tion, a sensitivity analysis was performed on one of the input
parameters to the MSM methodology, namely the bandwidth,
to determine the sensitivity of the results to this parameter.

DET ANALYSIS

The initiating event investigated was that of a station-
blackout (SBO) at a U.S. Pressurized Water Reactor (PWR)
and the MELCOR code [7] was linked to the ADAPT tool [6]
to determine the evolution for each DET scenario. The simula-
tions using MELCOR as the system code model the transient
from the occurrence of the initial condition through the core-
melting phase of the accident and up to point of containment
failure and release of radionuclides to the environment. For
this case, two branching conditions were considered:

1. Creep rupture of major reactor coolant system (RCS) com-
ponents (hot leg, pressurizer surge line, and steam genera-
tor tubes)

2. Failure of the containment vessel

For each of these phenomena, distributions were developed
which gave the probability of occurrence as a function of certain
system variables. For the first branching condition (creep rup-
ture) a probability distribution was developed [8] on the value
of the component lifetime fraction which would lead to failure.
For the second branching condition (containment failure), a
distribution was developed [8] which gave the probability of
containment failure as a function of containment pressure.

Since the ADAPT methodology is discrete in nature, it is nec-
essary to discretize the branching condition distributions. Each
branching condition distribution was discretized into seven
points, namely, for each of these branching conditions, discrete
probability points were selected from the appropriate cumu-
lative distribution functions (CDFs), and the physical values
corresponding to these probability values were used as branch-
ing criteria. For each branching condition, discrete probability
points of 1%, 5%, 25%, 50%, 75%, 95%, and 99% were chosen.

All the 176 scenarios generated in this DET led to contain-
ment failure at some point in the scenario evolution. With
regards to creep rupture, failure of the surge line dominated
this failure mode, with surge line failure occurring also in all
scenarios. The DET analysis also showed the potential fail-
ure of steam generator tubes before failure of the surge line
occurred. However, in this case, steam generator tube rupture
was modeled as the failure of a single steam generator tube
and this failure did not result in sufficient reactor coolant sys-
tem depressurization to preclude future failures. As a result
steam generator tube rupture had a limited effect on the risk in
this scenario as it resulted in little to no containment bypass.
Hence, the major contributor to the release of radionuclides
to the environment is the over-pressurization and failure of
the containment structure (containment failure modes such as
basmat melt-through and other energetic containment failure
events are not modeled here).

SCENARIO AGGREGATION

The methodology that is presented here is based on the Mean-
Shift algorithm which has been described first in [3]. MSM is
a non parametric iterative procedure that shifts each data point
to the average of data points in its neighborhood in order to
determine the cluster centers and to assign each point to one



Fig. 1: Density function

cluster center only. By cluster center we mean a region with
high observation density (i.e., the modes of the data set).

The main idea is to consider each point ~xi(i = 1 . . .N) of
the data set as an empirical distribution density function K(~xi)
distributed in a d-dimensional space (blue line in Fig. 1 for the
1-D case) where regions with high data density (i.e., modes)
corresponds to local maxima of the global probability density
function fN(~x) [9, 10] defined as following (red line in Fig. 1
for the 1-D case):
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where each element~xi ∈Rd and h is a scalar parameter called
bandwidth which indicates the level of refinement of the cluster
analysis. The function K(~x) :Rd→R is the distribution density
associated to each data point which is also called kernel. In
the general formulation of Eq. (1), the terms wi represent a
series of weights that can vary for each data point. In our case,
these weights are represented by the probabilities associated
with each scenario.

In order to utilize MSM to perform scenario grouping, a set
of process variables must be chosen with which to represent
the scenarios. For this work, four variables were chosen to
represent the state space of each scenario:

1. Average core coolant temperature (x1)

2. Primary system pressure (x2)

3. Containment temperature (x3)

4. Containment pressure (x4)

Since this scenario deals with both the core melting phase
and the containment failure phase of the accident, it was felt that
variables should be chosen which represent these phenomena.
The first two variables are surrogates for the progression core
melt and the integrity of the reactor coolant system, and the
second two variables represent the integrity of the containment.

In view of the fact that the system state space consists of 5
variables (i.e., the four variables listed above plus time t), we
represent each scenario si as a vector in a n-dimensional space
as:

si = [x1(0),x2(0),x3(0),x4(0), . . . ,x1(N),x2(N),x3(N),x4(N)]
(2)

where xi( j) represents the values of the variable xi sample at
time j. In our simulations, the set of five variables were sam-
pled every 500 seconds (on mission time of 12 ·104s). Since
h is a parameter which must be defined by the user before
performing a MSM analysis, we performed the scenario aggre-
gation for various values of h and examined the impact of the
choice of h on the fidelity of the risk results.

OBJECTIVE FUNCTIONS

In cluster analysis, one of the frequently occurring dilemmas
is: ‘‘how many clusters?’’ In numerical analysis a similar
question arises when the size of the mesh grid needs to be
decided and, in such a case, the objective function is represented
by the ‘‘difference’’ between the analytical and the numerical
solutions.

In our case the objective function F is represented by eval-
uating the CDF for the containment failure as function of
time. In particular, this is accomplished by evaluating the
difference between area underneath the CDF for the full data
set (CDFFullData(t)) and the CDF for the obtained clusters
(CDFClusters(t)):

F =

∣∣∣∣∣
∫ 12·104

0 CDFFullData(t)dt−
∫ 12·104

0 CDFClusters(t)dt∫ 12·104

0 CDFFullData(t)dt

∣∣∣∣∣ (3)

For our purposes we decided that F should be below 5%;
hence, the chosen value of bandwidth h is such that F 5 5%.

RESULTS

We performed the MSM analysis for different values of h and
compared the cumulative distribution function for containment
failures for each case with the raw data. In this respect, Figure
2 shows the CDF for containment failure as a function of time
for the raw data set (no aggregation) and for the four different
values of h. The timing of containment failure has a major
impact on severe accident consequences.

The results show a convergence of the risk results generated
from the aggregated data to the raw DET results as the h de-
creases (see Fig.3). For h = 14, the distribution is not well
captured in the period before 60,000s. However, the analy-
sis computed with h = 13 and h = 11 does a much better job
of approximating the distribution resulting from the raw data.
Finally, the analysis performed using h = 9 results in a distri-
bution of containment failure time which closely approximates
the distribution resulting from the raw DET data (F 5 5%).



Fig. 2: CDF for containment failure for the whole set of data com-
pared to the ones obtained from the clustering process for different
values of bandwidth h

Fig. 3: Objective function F (Eq. 3) as function of the bandwidth h

The aggregation scheme also served to significantly reduce
the number of scenarios to be considered. For the case where
the h = 14, the aggregation scheme produced 4 representative
scenarios. Finally, for a h = 9, which produced the best char-
acterization containment failure time distribution compared to
the raw data, the aggregation scheme produced 15 representa-
tive scenarios. As an example, Figure 4 shows a plot of the
representative scenarios for the case where h = 9. These results
imply that the MSM scheme reduced the number of scenar-
ios to consider from 176 down to 15 while still capturing the
consequence distribution well.

CONCLUSIONS

This paper presents a study of the Mean Shift Methodology
for use in aggregating DET results. In particular, a sensitivity
study has been performed using various values of the band-
width to determine how strongly this parameter impacts the
resulting distribution of consequences as compared to the raw,
un-aggregated, DET results. The results of this paper show

that MSM can significantly reduce the number of scenarios to
consider in a DET analysis from 176 to an optimal 15 while still
sufficiently capturing the resulting distribution of consequences
The massive amounts of data generated in a dynamic PRA rep-
resent a major problem for the interpretation of results. An
aggregation scheme has been developed here that can reduce
to the data to clusters that capture the key features of accident
scenarios.

REFERENCES

1. J. DEVOOGHT and C. SMIDTS, ‘‘Probabilistic reactor
dynamics. The theory of continuous event trees,’’ Nuclear
Science and Engineering, 111, 229--240 (1992).

2. US-NRC, NUREG 1150 - Severe accident risks: an as-
sessment for five U.S. nuclear power plants, Division of
Systems Research, Office of Nuclear Regulatory Research,
U.S. Nuclear Regulatory Commission, Washington, DC
(1990).

3. K. FUKUNAGA and L. HOSTETLER, ‘‘The estimation
of the gradient of a density function, with applications in
pattern recognition,’’ IEEE Transactions on Information
Theory, 21, 1, 32--40 (1975).

4. Y. CHENG, ‘‘Mean Shift, Mode Seeking, and Clustering,’’
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 17, 8, 790--799 (1995).

5. A. HAKOBYAN, T. ALDEMIR, R. DENNING,
S. DUNAGAN, D. KUNSMAN, B. RUTT, and
U. CATALYUREK, ‘‘Dynamic generation of accident pro-
gression event trees,’’ Nuclear Engineering and Design,
238, 12, 3457 -- 3467 (2008).

6. B. RUTT, U. CATALYUREK, A. HAKOBYAN, K. MET-
ZROTH, T. ALDEMIR, R. DENNING, DUNAGAN, and
D. KUNSMAN, ‘‘Distributed dynamic event tree genera-
tion for reliability and risk assessment,’’ in ‘‘Challenges of
Large Applications in Distributed Environments,’’ IEEE
(2006), pp. 61--70.

7. R. O. GAUNTT, R. K. COLE, S. A. HODGE, S. B. RO-
DRIGUEZ, R. L. SANDERS, R. C. SMITH, D. S. STU-
ART, R. M. SUMMERS, and M. F. YOUNG, MELCOR
Computer Code Manual, Version 1.8.5, Vol. 2, Rev. 2,
Sandia National Laboratories, NUREG/CR-6119 (1997).

8. A. HAKOBYAN, Severe Accident Analysis Using Dy-
namic Accident Progression Event Trees, Ph.D. thesis,
The Ohio State University (2006).

9. T. CACOULLOS, ‘‘Estimation of a multivariate density,’’
Annals of the Institute of Statistical Mathematics, 18, 1,
179--189 (1966).

10. E. PARZEN, ‘‘On the estimation of a probability density
function and mode,’’ The Annals of Mathematical Statis-
tics, 33, 3, 1065--1076 (1962).



Fig. 4: Cluster centers obtained for h = 9


