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INTRODUCTION 

The recent trend to use a best estimate plus uncertain-

ty (BEPU) approach to nuclear reactor safety analysis [1] 

instead of the traditional conservative approach can pro-

duce very large amounts of data. In that respect, one of 

the challenges that is currently emerging is the ability to 

effectively analyze the data generated by these methods. 

Clustering methodologies, such as the mean-shift metho-

dology [2, 3], offer powerful tools that can help the user 

to identify scenario groups that are representative of the 

data [3, 4] and, hence, can reduce the complexity of data 

analysis efforts. By scenario clustering we mean two ac-

tions: 

1. Identify the scenarios that have a similar behavior (i.e. 

identify the most evident classes) 

2. Decide for each event sequence to which class it be-

longs (i.e., classification) 

The approach presented in [3, 4] represents each sce-

nario as a multi dimensional vector where each dimension 

corresponds to the value of one of the n state variables 

sampled at a specific time instant t. Since the dimensio-

nality of such vector can be very large especially in the 

case when all the code outputs are considered in the clus-

tering process (e.g. the MELCOR code [5] has 50,000 

data channels), the computational time required for clus-

tering may be excessive.  By reducing the dimensionality 

of the vectors it is possible to decrease the computational 

time.  

This paper shows how the dimensionality can be re-

duced by employing the ISOMAP [6] algorithm. The case 

study presented in this paper is on the analysis of the data 

generated by a dynamic event tree (DET) methodology 

applied to station blackout scenario for a pressurized wa-

ter reactor (PWR) [4]. For illustration purposes, each sce-

nario is described by nine state variables including time. 

The objective is to reduce the nine variables and compare 

the clusters (and particularly the cluster centers) obtained 

from the reduced dataset and the original dataset. 

 

DIMENSIONALITY REDUCTION 

In the mean-shift methodology, we represent each scena-

rio, si, by n state variables (e.g. node pressure, tempera-

ture) plus time: 

si=[si (0), si (1),…, si (t),…, si (T)]  (1) 

where si (t) is an n-tuple which contains values of n va-

riables (x1, ... ,xn) sampled at time t=1,…,T.  Note that the 

dimensionality of each scenario is n·T and can be ex-

tremely high for complex systems (i.e., high number of 

state variables and high sample instants). In this paper, we 

focused our attention on the reducing the dimensionality 

of the state variables. 

Dimensionality reduction is the process of finding a 

bijective mapping function: 

 ℱ: ℝD↦ ℝd
   (with d ≤ D) (2) 

which maps the data points from the D-dimensional space 

into a reduced d-dimensional space, i.e. a manifold, in 

such a way that the distance between each point and its 

neighbors is preserved. In our applications D = n+1: n 

state variables plus time.   

A classical example of manifolds analysis is the 

Swiss-roll which can be identified only by using non li-

near algorithms (Fig.1). In this case, points are distributed 

in a 3-dimensional space (i.e., D = 3) but they are actually 

lying in a 2-dimensional space (i.e., d = 2). The manifold 

in this case is represented by a 2-dimensinal plane.  

For dimensionality reduction, we will implement the 

ISOMAP algorithm and apply it to the dataset generated 

by a methodology that is able to assess the impacts of 

both epistemic and aleatory uncertainties on the system 

response in a phenomenological consistent manner using 

dynamic event trees (DETs) [7]. 

 

 
Fig. 1 Swiss-roll: example of a 2-dimenional manifold (d=2) in a 

3-dimenisonal space (D=3). 

 

 



THE ISOMAP ALGORITHM 

The ISOMAP algorithm [6] provides a simple me-

thod for estimating the intrinsic geometry of a manifold 

based on a rough estimate of each data point’s neighbors 

on the manifold. ISOMAP extends multidimensional scal-

ing (MDS) [8] and is able to reconstruct the geometry of 

the manifold by computing geodesic distances
1
 (distance 

along the manifold) using a weighted graph.  

This is achieved by: 

1. Estimating the geodesic distance between the points 

using shortest-path within its k nearest neighbors
2
. The 

connectivity of each data point in the neighborhood 

graph is defined as its nearest k Euclidean neighbors in 

the high-dimensional space. 

2. Using MDS to find points in low-dimensional Eucli-

dean space whose interpoint distances match the dis-

tances found in Step 1. 

Since the algorithm uses non-linear combination of the 

state-variables (as opposed to principal component analy-

sis [9] which considers only linear combinations of  the 

state variables and hence is more restrictive
3
), the basis 

set for the low-dimensional space does not directly cor-

respond to particular physical variables which reside in 

the high-dimensional space.  

  

CASE STUDIED 

The initiating event investigated was that of a station 

blackout (SBO) at a U.S. PWR and the MELCOR code 

[5] was linked to the ADAPT tool [7] to determine the 

evolution for each DET scenario. The simulations using 

MELCOR model the transient from the occurrence of the 

SBO through the core melting phase and up to point of 

containment failure and release of radionuclides to the 

environment. All the 104 scenarios (i=1,…,104) generat-

ed in this DET led to containment failure at some point in 

the scenario evolution. 

For the purposes of this paper, we choose 8 state va-

riables of interests (i.e. n=8): 

1. Seal LOCA flow rate [gpm] 

2. Hydrogen mass generated [kg] 

3. Core water level [m] 

4. System Pressure [Pa] 

5. Core vapor temperature [K] 

6. Hot leg vapor temperature [K] 

7. Intact core fraction [%] 

8. Fuel Temperature [K] 

                                                           
1 The geodesic distance refers to the shortest paths between two 

points by traversing the topology of the surface they reside. 
2 ISOMAP defines the geodesic distance to be the sum of edge 

weights along the shortest path between two nodes. 
3
 However, ISOMAP will reduce to principal component analy-

sis for linear data sets. 

We sampled each state variable 100 times (hence, T=100) 

which gave us an accurate description of all the 104 tran-

sients.  

 

RESULTS 

The state space of the system described in the pre-

vious section is composed by 8 state variables and, hence, 

D=9. The overall number of data points distributed in this 

9-dimensional space is 100·104=10400. We determined a 

new dataset which has the same number of points but with 

a reduced number of dimensions from D = 9 to d = 6. 

In order to validate the new dataset against the re-

duced one, we compared the clusters obtained from the 

two datasets.  While the same number of clusters were 

obtained from both the original and reduced datasets and 

each cluster contained the same number of scenarios for 

the high- and low-dimensional cases, some differences 

were observed for in the cluster centers for Clusters 1, 2 

and 3 (highlighted in bold in Table 1).  

When the Euclidean distances between the scenarios 

in each pair (62,60), (13,12) and (20,21) were determined 

it was found out that the differences were very small. The 

differences are possibly due to the fact that the dimensio-

nality reduction process described in Eq.(2) may change 

slightly the geometrical distribution of the original data-

set.  

Figure 2 shows the cluster centers and cluster enve-

lopes obtained from both the original and the reduced data 

sets using two sample state variables (core water level and 

system pressure), Figure 2 shows that not only the cluster 

centers obtained from the original and the reduced data 

sets are similar, but their envelopes as well. 

Table 1: Comparison of cluster centers obtained from the origi-

nal and the reduced datasets.  Entries denote scenario identifiers. 

Cluster # Original dataset (D=9) Reduced dataset (d=6) 

1 62 60 

2 13 12 

3 20 21 

4 7 7 

5 29 29 

6 34 34 

7 59 59 

8 12 12 

 

CONCLUSION 

This paper presents an application of manifold analy-

sis to reduce the dimensionality of the datasets prior to 

clustering. A methodology based on the ISOMAP algo-

rithm was able to identify the dependence between the set 

of initial variables and determine a smaller set of va-

riables that can still describes the evolution of each scena-

rio correctly. 

We applied the methodology to the dataset generated 

by a DET methodology. Results showed that it is possible 



to reduce the number of variables for clustering from 9 to 

6 while still identifying the clusters obtained from the 

original dataset.  Larger reduction in dimensionality is 

expected if more variables are chosen to represent the 

scenarios for better discrimination between scenarios due 

to possibly higher level of correlation among the va-

riables. 
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Fig. 2 Plots of the cluster centers and cluster envelopes derived from all contained within. The top two figures are for clus-

ter obtained from the original dataset and the bottom figures are from the reduced dataset. 


