
 

 

 

 

 
RELIABILITY MODELING OF DIGITAL CONTROL SYSTEMS  

USING THE MARKOV/CELL-TO-CELL MAPPING TECHNIQUE 

 

 

A Thesis 

 

Presented in Partial Fulfillment of the Requirements for 

 

the Degree Master of Science in the 

 

Graduate School of The Ohio State University 

 

 

 

By 

 

Diego Mandelli, Laurea 

 

***** 

 

 

The Ohio State University 

2008 

 

 

 

 

Master’s Examination Committee: 

               Approved by 

Dr. Tunc Aldemir, Advisor 

 

Dr. Don Miller 

 

 

                                                                                 Advisor   

Graduate Program in Nuclear Engineering 



   ii 

 

 

ABSTRACT 

 

Many nuclear power plants are replacing aging analog instrumentation and control 

(I&C) systems with modern digital systems.  In several plants, non-safety related 

systems, such as feedwater control, are already controlled by digital equipment.  The 

replacement of an existing component with a new component may affect the safety and 

the reliability of the overall system. In particular, this is valid if the component added, 

such as a digital control system, has different failures modes compared to an analog 

control system and these failure modes affect the behavior of the overall system 

differently.  

In the reliability modeling of digital control systems, conventional approaches based 

on the event-tree/fault-tree (ET/FT) methodology have limited capabilities in the 

representation of the statistical dependence between failure events. Dynamic 

methodologies can be considered as an important alternative to overcome this limitation 

and the Markov/CCMT (cell-to-cell mapping technique) has been proposed as an 

alternative dynamic methodology for the probabilistic risk assessment (PRA) of digital 

control systems.  

In this thesis, the Markov/CCMT is illustrated using the digital control system of the 

feedwater system of a pressurized water reactor (PWR). Discrete hardware/software/ 

firmware states are defined and transitions between these states are deduced from the 

control logic of the system, as well as from the failure modes and effects analysis 
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performed on each component. The CCMT is used to represent the dynamics of the 

system in terms of probability of transitions between process variable magnitude intervals 

(cells) that partition the state space. The resulting event sequences is converted into 

dynamic event trees (DETs) which can be incorporated into an existing ET/FT based 

PRA of a PWR using an existing PRA tool such as the SAPHIRE code. 
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CHAPTER 1 

 
 

INTRODUCTION 

 

 

This chapter discusses the possible impact of digital control systems on nuclear power 

plant operation from a reliability view point and, thus, the motivation for this thesis. The 

logic structure of this work is then shown in Section 1.3 

 

1.1 Toward Digital Communication and Control Systems (I&C) 

 

Instrumentation and control (I&C) systems are widely used in nuclear power plants 

for monitoring, control and protection [1]. Since the beginning of the nuclear era in the 

1940s, analog systems have accomplished these tasks satisfactorily. Although there are 

some design issues, such as inaccurate design specifications and susceptibility to certain 

environmental conditions, the primary concerns with the extended use of analog systems 

are the effects of aging such as mechanical failures and environmental degradation.  

Digital systems are essentially free of drift that afflicts analog systems and, thus, they 

maintain their calibration better. Digital systems can improve system performance due to 

their accuracy and computational capabilities such as: 
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 Self testing 

 Signal validation 

 Process system diagnostics 

 Fault tolerance 

 Higher data handling  

 Storage capabilities. 

 

In this respect, nuclear power plants are in the process of replacing and upgrading 

aging and obsolete I&C systems with digital ones. The replacement of an existing system 

with a new component may affect the safety and the reliability of the overall system. This 

is particularly valid if the component added, such as a digital control system, has different 

failures modes compared to an analog control system and these failure modes affect the 

behavior of the overall system differently.  

Probability risk assessment (PRA) is a commonly used tool not only in the nuclear 

but also the chemical and the aeronautical industries to examine the safety and reliability 

of specific systems. Due to the nature of digital systems, conventional PRA tools, such as 

fault trees and event trees (FT and ET), may not possess the capability to model most 

digital systems since these tools have limited capabilities in the representation of the 

statistical dependence between failure events.  Dynamic methodologies are those that 

explicitly account for the time element in system evolution and have been proposed as 

alternatives to conventional tools for the reliability modeling of digital systems.  The 

NUREG/CR-6901(Current State of Reliability Modeling Methodologies for Digital 
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Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments) [2] 

contains a recent survey of these methodologies 

In 2002 the U.S. Nuclear Regulatory Commission (NRC) initiated a collaborative 

study with The Ohio State University (OSU) to develop both policies and methods for 

inclusion of reliability models for digital systems into current generation nuclear power 

plant PRAs. This study identified the Markov/CCMT (Chapter 7) and dynamic flowgraph 

methodology (DFM) [3] as methodologies that rank as the top two with most positive 

features and least negative or uncertain features (using subjective criteria based on 

reported experience)  [2]. 

 

1.2 Motivation of this work 

 

The purpose of this thesis can be summarized in the following two points: 

 

 show how it is possible to model digital control systems for PRA purposes using the 

Markov/CCMT methodology, and 

 produce event sequences or dynamic event trees which can be incorporated into an 

existing ET/FT based PRA of a PWR using the SAPHIRE code [4]. 

 

The features of digital I&C systems that need to be accounted for in their reliability 

modeling and which have been captured by the Markov/CCMT methodology are the 

following: 
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 dependence of the control action on system history, 

 dependence of system failure modes on exact timing of  failures, 

 functional as well as intermittent failures, 

 error detection capability, 

 possible system recovery from failure modes. 

These features and others that need to be accounted in the reliability modeling if digital 

I&C systems for are described in [5]. 

 

1.3 Thesis Organization 

 

As shown in Fig.1.1 the modeling of digital control systems through the 

Markov/CCMT methodology consists of several steps which account for two types of 

interactions:  

 

 the interactions between the digital I&C system and controlled/monitored process 

(defined in [2] as Type I interactions), and 

 the interactions between different components of the controller itself (defined in 

[2] as Type II interactions),. 

 

For each of these two analyses, the following two steps have to be performed: 
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 Construct a Markov model 

 Apply the set of rules of the Markov/CCMT methodology 

 

 

Fig.1.1 – General layout of the work presented in this thesis 

 

Chapter 2 describes in detail the benchmark system that is analyzed: the digital 

control system of a feedwater system (DFWCS) of a PWR. The components, the 

connections among them and the control laws are presented in detail. 
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The modeling of the Type II interactions is introduced in Chapters 3 and 4. Chapter 3 

shows the failure modes and effects analysis (FMEA) for all the components of the 

DFWCS and Chapter 4 implements the information contained in Chapter 3 using a finite 

state machine description for each component. 

The modeling of Type I interactions is described in Chapter 5 thorough a Simulink 

model which implements the control laws and the effects of possible failures modes of 

the DFWCS components on the dynamic of the system. 

Chapters 6 and 7 show how the information obtained from system modeling is used to 

perform the Markov/CCMT analysis. In particular, Chapter 6 shows how it is possible to 

model Type II interactions thorough a Markov transition diagram. Markov transitions 

diagrams are deduced from the finite state machine descriptions presented in Chapter 4 in 

order to describe the temporal behavior of the controller’s components. Chapter 7 shows 

how Type I interactions are modeled thorough the CCMT. This technique is used to 

represent the dynamics of the system in terms of probability of transitions between 

process variable magnitude intervals (cells) that partition the state space. 

Finally, Chapter 8 shows how it possible to implement the Markov/CCMT 

methodology on a simplified version of the benchmark system in order to obtain event 

sequences and dynamic event trees which can be used as input for the SAPHIRE code. 
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CHAPTER 2 

 

 

SYSTEM DESCRIPTION 

 

 

 

This chapter introduces the benchmark system that is used to show how it is possible to 

model digital I&Cs systems using Markov/CCMT. The system is described in detail and 

the components, connections among them and control laws are presented. 

 

2.1 System overview 

 

The system under consideration is the feedwater system of typical two loops PWR 

(see Fig.2.1) [6, 7, 8, 9]. Each steam generator (SG) has its own digital feedwater 

controller. The purpose of the DFWCS is to maintain the water level inside each of the 

SGs optimally within ± 2 inches (with respect to some reference point) of the setpoint 

level (defined at 0 inches). The controller is regarded as failed if water level in a SG rises 

above +30 inches and falls below -24 inches. Each feedwater controller is connected to 

three actuated devices: 

 

 a feedwater pump (FP), 

 a main feedwater regulating valve (MFV), and  
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 a bypass feedwater regulating valve (BFV).  

 

 

Fig.2.1 – Overall overview of the feedwater system 

 

In the following sections, a detailed description of the DFWCS (components, 

connection and control logic) is presented. 

 

2.1.1 Actuated devices 

 

The controller regulates the flow of feedwater to the steam generators to maintain a 

constant water level in the own steam generator. In addition to the FP, FP seal water 

system, MFV, and BFV, the feedwater control system contains high pressure (HP) 

feedwater heaters and associate piping and instrumentation [6, 7, 8, 9].  

Feed pumps are steam turbine driven, horizontal, double-suction, double volute, 

single stage, centrifugal pumps. The pumps have a design output of 15,000 gpm at a 

suction rate of 318.7 psia and a discharge pressure of 118.9 psia. The normal operating 
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discharge pressure is approximately 1100 psig at 100%. The FP is driven by a dual 

admission, horizontal, 9140 HP, 5350 rpm steam turbine. During plant operation with 

power greater than 5%, the turbine is aligned to the reheat and main steam system. Steam 

is supplied from the main steam system during plant startup until reheat steam pressure is 

sufficient to supply the turbines. If main steam is not available or power is less than 5%, 

steam can be supplied to the feed pump turbine from the auxiliary steam system. The 

purpose of the FPs is to pump the feedwater through the high pressure feedwater heaters 

into the SGs with sufficient pressure to overcome both the SG secondary side pressure 

and the frictional losses between the feed pump and the SG inlet.  

The MFV and BFV regulate the amount of feedwater going into the SG in order to 

maintain a constant water level in the SG. The MFV is a 10 inch, air operated, angle 

control valve with 16 inch end connections. This valve is made of steel and has a design 

rating of 2160 psig at 1000°F. The actuator is a piston type actuator, with separate 

instrument air supplies to the top and the bottom of the piston. Ball valves control the 

admission of operating air to the piston for opening and closing operations. The BFV is a 

6 inch, air operated, steel control valve.  

 

2.1.2 Operating modes and control logic 

 

The DFWCS operates in different modes depending on the power generated in the 

primary system. These modes are the following [6, 7, 8, 9]: 
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 Low power mode 

 High power mode 

 Automatic transfer from low to high power mode 

 Automatic transfer from high to low power mode 

 

Low power mode of operation occurs when the reactor operates between 2% and 15% 

reactor power. In this mode, the BFV is used exclusively to control the feedwater flow. 

The MFV is closed and the FP is set to a minimal speed. The control laws use the 

feedwater flow, feedwater temperature, feedwater level in the steam generator, and 

neutron flux to compute the BFV position. The feedwater level is fed to a proportional 

integral differential (PID) controller using the feedwater temperature to determine the 

gain. Then this value is summed with the feedwater flow and neutron flux. Essentially, 

neutron flux and feedwater flow are used to predict required changes in water levels. 

High power mode is used when the reactor power is between 15% and 100% reactor 

power. In this mode, the MFV and the FP are used to control the feedwater flow. The 

BFV is closed in a manner that is similar to low power mode. The control laws (see 

Section 2.2.2) use the feedwater level in the steam generator, steam flow, and feedwater 

flow to compute the total feedwater demand. This computed value is used to determine 

both the position of the MFV and the speed of the FP. The FP also uses the other digital 

feedwater MFV controller’s output to compute the speed needed. The feedwater flow and 

steam flow are summed and fed to a set of PI controller algorithms. The output from 

these controller algorithms is added to the feedwater level and that result is fed to a PI 

controller algorithm that uses the steam flow for the controller algorithm’s gain.  
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Each digital feedwater controller is comprised of several components (see Fig.2.2 and 

Fig.2.3) which provide both control and fault tolerant capabilities. The control algorithms 

are executed on both a main computer (MC) and backup computer (BC). These 

computers produce both analog and digital output signals for the MFV, BFV, FP and 

pressure differential indicator (PDI) controllers, as shown in Fig.s 2.2 and 2.3, 

respectively.  

 

 

Fig.2.2 – Analog connections for the DFWCS control system 
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Fig.2.3 – Digital connections for the DFWCS control system 

 

Each of these controllers forward the MC or BC’s outputs to their respective 

controlled device (MFV, BFV or FP), or it can maintain the previous output to that 

device. If the controllers decide to maintain a previous output value to a controlled 

device, it is necessary for operators to override the controller. 

Transitions between low and high power are controlled by the neutron flux readings. 

When the system is in low power mode and the neutron flux increases to a point at which 

high power mode is necessary, the MFV is signaled to open while the BFV closes to 

maintain needed feedwater flow. The opposite situation occurs when the system is in high 

power mode and the neutron flux decreases to a point when low power mode is needed. 
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2.2 Detailed view of the benchmark system 

 

This section describes the DFWCS at a greater level of detail [6, 7, 8, 9]. In 

particular, the physical connections between the sensors, computers, controllers and 

actuated devices (MFV, BFP and FP) are examined. In addition, the control laws are 

stated and the fault tolerant features of the architecture are described.  

 

2.2.1 Physical connections of the DFWCS 

 

The DFWCS obtains information about the state of the controlled process through the 

use of several sensors that measure (see Fig.2.1): 

 

 feedwater level, 

 neutron flux, 

 feedwater flow, 

 steam flow, and  

 feedwater temperature.  

 

As shown in Fig.2.4, the sensor signals are routed to provide information to both the 

MC and BC. The set point data is delivered from the MFV controller to the MC and BC 

through an analog signal. 
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Fig.2.4 – Connection schemes for the computers (MC and BC) and the sensors 

 

The DFWCS components are connected together in several different ways as shown 

in Fig.2.2 and Fig.2.3. First, both the MC and BC provide input signals to the MFV, BFV 

and FP controllers through an analog control signal and failure status signals. The MFV, 

BFV, and FP controllers are configured within the DFWCS to share status information. 

The PDI controller serves as a backup for the MFV controller by sampling the output of 
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the MFV controller. If the MFV controller output is lost, the PDI will send the last good 

MFV controller signal to the MFV. The PDI controller also shares status information 

with the MFV, BFV and FP controllers. 

Figure 2.5 shows the connections between computer, controller and the watchdog 

timer. A watchdog timer is a hardware timer used to determine if a software error or other 

computer failure has rendered a processor unusable. A normally functioning computer 

resets the watchdog timer at regular intervals. However, in the presence of a software 

error or another computer failure, the timer will not be reset by the computer and the 

timer can go off. For example, a runaway process, halted (failed) processor, or a 

sufficiently lengthy computational delay may result in failure to reset the watchdog timer. 

As a result, the watchdog timer may go off. If the timer goes off, all components in the 

controller connected to the watchdog timer are notified of the computer failure. In the 

case of the benchmark system, the MV, BFV, and FP controllers are notified and transfer 

control away from the affected computer. 

 

   

Fig.2.5 – Connection schemes for the computers (MC and BC), the watchdog timer and the controllers 
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2.2.2 Control laws 

 

The control laws for the feedwater controller for SGn (n = 1, 2; see Fig.2.1) under 

normal system operation have been taken from the control algorithm of the DFWCS 

(written in C code) of an operating PWR and can be expressed as in Eqs. (2.1) – (2.13) 

below [6, 7, 8, 9]. The symbols used in Eqs. (2.1) – (2.13) are listed in Table 2.1. As 

mentioned in Section 2.1, the inputs of the computers are the readings of the sensors (i.e. 

SG level, feedwater flow, steam flow, power and feedwater temperature). The first step 

of the calculation determines the flow demand needed. This value is also function of the 

operating modes of the controller (i.e. high or low power mode). 

 

 Variable Symbol Variable Name  

 xn Level [ft]  

 fwn Feedwater flow  

 fsn Steam flow  

 A SG sectional area [ft
2
]  

 CLn Compensated water level  

 EFn Compensated flow error  

 pn Compensated power  

 Cpn Power  

 CFn Flow demand (High Power)  

 CBn Flow demand (Low Power)  

 rn Level set point  

 σMn  MFV Demand  

 σBn  BFV Demand  

 σFn FP Demand  

 )(
~

tSFn
 FP position  

 )(
~

tSMn
 MFV position  

 )(
~

tS Bn
 BFV position  

 

Table 2.1 – List of symbols used in the controller algorithm 
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Rate of level change:  )( snwn

n ffA
dt

dx
     (2.1) 

Compensated water level: )(12 snwnnLn
Ln ffxC

dt

dC
    (2.2) 

Compensated flow error: )()( 76
dt

df

dt

df
tE

dt

dE xnwn
Ln

Fn     (2.3) 

Compensated power:  
dt

dp
ptC

dt

dC
n

npn

pn

34 )(     (2.4) 

Flow demand (High Power):         

)()]()([)()( BnFnFnLnnsnFnFn tEtCrdtftC     (2.5) 

Flow Demand (Low Power):        

 )()]([)()( MnMnLnnwnBnPnBnMBnBn tCrdthCtC     (2.6) 

 

Value of the flow demand (CFn or CBn)  is then translated into demand, position (σBn σMn 

for BFV and MFV respectively) or speed (σFn for FP), for all the three actuated devices 

(MFV, BFV, FP). This is done through lookup tables as shown in Fig.2.6 for the MFV 

and FP.  Flow demand is a normalized valued which can range in the interval 0-100, 

valve position and pump speed are values located in the interval 1-10.  

 

FP Demand:   


 


 Power)(High     )))(C,(max(C

Power) (Low                       0)(C
)(

Fn

1

Fn

Fn

MnFn

Fn

Fn t



  (2.7) 
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MFV Demand: 





Power)(High         )(C

Power) (Low                    0
)(

FnMn

Mn t


    (2.8) 

BFV Demand:  





Power)(High             0

Power) (Low    )(
)(

tC
t

Bn

Bn    (2.9) 

 

 

Fig.2.6 – Lookup table for the MFV and FP 

 

Finally, the value of the actuated device demand is translated into speed or position. 

At the position, the status of the MC and BC computers (i.e., computer operating or 

computer down) is taken into account. 

 

FP Speed:  










down MC down, BC       

down   MCoperating, BC      

operating MC     

)(
~

Fn

Fnb

Fnm

Fn tS







  (2.10) 
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MFV Position:  










down MC down, BC       

down   MCoperating, BC      

operating MC     

)(
~

Mn

Mnb

Mnm

Mn tS







  (2.11) 

BFV Position:   










down MC down, BC       

down   MCoperating, BC      

operating MC     

)(
~

Bn

Bnb

Bnm

Bn tS







  (2.12) 

 

As mentioned in Section 2.1.2, the PDI controller enters into action in case of a loss 

of communication between MFV controller and MFV. The PDI decision logic can be 

expressed as the following: 

 

PDI Decision:  


 


Otherwise     

0S
~

         0
)( Mn

Bn

Fn tS


    (2.13) 

 

Also, all sensor inputs are averaged before being processed by the control laws. For 

example, the feedwater level for SG1 is the average of the two feedwater level sensors 

LV1 and LV2 (see Fig.2.1). Equations 2.2 - 2.4 compute the flow demand for high power 

mode for the feedwater controller. Equation 2.6 computes the BFV demand for low 

power mode. The dynamic gain βBn(hwn) and λMn(σMn) in Eq. 2.6 obtained from a lookup 

table on the feedwater temperature and the MFV opening respectively. The subscripts m 

and b in Eqs. 2.10-2.13 refer to signals from the main and backup CPUs respectively. The 

ηFn , ηMn and ηBn in Eqs. 2.10-2.13 denote history data for the FP, MFV and BFV 
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positions, respectively. If both the MC and the BC have failed, these data are used to 

determine the FP, MFV and BFV positions. 

 

2.2.3 Fault tolerant features 

 

Since the MFV, BFV and FP controllers forward the control signals to the 

corresponding control points (the MFV, BFV, and FP, respectively, as well as the PDI 

controller), they provide a level of fault tolerance [6, 7, 8, 9] if both the MC and BC fail 

by allowing the operators time to intervene by holding the outputs of each to a previously 

valid value. 

The MC and BC, the MFV, BFV and FP and the PDI controllers are each connected 

to an independent power source wired to a separate bus. A single power source failure 

can only affect one computer, all of the MFV/BFV/FP controllers, or the PDI controller 

at one time. 

Both the MC and BC are set to oversample at 3 times the Nyquist criterion (the 

Nyquist criterion states that the highest frequency present in a signal must be less than 

half of the sample frequency) to avoid aliasing. Moreover, a failure in the MC or BC can 

be detected and the fail over (fail over is the process in which a degraded component is 

removed from control and replaced by a healthy component) to a healthy component can 

occur with enough time to meet the response requirements of the process. 

The water level set point is taken from a switch connected to the MFV and is 

propagated to both the MC and BC. If the set point signal goes out of range, then the 

computers fall back on a preprogrammed set point value. 
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Each computer (MC or BC) is connected to a watchdog timer. A watchdog timer is a 

hardware timer and associated connections used to determine if a software error or other 

computer failure has rendered a processor unusable. A normally functioning computer 

resets the watchdog timer at regular, defined intervals so the timer does not “go off.” 

However, in the presence of a software error or another computer failure, the timer will 

not be reset by the computer and the timer can go off. For example, a runaway process, 

halted (failed) processor, or a sufficiently lengthy computational delay may result in 

failure to reset the watchdog timer. As a result, the watchdog timer may go off. If the 

timer goes off, all components in the controller connected to the watchdog timer are 

notified of the computer failure. In the case of the benchmark system, the MFV, BFV, 

and FP controllers are notified and transfer control away from the affected computer. 

Each computer (MC or BC) verifies and validates its inputs, checking for out range 

and excessive rate changes in the inputs that would indicate errors in the sensor readings 

or problems with the analog to digital conversion of the values. Each computer will 

ignore input that fails these checks if the other inputs are still valid.  

Deviation between the two sensors is detected and, if the deviation is large enough, 

the computer can signal a deviation error to the MFV, BFV, and FP controllers so they 

may switch to the other computer. 

The PDI controller provides one more level of fault tolerance, in that it holds the 

MFV to a needed position if the MFV does not produce output. 

The MFV, BFV and FP controllers also send their outputs to the MC and BC. When 

the MC (or BC) is in control, it compares its output to the signals that the MFV, BFV and 

FP controllers output signal to the actuators. If the output signal differs, then the 
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computer indicates to the MFV, BFV and FP controllers that it has failed. The digital 

feedwater controller failover logic consists of the following: the MC has control of the 

control points initially, with the BC in “hot” standby. If the MC fails, then the BC takes 

control. If the BC fails after the MC has failed, then the MFV, BFV, and FP controllers 

each use one of their recent output value from the computer (essentially the last one that 

the controller can store) and recycle that value to the control points. Any time a 

component fails, the operator console is notified to allow operators to take mitigating 

actions. 
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CHAPTER 3 

 

 

DESCRIPTION OF THE SYSTEM OPERATION 

UNDER ABNORMAL CONDITIONS 

 

 

 

This section presents a failure modes and effects analysis (FMEA) of the DFWCS [7]. 

The failure classes may include sensor failures, output failures, input failures and internal 

failures. Each of the failure classes may contain a large number of faults. For example, 

sensor failure may be the result of a physical sensor failure, cut wires, loose connections, 

or hardware (such as analog to digital converters) on the receiver failing. While these 

failure classes may be general, they are expected to capture the necessary information 

about possible failures of the benchmark feedwater control system. Each component type 

in the system, MC, BC, MFV controller, BFV controller, FP controller and PDI controller 

has a separate FMEA chart associated with that component. In addition, the actuated 

devices (i.e. MFV, BFV and FP) may fail to perform their design due to mechanical 

failure. The only mechanical failures that will be considered for the benchmark DFWCS 

are the valves getting stuck in their current position. 
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3.1 Main and Backup Computer FMEAs 

 

Table 3.1 summarizes MC failure classes [7]. Sensor failures may occur from many 

possible sources, including decaying or broken wires, failed sensors, intermittent 

transmission failures, or analog to digital conversion errors. A sensor failure is detected 

through the use of rate of change checks, range checks, and comparison to previous 

values used by both the MC and BC. For illustration, if the sensor was reading a 1.5 feet 

water level signal and then it received a 150 feet signal, then this value is considered to 

be an invalid sensor reading. Also, an indicator light illuminates on the operator console. 

The MC and BC each disregard an invalid sensor reading if there is one sensor of 

each type that is valid and wait for one computation interval before indicating their 

failure. Subsequently, a common mode sensor failure that causes one sensor of a type 

from both the MC and BC will not cause the MC and BC to fail. Rather, they will operate 

using only one sensor. Thus, the controlled process is not affected by a single sensor 

failure. However, due to the physical wiring of the sensors, if one sensor fails, its failure 

may affect sensor readings for several computers on both steam generators and may lead 

to a common mode failure. Even with this type of failure, the digital feedwater system 

can still maintain control. As in the case of single sensor failure described above, this 

event may occur from many possible sources including decayed or broken wires, failed 

sensors, and intermittent transmission failures. Multiple sensor failures are detected in the 

same manner as the single sensor failure described earlier. 

The MC and BC uses previous values to perform their computations if multiple 

sensors fail as in the single sensor failure case. Also, the MC and BC notifies the MFV, 
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BFV, and FP controllers that it considers itself failed if the sensor readings do not return 

to normal after a brief delay (which depends on the sampling requirements of the physical 

process). This notification forces the MFV, BFV, and FP controllers to switch their input 

acquisition device as necessary (i.e. they switch from the MC to BC, BC to MC). In case 

both the MC and BF are failed, all the controllers maintain the latest valid value. Power 

level changes are disabled in this mode. An indicator light illuminates on the operators’ 

console. 

Control could be affected if the MC and BC have invalid data and the MFV, BFV, 

and FP controllers are forced to control the process. The MC failure status signal can be 

activated if the MC takes itself down through sensor validity checks, through application 

failures or through a communication problem with the MFV, BFV, and FP controllers. 

The MC failure status signal can also be activated if the MC detects that the output it sent 

to the MFV, BFV or FP controllers differs from the output actually used by those 

controllers. Alternatively, the MC’s watchdog timer may go off. Finally, the MC may fail 

and its failure may not be detected due to a communication failure with the MFV, BFV, 

and FP controllers. Failure is detected through the use of a watchdog timer and the 

computer’s internal validity checks. If the watchdog timer goes off, it signals the MFV, 

BFV and FP controllers to notify them that the MC has failed. These are the only 

components that are affected by a MC failure. 

The MC also checks and indicates that it is unreliable if any detectable errors occur. 

For instance, the MC indicates that it is unreliable if it can detect that its sensors readings 

are invalid. A detected failure causes the MC to signal failure and the system then 

transfers to using the BC. If a failure is not detected, then the system continues to use the 



   26 

MC until either the output goes out of range or the rate of change exceeds what is 

allowed. Then the BC takes over. The impact of a detected failure is minimal as the BC 

takes control due to the watchdog timer reset. The system can maintain control. However, 

an undetected failure may act as a Byzantine
1
 failure. For example, if the MC experiences 

a crash, possibly an arbitrary value may be the output to the BFV, MFV and FP 

controllers. This is one of the possible additional failure modes of digital I&C systems. 

Also, the MC’s output may drift or simply fail to send an output signal. At some point, 

the output signal may change such that it goes out of range, the rate of change becomes 

too high or the output signal is lost. Should this situation occur, the MFV, BFV, and FP 

controller(s) detect the error and switch to the BC. However, there still may be a loss of 

control until the failure is detected. It is assumed that the arbitrary value category 

includes any Byzantine failures that may occur. 

 

Failure type Detection of Failure Effect of Failure on 

Controller 

Effects on 

Controlled/Monitored 

Process Variables 

Loss of one sensor 

inputs of a type of 

input via computer 

diagnostics. 

 

Computer detects loss 

in sensor reading. 

Computer ignores 

failed sensor. If the 

sensor does not return 

(to valid input), 

computer indicates it 

has failed if the other 

computer is operating 

normally. 

 

None. Backup 

Computer takes control 

if the sensor does not 

return. 

 

 
Table 3.1 – FMEA for the MC 

 

Continued 

 

 

 

                                                 
1
 A Byzantine failure is one in which any failed processes are modeled as actively trying to disrupt the 

normal goals of the system 
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Table 3.1 continued 

 
Loss of both sensor 

inputs of a type of 

input via computer 

diagnostics. 

 

Computer detects loss 

in sensor reading. 

 

Computer uses the old 

values of the sensor 

reading. If the sensor 

reading does not return, 

computer indicates that 

it has failed. 

 

None. At the worst 

case the Backup 

Computer takes 

control. 

 

Intermittent sensor 

failure. 

 

Computer detects out 

of range output and 

physically impossible 

rates of change. 

 

Computer ignores 

sensor input and uses 

old values. It fails itself 

if sensor does not 

return to valid return. 

 

None. At the worst 

case the backup 

computer takes 

control. 

 

Sensor failure. 

 

Main and backup 

computers detect this 

via range output and 

physically impossible 

rates of change. 

 

Computer ignores 

sensor input and uses 

old values. It fails itself 

if sensor does not 

return. 

 

Both the main and 

backup computers 

will fail themselves if 

the sensor does not 

return. 

 

Both sensors fail. 

 

Main and backup 

computers detect this 

via range output and 

physically impossible 

rates of change. 

 

Computer ignores 

sensor input and uses 

old values. It fails itself 

if sensor does not 

return. 

 

Both the main and 

backup computers 

will fail themselves if 

the sensors do not 

return. 

 

Loss of an output (0.0 

vdc). 

 

Component connected 

to computer detects 0.0 

vdc input reading. 

 

Component signals that 

this computer has 

failed. 

 

None. The backup 

computer takes 

control. 

 

Loss of Power. 

 

Computer failed signal 

is tripped. 

 

Continue with fail over 

logic. 

 

None. The backup 

computer takes 

control and no effect 

on water level. 

 

Roundoff/truncation/ 

sampling rate errors. 

 

Detected by 

connecting 

components if output 

ever is out of range or 

exceeds the physically 

possible rate. 

 

Component fails the 

computer. 

 

If not detected, water 

level may drift. 

If detected, the 

backup computer 

takes control and no 

effect on water level. 

 

Unable to meet needed 

response requirements. 

 

Watchdog timer 

detects the failed 

computer. 

 

Failover action occurs. 

 

None. Backup 

computer takes 

control with no effect 

on water level. 

 

 
 

Continued 
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Table 3.1 continued 
 

Watchdog timer fails 

to activate. 

 

Detectable when 

outputs of computer go 

out of range or exceed 

the physically possible 

rate. 

 

Failover action occurs 

if detected. 

 

If not detected, water 

level may drift. If 

detected, the backup 

computer takes 

control with no effect 

on water level. 

 

Watchdog timer 

activates when 

computer has not 

failed. 

 

Not detectable. 

 

Failover action occurs. 

 

 

None. Backup 

computer takes 

control. 

 

Arbitrary value output. 

 

Detectable by 

connected component 

if the computer does 

not reset the watchdog 

timer. 

 

Component connected 

to output signals that 

this computer has 

failed. 

 

If not detected, water 

level may increase or 

decrease. 

If detected, the 

backup computer 

takes control and no 

effect on water level. 

 

MFV/BFV/FP 

controllers do not use 

the output that the MC 

computed. 

 

Detected by comparing 

outputs of 

MFV/BFV/FP 

controllers with MC 

output 

 

Component initiates 

failover operation. 

 

The valves and 

feedwater pump will 

remain in the same 

state if the fail over 

fails to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Setpoint drift. 

 

Detectable by the 

computers once the 

setpoint has drifted out 

of range. 

 

Computers revert to 

using a preprogrammed 

value. 

 

Water level will 

increase or 

decrease until it 

reaches the 

setpoint that has 

drifted out of range, 

then water level will 

settle to the 

preprogrammed 

value. 

 

 

 

Table 3.2 shows BC failure modes [7]. A simultaneous MC and BC failure is detected 

through the use of watchdog timers. If the watchdog timers go off, the MFV, BFV and FP 

controllers are notified of the computer failures. The MFV, BFV, and FP controllers are 
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the only components that are affected directly by this failure. An indicator light 

illuminates on the operators’ console. The failure is mitigated by the action of the MFV, 

BFV, and FP controllers to hold the outputs at their old values. 

The impact of these failures is, as expected, quite significant. In this case, the digital 

control system has failed and the operators must intervene to take manual control of the 

process as the MFV, BFV, and FP controllers continue to output old values to the MFRV, 

BFRV, and FP controllers. The problems resulting from a MC and BC failure get worse 

if the failures are not detected, as the MFV, BFV, and FP controllers will take more time 

before they take over. 

 

 

Failure type Detection of Failure Effect of Failure on 

Controller 

Effects on 

Controlled/Monitored 

Process Variables 

Loss of one sensor 

inputs of a type of 

input via computer 

diagnostics. 

 

Computer detects loss 

in sensor reading. 

Computer ignores 

failed sensor. If the 

sensor does not 

return (to valid input), 

computer indicates it 

has failed. 

 

None.  

 

Loss of both sensor 

inputs of a type of 

input via computer 

diagnostics. 

 

Computer detects loss 

in sensor reading. 

 

Computer uses the old 

values of the sensor 

reading. If the sensor 

reading does not return, 

computer indicates that 

it has failed. 

 

The valves and 

feedwater pump will 

remain in the same 

state if the failover to 

the MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

 

Table 3.2 – FMEA for the BC 

 

Continued 
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Table 3.2 continued 

 

Intermittent sensor 

failure. 

 

Computer detects out 

of range output and 

physically impossible 

rates of change. 

 

Computer ignores 

sensor input and uses 

old values. It fails itself 

if sensor does not 

return to valid input. 

 

The valves and 

feedwater pump will 

remain in the same 

state if fail over to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Sensor failure. 

 

Main and backup 

computers detect this 

via range output and 

physically impossible 

rates of change. 

 

Computer ignores 

sensor input and uses 

old values. It fails itself 

if sensor does not 

return. 

 

Both the main and 

backup computers 

will fail themselves if 

the sensor does not 

return. 

 

Both sensors fail. 

 

Main and backup 

computers detect this 

via range output and 

physically impossible 

rates of change. 

 

Computer ignores 

sensor input and uses 

old values. It fails itself 

if sensor does not 

return. 

 

Both the main and 

backup computers 

will fail themselves if 

the sensors do not 

return. 

 

Loss of an output (0.0 

vdc). 

 

Component connected 

to computer detects 0.0 

vdc input reading. 

 

Component signals that 

this computer has 

failed. 

 

None. The backup 

computer takes 

control. 

 

Loss of Power. 

 

Computer failed signal 

is tripped. 

 

Continue with fail over 

logic. 

 

The valves and 

feedwater pump will 

remain in the same 

state if fail over fails 

to the MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

 

Continued 
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Table 3.2 continued 

 
Roundoff/truncation/ 

sampling rate errors. 

 

Detected by 

connecting 

components if output 

ever is out of range or 

exceeds the physically 

possible rate. 

 

Component fails the 

computer. 

 

If not detected, 

unknown. 

If detected, the valves 

and 

feedwater pump will 

remain in the 

same state if fail over 

fails to the 

MFV/BFV/FP 

controllers, thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Unable to meet needed 

response requirements. 

 

Watchdog timer 

detects the failed 

computer. 

 

Failover action occurs. 

 

The valves and 

feedwater pump will 

remain in the same 

state if fail over fails 

to the MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Watchdog timer fails 

to activate. 

 

Detectable when 

outputs of computer go 

out of range or exceed 

the physically possible 

rate. 

 

Failover action occurs 

if detected. 

 

If not detected, 

unknown. 

If detected, the valves 

and feedwater pump 

will remain in the 

same state if fail over 

fails to the 

MFV/BFV/FP 

controllers, thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Continued 
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Table 3.2 continued 

 

 
Watchdog timer 

activates when 

computer has not 

failed. 

 

Not detectable. 

 

Failover action occurs. 

 

 

The valves and 

feedwater pump will 

remain in the same 

state if fail over fails 

to the MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Arbitrary value output. 

 

Detectable by 

connected component 

if the computer does 

not reset the watchdog 

timer. 

 

Component connected 

to output signals that 

this computer has 

failed. 

 

If not detected, 

unknown. 

If detected, the valves 

and 

feedwater pump will 

remain in the 

same state if fail over 

fails to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

MFV/BFV/FP 

controllers do not use 

the output that the MC 

computed. 

 

Detected by comparing 

outputs of 

MFV/BFV/FP 

controllers with MC 

output 

 

Component initiates 

failover operation. 

 

The valves and 

feedwater pump will 

remain in the same 

state if the fail over 

fails to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Setpoint drift. 

 

Detectable by the 

computers once the 

setpoint has drifted out 

of range. 

 

Computers revert to 

using a preprogrammed 

value. 

 

Water level will 

increase or decrease 

until it reaches the 

setpoint that has 

drifted out of range, 

then water level will 

settle to the 

preprogrammed 

value. 
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3.2 MFV, FP, BFV and PDI controllers 

 

The FMEA for MFV, BFV and FP controllers are given in Tables 3.3, 3.4, and 3.5, 

respectively [7]. The MFV controller may fail due to a power loss or an internal program 

crash (possibly from hanging, hard crash, or output failure). This event can only be 

detected if the MFV controller output drops to 0.0 volts. In this case, the PDI controller 

senses the drop in output and asserts the old value of the MFV controller’s output to the 

MFV. The PDI controller acts as the MFV would, outputting the old output to the MFV. 

At best, the digital feedwater control system reverts to a manual mode (and fails). At 

worst, the MFV controller does not output the correct signals to the MFV and can cause 

loss of control of the process.  

The BFV controllers may fail because of a power loss or a program crash. This event 

cannot be detected by the digital feedwater control system. If the BFV controller does not 

output the correct signals to the BFV, loss of control of the process may occur. The 

MFV/BFV/FP controllers may disagree as to the failure states of each computer. It is then 

possible for the MFV controller to be accepting different signals than the FP and BFV 

controllers. This event cannot be detected. The impact of this failure is that the SG water 

level may increase or decrease depending on the failure of the MC/BC and the 

MFV/BFV/FP controller’s indication of those failures. 

Also, communication between the MFV, BFV, FP and PDI controller occurs only to 

coordinate failure detection. This communication type of failure is captured by the 

computer erroneously reported failed or not failed. Finally, it is noted that the MFV, 
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BFV, PDI and FP controllers are all digital also, and as such may experience crashes that 

may cause them to be unable to detect failures or output arbitrary values. 

 

Failure type Detection of Failure Effect of Failure on 

Controller 

Effects on 

Controlled/Monitored 

Process Variables 

Loss of power. 

 

Detected by PDI. 

 

PDI uses old signal for 

the 

MFV. 

 

The MFV will remain 

in the same state. Thus 

the effect on the 

process variables 

depends on the event in 

consideration. 

 

Loss of output signal. 

 

Detected by PDI. 

 

PDI uses old signal for 

the 

MFV. 

 

The MFV will remain 

in the same state. Thus 

the effect on the 

process variables 

depends on the event in 

consideration. 

 

Computer erroneously 

reported failed. 

 

Not detected. 

 

Component initiates 

failover operation. 

 

The MFV will remain 

in the same state if the 

fail over fails to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Computer erroneously 

reported not failed. 

 

Can be detected if 

computer fails and 

output of computer is 

out of range, the rate of 

change is too great, or 

the watchdog timer 

goes off. 

 

Component initiates 

failover operation. 

 

If detected the MFV 

will remain in the same 

state if the fail over 

fails to the 

MFV/BFV/FP 

controllers, thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

Otherwise, unknown. 

 

 
Table 3.3 – FMEA for the MFV 

 

 

Continued 
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Table 3.3 continued 

 

 
MFV, BFV, FP 

controllers do not 

agree from which 

computer to accept 

input. 

 

Cannot be detected. 

 

MFV, BFV, and FP 

may receive 

inconsistent input. 

 

Unknown effect may 

increase or decrease 

water level. 

 

High output. 

 

Cannot be detected. 

 

MFV will be driven 

open. 

 

Feedwater flow will 

increase, causing the 

water level to 

increase. 

 

Low output. 

 

Cannot be detected. 

 

MFV will be driven 

shut. 

 

Feedwater flow will 

decrease unless the 

computer is operating 

in low power mode. 

In low power mode, 

there will be no 

effect. 

 

Arbitrary value 

output. 

 

Cannot be detected. 

 

MFV will open/close 

according to the output. 

 

Unknown effect; may 

increase or decrease 

water level. 

 

 

 

 

Table 3.4 shows the FMEA table for the BFV controller.  

 

 

 

Failure type Detection of Failure Effect of Failure on 

Controller 

Effects on 

Controlled/Monitored 

Process Variables 

Loss of power. 

 

Not detected. 

 

Nothing. 

 

Unknown effect on 

water level. 

 

Loss of output signal. 

 

Not detected. 

 

Nothing. 

 

Unknown effect on 

water level. 

 

 

Table 3.4 – FMEA for the BFV 

 

Continued 
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Table 3.4 continued 

 

Computer erroneously 

reported failed. 

 

Not detected. 

 

Component initiates 

failover operation. 

 

The valves and 

feedwater pump will 

remain in the same 

state if the fail over 

fails to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

Computer erroneously 

reported not failed. 

 

Can be detected if 

computer fails and 

output 

of computer is out of 

range, the rate of 

change 

is too great, or the 

watchdog timer goes 

off. 

 

Component initiates 

failover if detected. 

 

If detected the valves 

and feedwater pump 

will remain in the 

same state if the fail 

over fails to the 

MFV/BFV/FP 

controllers. 

Thus the effect on the 

process variables 

depends on the event 

in consideration. 

Otherwise, unknown. 

 

MFV, BFV, FP 

controllers do not 

agree from which 

computer to accept 

input. 

 

Cannot be detected. 

 

MFV, BFV, and FP 

may receive 

inconsistent input. 

 

Unknown effect may 

increase or decrease 

water level. 

 

High output. 

 

Cannot be detected. 

 

BFV will be driven 

open. 

 

Feedwater flow will 

increase, causing the 

water level to 

increase. 

 

Low output. 

 

Cannot be detected. 

 

BFV will be driven 

shut. 

 

Feedwater flow will 

decrease unless the 

computer is operating 

in low power mode. 

In high power mode, 

there will be no 

effect. 

 

Arbitrary value 

output. 

 

Cannot be detected. 

 

BFV will open/close 

according to the output. 

 

Unknown effect; may 

increase or decrease 

water level 
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The FP controller may fail because of a power loss or a program crash as the MFV or 

BFV controller could. This event cannot be detected by the DFWCS. The FP controller 

would not output the correct signal to the feedwater pump and thus would be unable to 

control the feedwater pump. 

 

 

Failure type Detection of Failure Effect of Failure on 

Controller 

Effects on 

Controlled/Monitored 

Process Variables 

Loss of power. Not detected. Nothing. 

 

Unknown effect on 

water level. 

 

Loss of output signal. 

 

Not detected. Nothing. 

 

Feedwater flow will 

decrease to the 

minimal value, 

possibly decreasing the 

water level. 

 

Computer 

erroneously reported 

failed. 

 

Not detected. Component initiates 

failover operation. 

 

The valves and 

feedwater pump will 

remain in the same 

state if the fail over 

fails to the 

MFV/BFV/FP 

controllers. Thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

 

 

Table 3.5 – FMEA for the FP 

 

 

Continued 
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Table 3.5 Continued 

 

Computer 

erroneously reported 

not failed. 

 

Can be detected if 

computer fails and 

output of computer is 

out of range, the rate 

of change is too great, 

or the watchdog timer 

goes off. 

 

Component initiates 

failover if detected. 

 

If detected the valves 

and feedwater pump 

will remain in the 

same state if the fail 

over fails to the 

MFV/BFV/FP 

controllers, thus the 

effect on the process 

variables depends on 

the event in 

consideration. 

Otherwise, unknown. 

 

High output. 

 

Cannot be detected. 

 

FP will be driven to 

increased pressure. 

 

Feedwater flow will 

increase, causing the 

water level to increase. 

 

Low output. 

 

Cannot be detected. 

 

FP will be driven to 

decreased pressure. 

 

Feedwater flow will 

decrease, causing the 

water level to 

decrease. 

 

Arbitrary value 

output. 

 

Cannot be detected. 

 

FP will speed up/slow 

down according to the 

output. 

 

Unknown effect. May 

increase or decrease 

water level. 

 

MFV, BFV, FP 

controllers do not 

agree from which 

computer to accept 

input. 

 

Cannot be detected. 

 

MFV, BFV, and FP 

may receive 

inconsistent input. 

 

Unknown effect. May 

increase or decrease 

water level. 

 

 

 

The FMEA table for the PDI controller is shown in  [7]. The PDI controller may also fail 

because of a power loss or a program crash as the MFV, BFV and FP controllers and 

event will not be detected by the digital feedwater control system. If the PDI controller 

fails by loss of output, then a failed MFV controller will not be detected. If the PDI fails 

by sending a spurious signal to the MFV when the MFV controller has not failed, then 
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the MFV and PDI controller outputs will sum and give an increased signal to the MFV, 

causing the MFV to open more than it should. 

 

Failure type Detection of Failure Effect of Failure on 

Controller 

Effects on 

Controlled/Monitored 

Process Variables 

Loss of inputs (0.0 

vdc). 

 

PDI detects a 0.0 vdc 

input. 

 

PDI outputs an old 

value of the MFV 

controller output to the 

MFV. 

 

The MFV valve will 

receive a signal that is 

the sum of the PDI and 

MFV controller 

signals, thus increasing 

feedwater flow. 

 

Loss of power. 

 

Not detected. 

 

None. 

 

None directly, unless 

the MFV controller has 

failed, then resulting 

effect is unknown. 

 

Loss of Outputs. 

 

Not detected. 

 

None. 

 

None directly, unless 

the MFV controller has 

failed, then resulting 

effect is unknown. 

 

Arbitrary failure. 

 

Not detected. 

 

PDI can output any 

value to MFV. 

 

The MFV valve will 

receive a signal that is 

the sum of the PDI and 

MFV controller 

signals, thus increasing 

feedwater flow. 

 

 
Table 3.6 – FMEA for the PDI 



   40 

 

 

 

 

CHAPTER 4 

 

 

FINITE STATE MACHINE MODELING 

 

 

 

As presented in Section 1 and Fig.1.1, the next step in the modeling of digital control 

systems using the Markov/CCMT after the definition of the FMEA is the construction of 

a finite state machine model for each component of the DFWCS [7]. The purpose of this 

section is to show how it is possible to construct a finite state machine model from the 

FMEA presented in Section 3.  

 

4.1 From the network structure to the system finite state machine 

 

As a general discussion, the design of a system finite state machine for digital control 

systems takes into account several aspects that can be summarized as follows: 

 

1. The structure and the topology of the network. The concept of topology applied to 

networks refers to how data are shared and passed among the components 

connected to the network itself. Figure 4.1 shows the basic connection schemes 

which it is possible to encounter in the analysis of digital control systems. Figure 
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4.1 also indicates how the DFWCS described in Section 2 can be considered as a 

simple mesh scheme. 

 

 

Fig.4.1 - Possible connection scheme: mesh (e.g., DFWCS), star, tree, bus 

 

2. The format of the data. Data on the line can be transmitted in two different 

formats: analog or digital. From [10] an analog signal is defined as a continuous 

wave form that changes smoothly over time; as the wave moves from the 

minimum to the maximum value it passes through and includes an infinite number 

of values along its path. A digital signal, however, has only a limited number of 

defined values depending on the encoding scheme. From a reliability view point 

the format of the data affects the resilience property of the communication 

systems from external events and how the communication system itself is able to 

detect and correct errors in the data transmitted on the line. 

 

3. Transmission media. Different types of media can be used to transmit data. 

Guided (e.g., coaxial or fiber-optic cable) and unguided (e.g., electromagnetic 

waves used without a physical conductor) media can be used.  
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In building a finite state machine for each component (computers, controller, etc.) of 

the DFWCS, states and transition must reflect the FMEA presented in Section 3. 

Redundant components are modeled together by merging the finite state machines of the 

redundant components into a single finite state machine. Moreover, the inter-component 

dependability (for example, due to the topology of the network) is taken into account 

inserting the finite state machine of a component inside specific states of another 

component. 

The DFWCS can be regarded as consisting of three layers of interaction [7]: 

 

 Intra-computer interactions: a layer which describes the status of the single 

computer (MC or BC) 

 Inter-computer interactions: a layer which describes the status of the set of both 

computers (MC and BC) 

 Computer-controller-actuated device interactions: a layer which describes the 

status of the controllers (MFV, BFV and FP controllers). 

 

In Sections 4.2, 4.3 and 4.4 these three layers are presented and described.  

 

4.2 Intra-computer interactions 

 

The intra-computer interactions layer consists of 5 states (see Fig.4.2) [7]. These 

interactions can be regarded as transitions between the possible states of a single 

computer. In State A, the computer is operating correctly. In State B, the computer 
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detects loss/invalid output for 1 sensor of any type (e.g. water level). State C represents 

loss/invalid output for 2 sensors of any one type. In state D the computer has detected an 

internal problem and is signaling that it has to be ignored. In State E, either the sensor 

output is invalid or there is an internal processing error in the computer; however, the 

computer does not detect the fault and is transmitting the wrong information to the 

controllers. These states capture the possible failures in the FMEAs presented in Section 

3.2,  and  that occur within both the MC and BC. 

 

 

Fig.4.2 – Intra-computers interaction scheme 

 

4.3 Inter-computer interaction 

 

The inter-computer interaction layer displayed in Fig.4.3 [7], shows the interactions 

between the two computers (MC and BC). In particular, the transfer of control from the 

MC to the BC is represented here.  
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In this layer, 3 computer macro-states (MSs) are identified. Each of these macro-

states indicates the status of both the computers: 

 

1. In State 1 both MC and BC are operating normally.  

2. In State 2, one computer is operating correctly and the other is down but can be 

recovered. 

3. In State 3, again one computer is operating correctly and the other is down but it 

is not recoverable.  

 

Transitions between the MSs depend upon the state of the controlling computer. Primary 

and secondary computers correspond, respectively, to the computer that is sending data to 

the controller and to the computer that is waiting in hot standby. Both the MC and BC 

can be the primary or the secondary computer.  

Transitions from MS1 to MS2 are due to recoverable failures while transitions from 

MS1 to MS3 are due to not recoverable failures. Recoverable and non-recoverable 

failures are defined as the following: 

 

 Recoverable failure corresponds to the momentarily inability for the computer 

(which is still operating correctly) to send valid data to the controller (e.g. due to a 

loss of input from one couple of sensors). Since, it is possible to recover from 

type of this failure, transitions from MS2 to MS1 are possible. 
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 Non-recoverable failure corresponds to an internal failure of the computer (e.g. 

the trip of the watchdog timer) or to a loss of output of the computer itself. Since, 

it is not possible to recover this failure: transitions from MS3 to MS1 are possible. 

 

4.3.1 Transitions from MS1 to MS2 

 

If the secondary computer (i.e. the computer that is not in control) fails and it is still 

recoverable, a transition from MS 1 to MS 2 occurs (see Fig.4.3). These transitions 

simply take each state in MS 1 to the corresponding state in MS 2. For example, State A 

(or operational) in MS 1 would have a transition to State A in MS 2. When the secondary 

computer recovers, the opposite transitions occur (from MS 2 to MS 1). Again, for 

example, if the operating computer is in State A, MS 1, then the transition would start 

there and end in State A in MS 1. 

From the State D in MS 1 the possible transitions represent the takeover of control of 

the process by the secondary computer (which from now on will be regarded as the 

primary computer). The transitions from this state go to all states except for State D in 

MS 2. The rationale behind these transitions is that the secondary computer was operating 

and may have transitioned to states other than State A in MS 2. The reason that State D in 

MS 2 is not a possible destination is that if State D is reached by the secondary computer, 

then another transition from MS 1 to MS 2 must have already taken that into account. 
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4.3.2 Transitions from MS1 to MS3 

 

The fail-over action from MS 1 to MS 3 is a result of controller action via the 

watchdog timer or detecting the output failure from the computer. This action takes down 

the failed computer permanently and can occur to both the primary and secondary 

computer. If it occurs to the secondary, the transitions mimic the action of the secondary 

failure transitions from MS 1 to MS 3 by simply transitioning from a state in MS 1 to the 

respective state in MS 3. For example, State A in MS 1 would have a transition to State A 

in MS 3. 

If the primary computer fails in a non-recoverable manner when both MC and BC are 

operating (i.e. when the DFWCS is in MS1), then the DFWCS can go to any state in MS 

3 except State D by the same rationale for transitions between MS1 and MS2. The 

transitions must take into account that the secondary computer may have already entered 

different states and these must be represented in the transitions to MS 3. 
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Fig.4.3 – Inter-Computers interaction scheme 

 

4.4 Computer-controller-actuated device interactions 

 

Figure 4.4 shows all the possible controller-computer-actuated device interactions [7] 

according to the FMEA charts presented in Section 3.3. The shaded circles represent 

signals to the actuated devices (MFV, BFV, FP) upon computer/controller failure, as well 

as the mechanical failure of the actuated device (Device Stuck). As indicated in the 

beginning of Section 2, mechanical failure of the actuated device leads to the device 

maintaining its current position for MFV and BFV or to zero flow for FP. 

The planes represent the communication status between the controller and actuated 

devices. The two-way transitions between Planes I and II are necessary to keep track of 
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the computer from which the controller is receiving data when the communications 

between controller and actuated device are restored. 

The scheme shown in Fig.4.4 shows the connection between a single controller (e.g., 

the MFV controller) and the computers (MC and the BC) and its own actuated device 

(MFV). In particular, the following types of controller failures are under consideration: 

 

 Arbitrary output: random data are generated and sent to the actuated device (i.e., 

MFV, BFV and FP) 

 Output high: output value is stuck at the maximum value (i.e. valve totally open 

or pump at the maximum speed) 

 Output low: output value is stuck at the minimum value (i.e. valve totally closed 

or pump stopped) 

 0 vdc output: loss of communications between controller and actuated device 

 mechanical failure of the actuated device 
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Fig.4.4 – Computer-Controller-Actuated device interactions scheme 

 

Moreover, as a result of the failure of both computers, the controller can recognize the 

failure and send to the actuated devices (i.e. pump or valves) the old valid value (i.e. 

Freeze). If the controller does not recognize the failure, then it will simply pass on false 

information (Arbitrary Output) to the actuated device. Figure 4.4 also shows how the 

computer-computer interactions (presented in Fig.4.3) integrate with computer-controller 

and controller-actuated device interactions. 

Device Stuck refers to mechanical failures and is independent of the failure modes of the 

computers and controllers. The behavior of the controller under normal and failed 

operation can be described as follows: 
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 When both MC and BC are down, the controller transits to the Freeze state. The 

actuated device remains in the position corresponding to the last valid value. 

 If the controller is operating and an Output High or an Output Low or an 

Arbitrary Output failure occurs, the controller transits to the corresponding state 

and the actuated device assumes the highest, the lowest or an arbitrary position, 

respectively. 

 If the controller is in the Freeze state and an Output High, Output Low or 

Arbitrary Output failure occurs, the controller transits to the corresponding state 

and the actuated device assumes the highest, the lowest or an arbitrary position, 

respectively. 

 If a loss of output occurs when the controller is failed (i.e. the controller is 

sending Arbitrary Output, Output High or Output Low state), then the actuated 

device receives a 0 vdc as input which correspond to the lowest position. 

 

4.5 Examples of Initiating Events 

 

In this section two scenarios are presented in order to show how the finite state 

machine description (see Fig.4.2, Fig.4.3, and Fig.4.4) described above can be used to 

model several accident scenarios which have taken place in existing nuclear power 

plants.  
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4.5.1 Scenario 1 

 

The scenario starts with the benchmark system operating at high power at 90% 

reactor power with the MC controlling the MFV, BFV, and FP, the BC operating 

correctly and the MFV, BFV, FP, and PDI controllers operating correctly (i.e., state A of 

MS1 of Fig.4.5). When the FP controller was installed, the MC to FP and BC to FP 

failure signal wire were not soldered correctly [1]. As a result of the improper soldering 

and vibration within the plant, the integrity of these connections has become 

compromised. Additionally, as has been encountered in operating nuclear power plants 

[12], corrosion problems have affected the wiring. 

In this scenario, the corrosion affects one of the water level sensor wires from level 

sensor 1 (LVL1). As a consequence of the corrosion, the MC receives intermittently no 

signal from LVL1 over the course of several months. Due to wear-out affecting the 

connection from level sensor 2 (LVL2), the sensor is unable to transmit a signal and fails 

to report a value (resulting in 0.0 DC volts on the line). The MC senses this signal loss 

and ignores the invalid input. 

At this point, corrosion in the connection from LVL1 described above causes the 

connection to fail completely, resulting in 0.0 DC volts on the line. Consequently, no 

signal is received by the MC from LVL1. At this point, all level sensor transmissions to 

the MC have failed. The MC waits for one processing cycle, determines the level sensor 

inputs are still unavailable and then signals failure to the MFV, BFV, and FP controllers. 

As a result of the MC failure, the MFV, BFV, and FP controllers each attempt to transfer 
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control to the BC (i.e., looking at Fig.4.5, a transition from state A to state D of MS1 

occurs and then a transition from state D of MS1 to state A of MS2 occurs). 

Due to vibration, the FP controller’s MC and BC failure status wires become completely 

disconnected from the controller. This disconnection causes the FP controller to consider 

both the MC and BC as failed. By following its fail over procedure, the FP controller 

recycles its last good output. The FP controller then signals MC and BC failure to the 

MFV and BFV controllers. This causes the MFV and BFV controllers to recycle their last 

good outputs until operators intervene. (i.e., looking at Fig.4.5, a transition from state A 

of MS2 to state D of MS2 occurs and then a transition from state D of MS2 to state 

Freeze of MS2 occurs). 

 

 

 

1 

Level sensor two fails due to a broken 

connection. 

 

2 

Level sensor one fails as the corrosion causes 

the wire to degrade too much to be usable. 

 

3 
MC activates failure status signal. 

 

4 

MFV, BFV, and FP controllers transfer control 

to the BC. 

 

5 

MC to FP and BC to FP controller failure 

status lines become disconnected due to 

vibration. 

 

6 

FP signals BC and MC failure to other 

controllers and uses last good output value. 

 

7 
MFV and BFV controllers use last good output 

 

 
Table 4.1 – List of events for the first scenario 
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Fig.4.5 – Description of the first scenario through the finite state machine 

 

4.5.2 Scenario 2 

 

Scenario 2 starts with the system operating normally in high power at 90% reactor 

power with the MC in control and all other controllers and components operating 

normally (i.e., state A of MS1 of Fig.4.6).  The BC fails and causes the watchdog timer to 

expire. This timer expiration is detected as BC failure by the MFV, BFV, and FP 

controllers (i.e., looking at Fig.4.6, a transition from state A of MS1 to state A of MS3 

occurs). 

Due to corrosion of an inline power supply fuse, the power supply to the MC shuts 

down [11, 12], resulting in an MC failure (i.e., looking at Fig.4.6, a transition from state 

A of MS3 to state D of MS3 occurs). The MFV, BFV, and FP controllers detect the loss 

of the MC and take control holding the valves and pumps settings at their current values 
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until operators are able to intervene (i.e., looking at Fig.4.6, a transition from state D of 

MS3 to Freeze state occurs). Scenario 2 is summarized in Table III. This scenario 

demonstrates the benchmark system’s ability to fulfill requirements 2 and 9, namely the 

representation of electrical power needs and the use of the watchdog timer. 

  

 

1 

BC’s watchdog timer expires. MFV, BFV, and FP 

controllers take control and maintain pumps/valve settings 

at current values until operators intervene. 

 

2 
MC fails: MC power supply fails. 

 

3 

MFV, BFV, and FP controllers take control and maintain 

pumps/valve settings at current values until operators 

intervene. 

 

 

Table 4.2 – List of events for the second scenario 

 

 

Fig.4.6 – Description of the first scenario through the finite state machine 
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CHAPTER 5 

 

 

SIMULINK MODEL OF THE DFWCS 

 

 

 

In order to perform the tuning and to confirm the validity of the control laws deduced 

from the control algorithm of the DFWCS (written in C code) of an operating PWR, a 

Simulink model has been built. This model is divided into modules in order to keep the 

model easy to tune, adaptable and comprehensible. The main modules are the following: 

 

 Input module and SG module 

 Control logic module 

 Actuated device module. 

 

In the following paragraphs, each of these modules is described in detail. 

 

5.1 Input and SG modules 

 

The input module includes a set of inputs (see Fig.5.1) which represent the power 

generated in the primary circuit. In this model it is supposed that the steam flow exiting 

the SG is proportional to the power generated by the reactor. A detailed model of the SG 
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is not included and thus, the level of the SG is determined by a simple mass balance 

equation (see Eq.2.1). 

In particular, two kind of power profile has been analyzed: 

 

1. Power decreasing exponentially due to the reactor shutdown (see Fig.5.2-a). In 

this case, the power P(t) of the reactor, previously operating at full power (3000 

MWth) for more than one year (3.15 10
7
 s), drops almost instantaneously from 

100% to 6.6% and then it starts to decrease exponentially following Eq.5.1 [13]: 
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2. Power increasing from 70% to 72% through a sequence of brief ramps (see 

Fig.5.2-b).  

 

Figure 5.1 displays how these input models have been implemented. In particular 

Fig.5.1.a shows how the power decay after a shutdown is implemented through a 

separate math file (.m file) while Fig.5.1.b shows the implementation of the sequence 

of ramps.  
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    (a)                            (b) 

Fig.5.1 – Simulink Input modules: exponentially decay (a) and sequence of ramps (b) 

 

 
  (a) 

 

 
(b) 

 

Fig.5.2 – Power behavior for the two cases under consideration: exponentially decay (a) and sequence of 

ramps (b) 
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5.2 Control logic module 

 

The control logic module, shown in Fig.5.3, implements the control laws presented in 

Section 2 for both the High and Low power mode. Transition from High to Low power 

and vice versa are also realized. In this module, Eqs.2.2-2.6 are implemented. 

 

 

Fig.5.3 – Control logic module 
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5.3 Actuated device module 

 

This module implements the response of the actuated devices (MFV, BFV and FP). In 

particular it translates the signal representing the feedwater demand coming from the 

control logic module into position of the MFV and BFV and speed of the FP. Here are 

implemented the lookup tables presented in Section 2 and shown in Fig.2.6. Mechanical 

(i.e., failed totally open or totally closed) and control failures (i.e., random data send to 

the actuated device or old valid value maintained in output) are also implemented here 

using time dependent blocks. 

 

 

Fig.5.4 – Simulink module for MFV, BFV and FP 

 

5.4 Initiating Event Simulation Results 

 

As presented in Section 2, the equations representing the control laws of the DFWCS 

have been deduced from the C-code the DWCS controller of an existing PWR. It was not 
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possible to deduce all the internal variables contained in these equations and the 

controller needed to be tuned. 

The purpose of this section is to show the response of the digital feedwater model 

under the scenarios presented in Section 5.1 and Fig.5.2. The main concern is to obtain a 

stable response of the model under several power excursions. Moreover, the responses of 

the three actuated devices (i.e., MFV, BFV and FP) have to be reasonable in terms of rate 

of change of position (for MFV and BFV) or rate of change of speed (for FP). Sections 

5.4.1 and 5.4.2 show the results obtained for the two scenarios presented in Section 5.1. 

 

5.4.1 Reactor Shutdown 

 

As presented in Section 5.1 the power is decaying exponentially starting from a value 

of 6.6% in this scenario. Since this scenario takes place in Low Power mode, the FP 

speed is set at 63% and only the BFV affects the feedwater flow (see Section 2). Figure 

5.5 shows how the level of the SG is stabilizing during this scenario. 

 

 

Fig.5.5 – Level response during the decay heat scenario 
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5.4.2 Power Increase Scenario 

 

Figures 5.6 and 5.7 show the response of the FP and MFV for the second scenario 

presented in Sec.5.1 and Fig.5.2.b. For both MFV and FP the scale is ranging form 1 to 

10.  

 

   
                                      (a)                                                         (b) 

Fig.5.6 – MFV response for the scenario presented in Fig.5.2.b 

  

 

  
                                      (a)                                                           (b) 

Fig.5.7 – FP response for the scenario presented in Fig.5.2.b 

 

The rate of change of the power generated by the reactor strongly affects the 

oscillations of both MFV and FP
2
. Moreover, since each ramp performs a 0.5% increment 

                                                 
2
 Since the power is always above 15% the BFV is never used for the entire scenario. 
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of power (this value agrees with the normal operation of a typical PWR during a power 

excursion when control rods are moved out of the core by small amounts), the FP and 

MFV response for this scenario are very smooth as shown in Fig.5.6 and Fig.5.7. The 

main purpose of the DFWCS is to maintain the level of the SG between -24 and 30 

inches (-2 and 3 ft) and Fig.5.8 shows that the behavior of the level of the SG for the 

scenario presented in Fig.5.2.b is consistent with this purpose. 

 

 

Fig.5.8 – Behavior of the level of the SG for the scenario presented in Fig.5.2.b 
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CHAPTER 6 

 

 

MARKOV MODELING 

 

 

 

In general, the construction of a Markov transition [14, 15] diagram for a single 

component assumes that: 

 

 a set of mutually exclusive and exhaustive states nm (m=1,...,M; nm =1,...,Nm) has 

already been defined for component m, i.e., 

 

0,

1)(

''

1


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

mmmm

M

m

m

nnnn

np

    (6.1) 

 

 probability of transitions between states has been determined. 

 

The choice of the failure states is based on the FMEA tables presented in Section 3. The 

Markov modeling of each component of the DFWCS (see Section 2.1) is presented in 

Sections 6.1 through 6.4. Section 6.5 shows how the grouping of several components into 

macro-components can be useful to simplify the modeling and to reduce the 

computational effort. Section 6.4 presents some considerations regarding possible 
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rearrangement of the states of the components in order to create Markov transition 

diagrams that are independent from each other. 

 

6.1 Main and Backup Computers 

 

In Section 4 it is shown how it is possible to obtain the finite state machine model for 

both the MC and BC given the FMEA presented in  and . In this model, sensors have 

been incorporated in the computer Markov transition diagrams. This merging procedure 

has been widely used in the Markov/CCMT methodology to minimize the overall number 

of states of the DFWCS (components state combination) which is simply the product of 

the number states of each component involved.  

For the computers, the Markov finite state diagram is similar to the finite state 

machine of the MC and BC. Thus, Markov transition diagram for each computer consists 

of the following five states [7]: 

 

1. Computer operating: the computer is operating correctly 

2. Loss of one input: loss of input from one sensor of a monitored variable (e.g., the 

computer detects 0.0 vdc in the sensor reading or a value which is out of range for 

the measured variable or a physically impossible rate of change) 

3. Loss of both inputs: loss of input from both sensors 

4. Arbitrary output: the computer is sending random output to the controllers 
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5. Computer down: the computer recognizes a communication failure between itself 

and the sensors and the computer and takes itself down. Consequently, the 

computer is not sending any output to the controllers 

 

The Markov models for the MC and BC are represented in Fig.6.1 and Fig.6.2 

respectively. 

 

 

Fig.6.1 – Markov transition diagram for the MC 
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Fig.6.2 – Markov transition diagram for the BC 

 

6.2 MFV, BFV and FP Controller 

 

Section 4.4 shows how it is possible to merge two or more components into macro-

components in order to reduce the computational efforts of the Markov/CCMT analysis. 

In this respect, it is convenient to merge the controllers and their associated activated 

devices (e.g., the MFV controller and the MFV). From Section 4.4 it is possible to 

identify the following eight states for the combined controller-actuated device Markov 

models [7]: 

 

1. Controller is operating and communicating with the actuated device 

2. Controller is operating and not communicating with the actuated device 

3. Freeze: the controller is sending the last valid value to the actuated device 

4. Output high: the controller is sending the highest value to the actuated device 
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5. Output low: the controller is sending the lowest value to the actuated device 

6. Arbitrary output: the controller is sending a random value to the actuated device 

7. 0 vdc output: permanent no communication between controller and actuated 

device. 0 volts are detected from the actuated device 

8. Stuck: actuated device is stuck in the previous position 

 

Figure 6.3 shows the Markov model for the ensemble BFV-BFV controller which is 

conceptually identical to the combined MFV-MFV controller and FP-FP controller. 

 

 

Fig.6.3 – Markov transition diagram for the combined BFV-BFV Controller 

 

 

 



   68 

6.3 PDI Controller 

 

The PDI controller has been modeled taking into account the failures presented in 

Section 2.5 and in Table 2.5.1 which are listed below [7]: 

 

 Loss of inputs 

 Loss of power 

 Loss of outputs 

 Arbitrary failure 

 

Then it is possible to define the following states: 

 

 Operating: PDI controller operating correctly. 

 Loss of inputs: PDI controller does not receive any signal from the MFV 

controller 

 Arbitrary failure: PDI controller is sending random value to the MFV  

 

From Section 2.1, the loss of communication between the PDI controller and the 

MFV can be recovered. This recoverable failure (which introduces the need to remember 

the state of the components before the failure) can be modeled in a similar way as was 

done for the controllers (see Section 6.2); that is by duplicating the 3 states presented 

earlier (operating, loss of inputs and arbitrary failure). This approach results in: 
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 3 states (operating, loss of inputs and arbitrary failure) when MFV and PDI are 

communicating correctly and, 

 another set of 3 states (operating, loss of inputs and arbitrary failure) when MFV 

and PDI are not communicating. 

 

The resulting model for the PDI controller is shown in Fig.6.4. 

 

 

Fig.6.4 – Markov transition diagram for the PDI Controller 
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6.4 System state recombination 

 

During the construction of the Markov transition diagrams for the components of the 

system under consideration, it is important to make sure that transitions in the Markov 

diagrams of a component are not dependent on another transition or a state of a different 

model. Such an independence is very useful to determine the component state transition 

probabilities as presented in Section 7.6. 

In this respect, for the DFWCS system description presented in Section 2.1, there are 

3 main issues which must be taken into account: 

 

 The interactions between MC and BC  

 The interactions between MC/BC and the MFV/FP/BFV controllers  

 Commonality of power sources, one in common for MC and BC, one in common 

for MFV/FP/BFV controllers. 

 

Sections 6.4.1 though 6.4.3 address these issues, respectively 

 

6.4.1 Interactions between MC and BC 

 

As shown in Section 2.1, the MC and BC transitions are coupled since one can take 

over if the other is failed. Since they are identical, the two computers have been merged 

into a single macro-computer.  As a result of this combination, the MC and BC can be 
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represented in a single Markov transition diagram with 15 states instead of 25 (5 state for 

the two computers: 5·5 = 25 states) as presented in Fig.6.5. 

 

 

Fig.6.5 – Markov transition diagram for the combined system MC-BC 

 

6.4.2 Interactions between MC/BC and the MFV/FP/BFV controllers 

 

As presented in Section 4.4, when both the MC and BC are down, the MFV, BFV and 

FP controllers freeze their output. However, looking at Fig.6.3, there is not a single 

“Freeze” state in common for all the 3 controllers but there is “Freeze” state one for each 

controller. The goal is to obtain Markov transition diagrams for the computers and the 

controllers such that the transition to the “Freeze” is in common for all the controllers. 

Thus, the problem consists into the decoupling of the Markov transition diagrams of the 3 

controllers. 

This can be accomplished by removing the “Freeze” states from the MFV, BFV, and 

FP controllers transition diagrams and inserting a single “Freeze” state into the computer 
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diagram as shown in Section 6.4.1 (see Fig.6.5). The Markov transition diagrams for the 

computer and for the combined BFV-BFV controller are shown in Fig.6.6 and Fig.6.7 

respectively. The combined MFV-MFV controller and FP-FP controller the Markov 

models are similar to that of the combined BFV-BFV controller. 

 

 

Fig.6.6 – Markov transition diagram of the combined system MC-BC after the recombination 
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Fig.6.7 – Markov transition diagram of ensemble BFV-BFV controller after the recombination 

 

6.4.3 Power sources  

 

The two computers (MC and BC) and the three controllers (MFV, BFV, and FP) 

share the different power sources (Chapter 2). Thus, a failure in the power source of the 

computer or the controller, affects all the computers or all the controllers respectively.  

In the Markov transition diagram of the controllers, a failure in the power source is 

represented through a transition to the “Output Low” state and to the “0 vdc output” state 

(sees Fig.6.7). This common cause failure can be modeled as follows: 

 

1. introducing a separate Markov model for the power source of the controllers and, 

2. removing the transitions to the “Output low” and “0 vdc output” states (see 

Fig.6.7) due to loss of power failure only  
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Then transition to the “Output low” state for the controllers is now due only to the “Low 

failure” of the controller according to , , . 

 

The controller power source can be modeled simply as a two state Markov transition 

diagram where the states are the following: 

 

 Operating: controllers power source active and, 

 No power: no power is provided to the controllers. 

 

The resulting model is shown in Fig.6.8.  

 

 

Fig.6.8 – Markov transition diagram for the controller power source 

 

In 1 and , a failure in the computer power source causes the failure of both computers. 

Thus, the controllers freeze their outputs. This implies that a failure of the computers 

power source can be represented with a transition to the “Freeze” state (see Fig.6.1 and 

Fig.6.2). In this case a separate model is not necessary since the Markov model for the 
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computers include both the MC and the BC. However, from every state of Fig.6.6, a 

transition to the “Freeze” state has to be added. 

 

6.5 Component state combination reduction 

 

Based on the discussion above, the number of the states of the Markov transition 

diagrams for each of the components of the DFWCS is as shown in . 

 

Components # states 

Computers (Fig.6.6) 15 

MFV Controller (Fig.6.7) 7 

BFV Controller (Fig.6.7) 7 

FP Controller (Fig.6.7) 7 

PDI Controller (Fig.6.4) 6 

Controller power (Fig.6.8) 2 

 
Table 6.1 – List of states for each component of the DFWCS after recombination 

 

The resulting total number of component state combinations N is equal to the product of 

the states of all the components involved: N = 15·7·7·7·6·2 = 61740.  

Since the number of event sequences generated at every Markov time step increases 

exponentially with a base factor of N, it is necessary to reduce the number of components 

state combinations in order to obtain an analysis of the system with reasonable computing 

time. This reduction may be achieved by 
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1. reducing the number of components by merging two or more components 

together, and, 

2. reducing the number of states of a component by merging two or more states 

together. 

 

The first step has been already investigated and used in Section 6.2 and 6.4.1 for the 

controllers and for the computers respectively. The second step requires the merging of 

states. It is here chosen to merge all states in each Markov transition diagrams that have 

the same impact on the dynamics of the system. 

As an example, the system of Fig.6.9 is considered. In this case, states 2 and 3 have 

the same impact and, thus, these states are merged. 

 

 
       (a) Original Markov transition diagram               (b) Reduced Markov transition diagram 

Fig.6.9– Illustrative example for the state reduction technique 
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Figure 6.9 shows how states 2 and 3 have been merged in a single state named X. After 

the merging process, transitions 1-X, and X-4 have to be determined. This is done as 

following: 

 

1. Solve the original Markov model: determine the state probabilities functions. For 

the system of Fig.6.9, P1(t), P2(t), P3(t), P4(t), P5(t) are determined first. Usually 

for small systems (e.g., Markov models with fewer than 5-6 states) it is possible 

to solve a system of first order differential equations symbolically using codes 

like Mathematica or solving it numerically with codes like Matlab. For systems 

with a greater number of states (i.e., more than 10) it is possible to solve a system 

of first order differential equations using matrices [2]. 

2. Determine the new transition probabilities λ(t) of the reduced diagrams.  

 

The set of equations which describes the original Markov transitions diagram (Fig.6.9.a) 

are: 

 

 

   

     

     

  )(
)(

)()()(
)(

)()()(
)(

)()(
)(

)(
)(

 

445
4

334114445
4

113223334

3

112223
2

1141312
1

tP
dt

tdP

tPtPtP
dt

tdP

tPtPtP
dt

tdP

tPtP
dt

tdP

tP
dt

tdP

a

a

a

a

a
























































 



   78 

 

The set of equations which describes the reduced Markov transitions diagram (Fig.6.9.b) 

are: 
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Assuming that all the transition rates of the original system of Fig.6.9 are constant with 

time, λx4(t) can be found in the following manner: 

 

1. Determine the equations which describe the time evolution of state 4 for both the 

model a) and b) of Fig.6.9. These equations are: 
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(Model (a) of Fig.4.11 ) 
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(Model (b) of Fig.4.11) 
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2. Compare the two expression and then determine the equation of λx4(t), as shown 

in Eq.4.6. 
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Equation 4.6 shows that λx4(t) is essentially an averaging of the transition rates for 

the transitions 2-3 and 2-4 of Fig.6.9., i.e. 
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Repeating the procedure presented before for the other transition rate of Fig.6.9 it is 

possible to get: 
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Note the new transition probabilities for the reduced model are time dependent.  

 

6.5.1 Reduced Markov transition diagram for the computers 

 

As mentioned in Section 6.5, it was chosen to merge the states of a Markov transition 

diagram which have the same impact of the controller behavior. For the computers (see 

Fig.6.6), the possible outputs are: 

 

 Correct values: values of MFV, BFV aperture and FP speed calculated from the 

input received form the sensors (i.e., states 1, 6, and 11 of Fig.6.5), 

 Old value: last correct values of MFV, BFV aperture and FP speed (i.e., states 2, 

3, 4, 7, 8, 9, 12, 13, 14, and 16 of Fig.6.5), 

 Arbitrary value: random generated value (i.e., states 5, 10, and 15 of Fig.6.5). 

 

The resulting reduced Markov model for the computers is shown in Fig.6.10. 
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Fig.6.10 – Reduced Markov transition diagram for the computers 

 

6.5.2 Combined Markov transition diagrams for the MFV, BFV and FP controllers 

 

Looking at Fig.6.7, the possible outputs of the controllers are: 

 

 Correct value: the controller is sending the correct values of MFV, BFV aperture 

and FP speed received by the computers (i.e., state 1 of Fig.6.7) 

 Old value: the controller is sending the oldest correct values of MFV, BFV 

aperture and FP speed (i.e., state 8 of Fig.6.7) 

 Output high: the controller is sending  the highest values of MFV, BFV aperture 

and FP speed (i.e., state 4 of Fig.6.7) 

 Output low: the controller is sending the lowest values of MFV, BFV aperture and 

FP speed (i.e., state 2, 5 and 7 of Fig.6.7) 

 Arbitrary output: the controller is sending a random generated value of MFV, 

BFV aperture and FP speed (i.e., state 6 of Fig.6.7). 
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The resulting combined Markov model for the controllers is shown in Fig.6.11. 

 

 

Fig.6.11 – Reduced Markov model for the controllers 

 

6.5.3 Combined Markov transition diagram for the PDI controller 

 

The possible outputs of the PDI controller are: 

 

 Values of MFV aperture calculated from the computers (i.e., state 1of Fig.6.4), 

 Last correct values of MFV aperture(i.e., state 2 Fig.6.4), 

 Random generated value (i.e., state 3 of Fig.6.4), 

 0 vdc (i.e., state 4, 5 and 6 of Fig.6.4). 
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Fig.6.12 – Reduced Markov model for the PDI controller 

 

6.6 Summary of the reduced Markov transition diagrams for the EIE 

 

After the recombination (see Section 6.4) and reducing (see Section 6.5) processes, the 

overall number of components is considerably decreased from N = 61740 (see Section 

6.5 and ) to N = 3·5·5·5·4·2 = 3000 as shown in   

 

 

Components # states 

Computers (Fig.6.10) 3 

MFV Controller (Fig.6.11) 5 

BFV Controller (Fig.6.11) 5 

FP Controller (Fig.6.11) 5 

PDI Controller (Fig.6.12) 4 

Controller power (Fig.6.8) 2 
 

Table 6.2 – List of component states after the recombination (see Section 6.4) 

and reduction processes (see Section 6.5)
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CHAPTER 7 

 

 

THE MARKOV/CELL-TO-CELL MAPPING TECHNIQUE 

 

 

In the reliability model construction of digital I&C systems using the Markov/CCMT, 

the system failure probability (i.e., the probability that Top Events are reached) is 

evaluated throughout a series of discrete transitions within the controlled variable state 

space (CVSS). These discrete transitions take into account: 

 

1. the natural dynamic behavior of the system (e.g. mass and energy conservation 

laws), 

2. the control laws, and, 

3. hardware/firmware/software states and their impact on the controlled/monitored 

process variables. 

 

Items 1 and 2 above are modeled using the CCMT.  Item 3 is modeled using a 

Markov transition diagrams presented in Section 6 for each of the components listed in 

Section 2. This section gives an overview of the mathematical foundation of the 

Markov/CCMT. 
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7.1 Construction of the Markov model using CCMT 

 

The CCMT [16] is a systematic procedure used to describe the dynamics of both 

linear and non-linear systems in discrete time and in a discretized system state space (or 

the subspace of the controlled variables only).  The CCMT first requires the partitioning 

of the state space or the CVSS into Vj (j = 1,...,J) cells (Section 7.3). Top events are 

represented as sink cells. 

The evolution of the system is modeled and described through the probability pn,j(k) 

that the controlled variables are in a predefined region or cell Vj in the state space at time 

t = k·Δt (k = 0,1,...) with the system components (such as pumps, valves, or controllers) 

having a component states combination n = 1,..,N (see Section 6.6).  The state 

combination represents the system configuration at a given time and contains information 

regarding the operational (or the failure) status of each component. 

Transitions between cells depend on: 

 

 the dynamic behavior of the system 

 control logic of the control system 

 hardware/firmware/software states. 

 

The dynamic behavior of the system is usually described by a set of differential or 

algebraic equations as well as the set of control laws, as presented in Section 2.  The 

operating/failure states of each component are specified by the user.  The procedure to 

determine: 
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 the cumulative distribution function (Cdf) of each Top Event, 

 the probability distribution function (pdf) of each Top Event, 

 the event sequences 

 

follows several steps. These sequences of steps are explained in the following sections 

Section 7.2 to 7.8.   

 

7.2 Definition of the Top Events 

 

The controller is regarded as failed if water level in SGn rises above +30 inches and 

falls below -24 inches (see Section 2). Subsequently, there are two Top Events: 

 

 xn < -24 in (Low Level) 

 xn > +30 in (High Level). 

 

The cells that correspond to Top Events are modeled as absorbing cells or sink cells, i.e., 

the system can not move out of these cells and thus the transition probabilities from these 

cells to others cells in the state space or CVSS are equal to 0. 
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7.3 Partitioning of the State Space or the CVSS into Computational Cells 

 

The dynamics of the system is modeled as transitions between cells Vj (j = 1,...,J) that 

partition the state space or CVSS [7]. The partitioning needs to be performed in such a 

way that, other than Vj being disjoint and covering the whole space (definition of 

partitioning), values of the controlled variables defining the Top Events (in our case xn) 

and the setpoints must fall on the boundary of Vj and not within Vj. Figure 7.1 graphically 

shows a possible partition of the CVSS of a system characterized by only three variables. 

An important issue is the direct coupling between the discretization of the CVSS and 

the time step (Δt) of the simulation. In fact, given a discretization of the CVSS, a too low 

value of Δt could lead, in principle, to the system being unable to exit the starting cells 

unless properly chosen. 

 

 

Fig.7.1 – Example of partitioning of the CVSS 
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7.4 Definition of the Hardware/Firmware/Software States 

 

The definition of states in the construction of the Markov transitions diagrams for the 

components of the DFWCS described in Section 2 is presented in Section 6. In particular, 

Section 6.6 and  summarize the final results for the Markov modeling of the DFWCS 

components. 

 

7.5 Determination of Cell-to-Cell Transition Probabilities 

 

As presented in Section 7.1, the evolution of any dynamic system depends on three 

factors essentially: 

 

 the dynamic equations of the system, 

 the control laws of the control system, and 

 the state of each component. 

 

Consequently, the probability of the system to transit from a cell Vj' to cell Vj also 

depends on these three factors presented earlier. In the Markov/CCMT [7] [17], the first 

two factors are accounted for in the transition probability g(j|j',n',k) while the third one is 

captured by the transition probability h(n|n',j'→ j) (see Section 7.6). 

The cell-to-cell transition probabilities g(j|j',n',k) are conditional probabilities that the 

controlled variables are in the cell Vj at time t = (k+1)Δt given that: 
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 the controlled variables are in the cell Vj’ at time t = kΔt, and, 

 the system components are in component state combination n(k) = n' at time t. 

 

It can be shown that the g(j|j',n',k) can be found from [7]: 
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where: 

 

 vj is the volume of the cell Vj 

 kx~  is the arrival point in the state space/CVSS at time t = (k+1)Δt 

 x' is the starting point in the cell Vj’ at time t = kΔt 

 n' is the component state combination at time t = kΔt. 

 

The algorithm to determine g(j|j',n',k) is the following: 

 

1. Partition a cell j’ into Np subcells. 

2. Choose the midpoint of each subcell, integrate the equations which describe the 

dynamic behavior of the system (e.g., for the DFWCS the equations are presented 

in Section 2.2.2) over the time interval kΔt ≤ t ≤ (k+1)Δt under the assumption 
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that the component state combination remains n’ at all times during kΔt ≤ t ≤ 

(k+1)Δt. 

3. Observe the number of arrivals in Np+1 at time t = kΔt (i.e., ),','(~
1 knxxk ).  

4. Obtain g(j|j',n',k) = Np / (Np+1). 

This process is equivalent to approximating the integral in Eq.(7.1) by an Np point, equal 

weight quadrature scheme.  

 

7.6 Determination of Hardware/Firmware/Software State Transition Probabilities 

 

The stochastic behavior of hardware/software/firmware is represented through 

h(n|n',j'→j), which is the probability that the component state combination (see Section 

6.6 and ) at time t = (k+1)Δt is n, given that: 

 

 n(k) = n' at t = kΔt, and 

 the controlled variables transit from cell Vj' to cell Vj during kΔt ≤ t < (k+1)Δt. 

 

For components with statistically independent failures, the probabilities h(n|n',j'→j) 

are the products of the individual component failure or non-failure probabilities during 

the mapping time step from kΔt to (k+1)Δt, i.e., 

 





M

m

mmm jjnncjjnnh
1

)','|()','|(    (7.3) 
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where cm(nm|n'm,j'→j) is the transition probability for component m from the combination 

n'm to nm within [kΔt, (k+1)Δt] during the transition from the cell Vj' to Vj. Each 

cm(nm|n'm,j'→j) is thus determined from the transitions diagrams presented in Section 6. 

It is important to highlight that after the recombination and reducing processes 

presented in Sections 6.4 and 6.5, respectively, the transition probabilities of the DFWCS 

components are time dependent.  

 

7.7 Construction of the Cell-to –Cell Transitions Probabilities 

 

The definition of the two transition probabilities h(n|n',j'→j) and g(j|j',n',k) consent to 

determine the evolution of the system in terms of the probabilities pn,j(k+1). In particular, 

the probability pn,j(k+1) that, at t = (k+1)Δt, the controlled variables are in cell Vj and the 

component state combination is n is the sum of N×J terms where N is the total number of 

component state combinations and J tis the total number of cells which partition the 

CVSS. 

Each of these terms is the product of two factors: 

 

 the probability q(n,j|n',j',k) for the system to transit from the cell Vj’ and 

component state combination n' to cell Vj and component state combination n, 

and, 

 the probability that the system is in the initial cell Vj’ and state combination n’ 

(pn,j(k)).   
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Thus: 

)(),','|,()1( '',

1' 1'
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N

n
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jn 
 

    (7.4) 

 

The elements of the transition matrix q(n,j|n',j',k) are functions of both 

 

 the cell to cell transition probability g(j|j',n',k) (see Section 7.5), and 

 the component state transition probability h(n|n',j'→j) (see Section 7.6) 

 

From [14]: 

 

)','|(),','|(),','|,( jjnnhkjnjgkjnjnq    (7.5) 

 

Since cells Vj cover the whole CVSS and N includes all the possible state combinations: 
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7.8 Determination of pdf and Cdf 

 

After computing pn,j(k) at the end of each time step k, the Cdf Fγ(k) and pdf wn,γ(k) for 

the TopEvent γ ( γ = 1,..., Γ) can be calculated as presented in Eq.7.8: 
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Each Top Event γ is a set of cells in the CVSS. 

Statistical importance of hardware/software/firmware configuration n to failure event 

γ at time t= kΔt can be determined from: 
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where Sn is the set of system states containing the hardware/software/firmware 

configuration n. 
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CHAPTER 8 

 

 

EXAMPLE INITIATING EVENT ANALYSIS 

 

 
This section shows how it is possible to implement the Markov/CCMT methodology 

presented in the previous sections. The system under consideration is presented in 

Section 8.1 and it is a simplified version of the DFWCS presented in Section 2. The 

implementation of the Markov/CCMT methodology has been accomplished with a code 

written in Java and presented in Section 8.2 and in Appendix A. Since, the code 

SAPHIRE requires as input are dynamic event trees (DET) [18], Markov/CCMT produce 

event sequences which can be easily interpreted as dynamic event trees (DET) as shown 

in Section 8.3.  

 

8.1 An example initiating event (EIE) 

 

Most of the analysis performed for Level 2 PRA assumes that the reactor is shutdown 

in all the initiating events. In this respect, the following initiating event (EIE) [7] is used 

in order to illustrate how it is possible to implement Markov/CCMT methodology for the 

reliability analysis of digital control systems: 
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1. Turbine trips 

2. Reactor is shutdown 

3. Power P(t) is generated from the decay heat 

4. Reactor power and steam flow rate decay from 6.6% of 3000 MWth (or 1500 

MWth/SG) and the analysis starts10 second after reactor shutdown 

5. Feedwater flow and level are initially at nominal value 

6. Off-site power is available 

7. Main computer is failed. 

 

In summary, the reactor is originally at full power (3000 MWth)., Following the 

turbine trip (initiating event), the reactor is shut down. Ten seconds after shutdown, the 

decay power for a reactor operating previously for one year at full power (3000MWth) is 

[13]: 

 
















2.072.0 )1015.3(

1

)10(

1
300066.0)(

tt
tP    (8.1) 

 

From Section 2, the control laws needed for the EIE are the following: 

 

Rate of level change:  )( snwn

n ffA
dt

dx
     (8.2) 

Compensated water level: )(12 snwnnLn
Ln ffxC

dt

dC
    (8.3) 
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Compensated power:  
dt

dp
ptC

dt

dC
n

npn

pn

34 )(     (8.4) 

 

Flow Demand (Low Power):         

)()]([)()( MnMnLnnwnBnPnBnMBnBn tCrdthCtC     (8.5) 
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FP Demand:   
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BFV Position:  







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operating MC     
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~
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Bn tS







  (8.8) 

 

The feedwater flow is obtained from the solution of: 

 

 (8.9) 

 

For the example initiating event, the state space is 4-dimensional (see Fig.7.1) and is 

comprised of 
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 level xn 

 level error ELn 

 compensated level Cln 

 BFV position SBn. 

 

As presented above, the components involved in the EIE are BC, BFV and BFV 

controller. In order to simplify the overall system presented in Sections 2 and 4 for 

illustration purposes, the following assumptions are introduced: 

 

1. Only loss of both inputs can occur (and not possibly one). 

2. Only the BFV controller failure can generate arbitrary output. If BC generates 

arbitrary output due to internal failure, it is recognized by the BC and BC transits 

to State D. 

3. Loss of communications between the sensors and BC and between BC and BFV 

controller cannot be recovered. 

4. The BFV controller cannot fail in Output High mode. 

5. FP cannot fail. 

 

The BFV controller Output Low mode failure is included in 0 vdc Output in Fig.6.7 

since they have the same effect on the actuated device (i.e. valve totally closed). Also, 

since the MC has failed (not recoverable) and only the BC computer is operating, the 

computer-computer connections (see Fig.6.6) are reduced to the one presented in MS 3 
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only. Due to Assumptions 1 and 2, Loss of One Input and Arbitrary Output (see Fig.6.5) 

are not considered in intra-computer interactions. 

From Assumption 3, the Plane 2 that represents the loss of output of the controller in 

Fig.6.7 is no longer needed. Subsequently, Loss of Output leads the controller to transit to 

the 0 vdc Output directly.  

Figure 8.1 shows the finite state machine model of the DFWCS for the EIE. The 

states of this Markov transition diagram are: 

 

 Controller/Device Communicating: This macro state indicates that the combined 

BFV-BFV controller is operating correctly and it contains the following BC 

states: 

 

o State A: BC operating correctly 

o State B-C: BC does not receive any signals from the sensors (BC detects 

vdc in the sensor reading) 

o State D: BC down 

 

 Freeze: BFV controller recognizes that BC is down and maintains the position of 

the BFV. 

 Stuck: BFV remains stuck in the same position due to mechanical failure. 

 Arbitrary Output: BFV controller is sending random data to the BFV due to 

internal failure (software/firmware/hardware). 
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 0 vdc Output: 0.0 vdc on the line which connects controller and valve. This can be 

due to both a loss of communication between BFV controller and BFV or also due 

to the Low Output mode failure of the BFV controller. 

 

 

Fig.8.1 – Finite state machine for the EIE 

 

A list of the possible transitions between these states is presented in Table 8.1 

. 
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Table 8.1 – Possible transition for the EIE 

 

The BFV position is function of both the BC and BFV controller states and may 

reflect history dependence. In this respect,  shows the BFV position as function of the 

possible components state combinations. 

 

 
 

Table 8.2 – BFV position as function of the system state for the EIE 
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8.2 Program description 

 

The implementation of the Markov/CCMT applied to the EIE presented in Section 

8.1 has been accomplished by building a program written in Java and presented in 

Appendix A. Java is an object-oriented language developed by Sun Microsystems in the 

mid ‘90s. This language derives great part of its syntax from the C language and it has 

great capabilities to deal with objects. This feature is particularly useful for the 

implementation of the Markov/CCMT methodology. 

The main idea of the program is to build a “dynamic’ array of objects where each 

object is an event sequence. As mentioned in Section 7, each event sequence is the 

trajectory of a single point in the CVSS (see Fig.7.1). In computing language, an array is 

simply a vector of objects with a finite length fixed by user at the moment of its 

declaration. The concept of dynamic arrays has been introduced to compensate the need 

of an array whose length is a variable and where new objects can be inserted or deleted 

easily. Each object, in this case, is representing the trajectory of a point in the CVSS 

during the mission time. 

The mission time is divided into “time steps” where each time step has the same time 

length. During this time step, also called Markov time, the component state combination 

remains untouched. 

Starting from a fixed number of initial points in a cell of the CVSS (see Fig.7.1), the 

program starts to follow the trajectories of these points. As presented in Section 7, the 

transition from a cell to another depends on the component state combination and the 

dynamic of the system (i.e., the control laws).   
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In Sections 8.2.1 - 8.2.3 the program is described in detail. 

 

8.2.1 Inputs 

 

The inputs needed for the Markov/CCMT analysis include the information on both 

Type I and Type II interactions as shown in Fig.1.1 and in Section 1. 

Type I interactions relate to indirect interactions between the system components 

through the controlled/monitored process and have been presented in Section 2. These 

interactions are modeled by the set equations presented in Section 8.1 and the numerical 

implementation shown in Section 8.2.3. 

Type II interactions relate to direct interactions between the components of the 

control system. These interactions have been modeled using Markov transition diagrams 

as presented in Section 6. Section 8.1 shows the finite state machine for the EIE. The 

resulting Markov transition diagram has the same number of states as the finite state 

machine and transitions between these states can be described using a matrix M. The 

matrix M for the EIE is presented in . Each element m[i,j] of M indicate the probability of 

transition from state i to j. Since failure data are not available, m[i,j] is 1 if the transition 

is not possible and 0 otherwise. 
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State 1 2 3 4 5 6 7 

1 

2 

3 

4 

5 

6 

7 

1 1 1 1 1 1 1 

0 0 1 1 1 1 1 

0 0 0 1 1 1 1 

0 0 0 1 1 1 1 

0 0 0 0 1 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 

 

Table 8.3 – Transition scheme for the EIE 

 

The level range was partitioned into three cells, one cell corresponding to the normal 

operating range and the other two cells corresponding to the two Top Events, High Level 

and Low Level. 

 

8.2.2 Classes and objects 

 

In several programming languages it is possible to define more complicated structures 

(known also as classes) other than the elementary structures such as characters, numbers 

or Boolean. The purpose of these structures is to incorporate several variables of different 

formats (such as characters, numbers or Boolean) in a single entity:  a class. 

For the EIE (but, in general, for every Markov/CCMT analysis) the trajectory of each 

scenario is a sequence of several points where each point is characterized by the 

following information: 
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 the components state combination n 

 the cell j in the CVSS 

 

Figure 8.2 shows two event sequences (i.e., the trajectories of 2 points).  

 

 

Fig.8.2 – Characterization of the dynamic of the points generated by the Markov/CCMT methodology  

 

Moreover, as presented in Section 8.1, every cells j is characterized by the following 

variables: 

 

 level 

 compensated level 

 level error 

 BFV position 

 

Note that since the whole normal operating range is characterized by one cell, all the 

arrival points 1
~

kx and departure points 'x  in Eq.(7.1)  that fall within the normal 



   105 

operating range are contained within the same cell.  Subsequently, )1,','|( knjjg =1 

for j’ corresponding to the normal operating range unless j corresponds to High Level or 

Low Level.  In the latter two cases, )1,','|( knjjg =0 for j’ and j corresponding to the 

normal operating range.    

 

Figure 8.2 shows how it has been possible to implement a point using Java thorough a 

specific class called “step” which incorporate the following variables: 

 

 the component state combination n 

 level 

 compensated level 

 level error 

 BFV position 
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Fig.8.3 – Class implemented in Java to define a point in CVSS for the EIE 

 

A single event sequence is simply a sequence of points and is implemented in Java as an 

array of “step”. This array is called “branch” and it is shown in Fig.8.4. 

 

public class step  

{ 

 public int n; // component state combination 

  

 public double l; // level 

 public double cl; // compensated level 

 public double le; // level error 

 public double bfvpos; // BFV pos 

  

 public step () 

 { 

  n = 0; 

  l = 0; 

  cl = 0; 

  le = 0; 

  bfvpos = 0; 

 } 

  

public step (int stateComb, double level, double compensatedLevel, 

double levelError, double bfv) 

 { 

  n = stateComb; 

  l = level; 

  cl = compensatedLevel; 

  le = levelError; 

  bfvpos = bfv; 

 } 

} 
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Fig.8.4 – Class implemented in Java to define scenario for the EIE 

 

8.2.3 Program Engine 

 

The main purpose of the engine program, shown in Fig.8.5, is to follow and analyze 

the path of every point. This engine performs the following operations for every Markov 

time step and for each point in CVSS: 

 

1. generate new points, one for each transition in the Markov model (see ) 

2. determine the new position of the original step and the position of the points 

generated in 1 using the EIE simulator (See Section 8.2.4). 

 

public class branch  

{  

 public step [] path ; 

 

 public int completedSteps; 

 

 public branch (int tSteps) 

 { 

  path = new step [tSteps]; 

   

  completedSteps = 1; 

   

  int initialStateCombination = 0; 

  double initialLevel = 0; 

  double initialCompensatedLevel = 0; 

  double initialLevelError = 0.0; 

  double bfvpos = 0.0; 

  

  for (int k=0 ; k<tSteps ; k++) 

  { 

   path[k] = new step(initialStateCombination , 

initialLevel, initialCompensatedLevel, initialLevelError, bfvpos); 

  } 

 } 

} 



   108 

The function which accomplishes this task is the function “nodeAnalysis” and it is shown 

in Fig.8.5 and entirely in Appendix A 

 

 

Fig.8.5 – Program engine 

 

8.2.4 EIE simulator 

 

The simulator for the EIE is implemented directly in Java as a separate function. This 

function receives as inputs the following parameters: 

 

 the initial point (n, j) 

 the Markov time step t 

 

The program, given the cell of the initial point, determines the value of the theoretical 

aperture of the BFV. Then, depending on the status of the components state combination, 

it determines the real aperture of the BFV and the consequent feedwater flow. Thus, the 

arriving cell j’ is determined. The point generated (situated in cell j’ and having the same 

component state combination n) is then saved in the array. 

for (int i = 0 ; i < tree.capacity() ; i++)      

{ 

temp = tree.elementAt(i); 

    

 for (int j = temp.completedSteps-1 ; j<timesteps-1 ; j++)     

 { 

  tree = nodesAnalysis (tree, i, j, matrix_n, dt); 

 } 

} 
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8.2.5 Output 

 

The output of the program is a list of all the possible trajectories (i.e., a list of all the 

possible event sequences) given the set of initial points.  Since the CVSS (level) is 

represented by a single cell, the Cdf for High Level (PH ) or Low Level (PL ) occurrence 

at time t=kt can be found from 
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where j’ corresponds to the normal operating range. 

Event sequences and DET are logically equivalent. In fact, assuming that the system 

starts in an operational state where all process variables are in the nominal range and all 

system components are operational, the algorithm starts branching through discrete time 

steps such that each level of branching in the tree represents all the possible states in 

which the system may be after a given time interval. Branching stops any time a branch 

reaches a "sink" state (i.e., a state from which the system cannot move out) or the 

probability associated with the branch is below a chosen threshold. It is also possible to 

stop after a certain amount of system time has elapsed or, equivalently, once the 

branching has reached a chosen depth in the tree. 
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Fig.8.6 – Event trees data structure and event sequences 

 

The DET is represented by a tree data structure. A tree data structure is composed of 

"nodes" (where information is stored) and "links" that connect the nodes. The nodes in 

the tree data structure correspond to the branching points in the DET and the links 

represent the branches. Figure 8.6 shows 3 event sequences (E.S. 1, E.S. 2 and E.S. 3), 

the relative event tree and a tree data structure that might be used to represent it. In the 

example, the tree nodes hold the information about the system component states: MC, BC 

and BFV. The event corresponding to a specific branch in the tree can be deduced by 

comparing the configurations at the beginning and at the end of the branch. Since the 

level is partitioned only into three cells, a large number of nodes will fall within the 

normal operating range for level.  In this situation, it is also possible to regard the CVSS 

cells as the nodes. Then if the  )1,','|( knjjg  obtained from the trajectories generated 
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by the algorithms in Figs. 8.4 and 8.5 (see Section 8.2.2) are used to determine the links 

between these nodes, the links represent the expected behavior of the trajectories, 

weighted by the probability of occurrence of the trajectories as determined by 

)','|( jjnnh  .   

 

8.3 Results 

 

The tool used to generate event sequences starts from a normal state in which all the 

system components are operational and the process variables are within their nominal 

range.  

Table 8.4 shows an example of failure scenario. For each time step are indicated the 

system configuration, the level of the SG and comments regarding the status of the 

DFWCS. 

 

Time [s] System configuration Level [ft] Comments 

1 

BC: Operating 

BFV: Communicating 0 

Both BFV and BC are in their operational 

state, and all process variables are in their 

nominal range. 

2 

BC: Operating 

BFV: Communicating -0.404 

Both BFV and BC are in their operational 

state, and all process variables are in their 

nominal range. 

3 
BC: Loss of Input 

BFV: Communicating 
0.534 BC loses and input from one sensor. 

4 
BC: Down 

BFV: Communicating 
1.039 

Since BC does not recover the loss of input, 

it takes itself down. 

5 
BC: Down 

BFV: Freeze 
1.555 

Since BC is down, controller BFV controller 

freezes its output. 

6 
BC: Down 

BFV: Arbitrary Output 

2.610 

(High) 

Internal failure of the BFV controller which 

generate arbitrary output. 

 

Table 8.4 – Example of scenario for the EIE 
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Table 8.5 summarizes the event sequences generated by the program for the EIE. In 

particular, it shows the number of scenarios generated for different time steps and the 

percentage of high and low scenarios. Moreover, Fig.8.7 and Fig.8.8 display the number 

of failure scenarios as function of time steps. 

 

# time steps Tot Low High % Low % High 

0 0 0 0 0 0 

1 1 0 0 0 0 

2 7 0 0 0 0 

3 26 0 0 0 0 

4 70 0 0 0 0 

5 155 0 1 0 0.6 

6 301 0 12 0 4.0 

7 532 45 22 8.5 4.1 

8 876 80 37 9.1 4.2 

9 1365 133 66 9.7 4.8 

10 2035 259 137 12.7 6.7 

11 2926 456 304 15.6 10.4 

12 4082 739 510 18.1 12.5 

13 5551 1064 803 19.2 14.5 

14 7385 1629 1307 22.1 17.7 

15 9640 2346 1885 24.3 19.6 

 

Table 8.5 – Summary of the event sequences generated for the EIE 
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Fig.8.7 – Number of scenarios generated for the EIE 

 

 

Fig.8.8 – Number of scenarios for the two Top Events generated for the EIE 
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Figure 8.9 shows that the exact timing of the failure of a system component can have 

an impact on the resulting system failure. In particular, Fig.8.9 depicts the evolution of 

the level variable under two distinct scenarios starting both from the same initial 

conditions as presented in Section 8.1 for the EIE. 

In one case, the BFV fails stuck at the current position at time t = 5 sec. In the other 

case, the BFV fails stuck at time t = 4 sec. The first scenario results in the level failing 

low (xn < - 2.0 feet), while the second scenario results in the level failing high (xn > 2.5 

feet). 

This example is important because, for a system similar to the digital feedwater 

control system in an operating PWR, it illustrates: 

 

 what has been reported in the literature on the possible sensitivity of the system 

failure mode to the exact timing of component failures [2] , and, 

 that an analysis that considers only the order of events and ignores their exact 

timing may result in the failure to identify possible failure modes. 
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Fig.8.9 – Different Failure Modes as Result of Timing of BFV failure 

 

 

Since )','|( jjnnh  data were not available, no attempt was made to determine PL and 

PH.
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CHAPTER 9 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

 

 

The methodology described in this thesis shows how it is possible to model digital 

control systems for PRA purposes using Markov/CCMT. In particular, it shows how it is 

possible to perform the analysis starting from a detailed description and understanding of 

the system under consideration. These inputs are the control laws, system topology, 

control logic and the analysis of the failures and effects performed for all the components 

of the system.  

The analysis of the system is performed merging two separate models, one for each of 

the two types of interactions. Type I interactions take into account the dynamic of the 

system and how the process and the controller affect each other. These are modeled using 

the CCMT which describes the dynamic of the process through transitions between cells 

that compose the CVSS. Type II interactions, on the other hand, take into account the 

interactions among the components of the controller. These are modeled thorough 

Markov transitions diagrams, one for each component. Discrete hardware/software/ 

firmware states are defined and transitions between these states are deduced from the 

control logic of the system, as well as from the failure modes and effects analysis 

performed on each component. 
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Starting form a finite set of initial point distributed in the CVSS, the Markov/CCMT 

follows the trajectories originating from these points. At each time step and for each 

point, new point, having the same location in the CVSS but different system 

configuration based on the Markov models previously built, are generated. 

The set of the overall trajectories are in principle event sequences which can be 

simply converted into dynamic event trees. These event sequences can be incorporated 

into an existing ET/FT based PRA of a PWR using the SAPHIRE code.  Markov/CCMT 

also yields DETs that represent the ensemble average of the event sequences for the 

partitioning defined for the CVSS.    

Thus, the objectives of this thesis presented in Section 1 are met and fulfilled. These 

objectives include: 

 

1. show how it is possible to model digital control systems for PRA using the 

Markov/CCMT methodology, and 

2. produce dynamic event trees which can be incorporated into an existing ET/FT 

based PRA of a PWR using the SAPHIRE code. 

 

The methodology can capture: 

 

1. dependence of the control action on system history, 

2. dependence of system failure modes on exact timing of failures, 

3. functional as well as intermittent failures, 

4. error detection capability, 
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5. possible system recovery from failure modes 

 

The first three requirements are satisfied by using auxiliary process variables as 

appropriate.  For example, in the EIE, it is shown how the need to keep track of the BFV 

position (due to the freeze state of the controllers) is satisfied by adding the variable 

“BFV position”. In general, every time that the system under consideration shows history 

dependence properties, a new variable or a new state would need to be added. The 

drawback is a greater computational effort. I 

This thesis also shows how the interplay of computers and controllers is modeled 

through a 3-layer finite state machine model. A layer shows the interactions among one 

or more components. The definition and the consequently construction of each layer 

would strongly depend on the connection network of the components themselves. 

The error detection capabilities and the system recovery from failure modes of the 

control system are specified in the FMEA. The recovery form failure can be implemented 

simply adding a transition to the finite state machine model from the same state failure 

state to the operating state. For example, in the DFWCS, recovery from a failure in the 

communication (between sensors and computers or between computer and controllers) 

are implemented in this way. 

Some areas require additional research and study. The exponential growth of the 

event sequences for the EIE indicates a computational challenge even for simple systems 

for a large number of time steps. This growth can be by either reducing the number of 

states of the Markov transitions diagrams or increasing the Markov time step t. This 

thesis illustrates how it is possible to reduce drastically the number of states by merging 
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components together or states of the same Markov transition diagram. An investigation 

regarding the effect of the length Markov time on the overall analysis should be 

performed once failure rates for the failures presented in the FMEA will be available. 

Thus, it could be possible to observe how the Cdf and pdf of the Top Events are affected 

by the choice of the length of the Markov time step. 

According to Perrow in [19], the DFWCS is a loosely coupled system. It is suggested 

to perform a Markov/CCMT analysis on tightly coupled systems [19] in order to 

demonstrate the feasibility of the methodology for systems with more complicated 

topologies. 
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The program which implements the Markov/CCMT methodology for the EIE is 

presented in the following pages. 

 
import java.util.Scanner; 

import java.io.*; 

import java.util.Vector; 

import java.lang.Math; 

 

import flanagan.integration.RungeKutta; 

 

public class EIE  

{ 

 public static void main(String[] args) throws IOException 

    {  

  double [][] matrix_n =      

  { 

    {1,1,1,1,1,1,1}, 

    {0,0,1,1,1,1,1}, 

    {0,0,0,1,1,1,1}, 

    {0,0,0,1,1,1,1}, 

    {0,0,0,0,1,1,1}, 

    {0,0,0,0,0,1,1}, 

    {0,0,0,0,0,0,1}, 

  }; 

   

   

  int simulationtime = 2;  // in seconds 

  int dt = 1; 

  int timesteps = simulationtime/dt; 

 

  Vector<branch> tree = new Vector<branch>(0,1); 

   

  branch zero = new branch (timesteps); 

 

  tree.add(0, zero); 

 

  branch temp; // temp e' il branch sotto considerazione 

   

  for (int i=0 ; i<tree.capacity() ; i++)     { 

   temp = tree.elementAt(i); 

    

   for (int j=temp.completedSteps-1 ; j<timesteps-1 ; 

j++)       { 

    tree = nodesAnalysis (tree, i, j, matrix_n, 

dt); 

   } 

  } 

 

  PrintWriter outputFile = new PrintWriter (new 

FileWriter("c:\\eie.csv")); 

   

  branch temp2; 

   

  for (int y = 0 ; y < tree.capacity() ; y++) 

     { 
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   temp2 = tree.elementAt(y); 

    

   for (int x = 0 ; x < timesteps ; x++) 

   { 

    outputFile.print(temp2.path[x].n + " , " ); 

   } 

    

   outputFile.println(); 

     } 

 

  outputFile.close();  

   

  System.out.println(tree.capacity()); 

   

  branch temp3; 

   

  int failH = 0; 

  int failL = 0; 

  int OK = 0; 

   

  for (int y = 0 ; y < tree.capacity() ; y++) 

  { 

   boolean H = false; 

   boolean L = false; 

   boolean sistemOK = true; 

    

   temp3 = tree.elementAt(y); 

       

   for (int x = 0 ; ((x<timesteps) && sistemOK) ; x++) 

   { 

    if (temp3.path[x].l<(-2)) 

    { 

     L = true; 

     sistemOK = false; 

     failL++; 

    } 

    if (temp3.path[x].l>2.5) 

    { 

     H = true; 

     sistemOK = false; 

     failH++; 

    } 

   } 

  } 

   

  System.out.println(tree.capacity() + " , " + failL + " , " 

+ failH); 

   

    } 

  

  

 public static step nextStep (step initial, int t, int deltatau, 

int n) 

 { 
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  step fin = new step(n, initial.l, initial.cl, initial.le, 

initial.bfvpos); 

   

  DifferentialEquations des = 

DifferentialEquations.getInstance(); 

 

        if (initial.n == 0) // CV 

        { 

         des.setUseOldBfvPosition(false); 

        } 

        if (initial.n == 1) // OV 

        { 

         des.setUseOldBfvPosition(true); 

         des.setBfvPosition(initial.bfvpos); 

        } 

        if (initial.n == 2) // OV 

        { 

         des.setUseOldBfvPosition(true); 

         des.setBfvPosition(initial.bfvpos); 

        } 

        if (initial.n == 3) // OV 

        { 

         des.setUseOldBfvPosition(true); 

         des.setBfvPosition(initial.bfvpos); 

        } 

        if (initial.n == 4) // AO 

        { 

         des.setUseOldBfvPosition(false); 

         des.setBfvPosition(Math.random()*100); 

        } 

        if (initial.n == 5) // 0 vdc 

        { 

         des.setUseOldBfvPosition(false); 

         des.setBfvPosition(0); 

        } 

        if (initial.n == 6) // OV 

        { 

         des.setUseOldBfvPosition(true); 

         des.setBfvPosition(initial.bfvpos); 

        } 

    

  double[] X = RungeKutta.fourthOrder(des, t , new double[] { 

initial.l , initial.le , initial.cl }, t + deltatau, 0.01 * deltatau); 

   

  fin.n = n; 

        fin.l  = X[0]; 

        fin.le = X[1]; 

        fin.cl = X[2]; 

        fin.bfvpos = clamp(des.getBfvPosition(), 0.0, 100.0); 

        fin.bfvpos = des.getBfvPosition(); 

         

  return fin;  

 } 
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 public static Vector<branch> nodesAnalysis (Vector<branch> 

oldtree, int row, int column, double [][] g, int dt) 

 { 

  branch origin = oldtree.elementAt(row); 

   

  int combination = origin.path[column].n; 

   

  int count = 0; 

  

  for (int l=0 ; l<7 ; l++) 

  {  

   if (g [combination][l] == 1) 

   { 

    count++; 

     

    if (count == 1)   

    { 

     origin.path[column+1] = 

nextStep(origin.path[column], column*dt, dt, l); 

     

     origin.completedSteps++; 

      

     oldtree.removeElementAt(row); 

      

     oldtree.add(row,origin); 

    } 

    else // crea una nuova branch 

    { 

     oldtree = branchGeneration(oldtree, row, 

column, l, dt); 

    } 

   } 

  }   

  return oldtree; 

 } 

  

  

 public static Vector<branch> branchGeneration (Vector<branch> ot, 

int r, int c, int stateComb, int t) 

 { 

  branch or = new branch (ot.elementAt(r).path.length); 

   

  or.completedSteps = ot.elementAt(r).completedSteps; 

 

  for (int i=0; i<ot.elementAt(r).completedSteps ; i++)  

  { 

   or.path[i] = new step (ot.elementAt(r).path[i].n , 

ot.elementAt(r).path[i].l , ot.elementAt(r).path[i].cl, 

ot.elementAt(r).path[i].le, ot.elementAt(r).path[i].bfvpos); 

  } 

   

  int d = or.completedSteps-1; 

   

  or.path[d].n = stateComb; 
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  or.path[d] = nextStep(or.path[d] , c*t , t , stateComb); 

 

  ot.add(or); 

   

  return ot; 

 } 

  

 public static double clamp(double currBfvPos, double min, double 

max) 

    { 

     if (currBfvPos < min) 

     { 

      return min; 

     } 

     else if (currBfvPos > max) 

     { 

      return max; 

     } 

     else 

     { 

      return currBfvPos; 

     } 

    } 

  

} 

 

 

 

 


