

RELIABILITY MODELING OF DIGITAL CONTROL SYSTEMS

USING THE MARKOV/CELL-TO-CELL MAPPING TECHNIQUE

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Diego Mandelli, Laurea

The Ohio State University

2008

Master’s Examination Committee:

 Approved by

Dr. Tunc Aldemir, Advisor

Dr. Don Miller

 Advisor

Graduate Program in Nuclear Engineering

 ii

ABSTRACT

Many nuclear power plants are replacing aging analog instrumentation and control

(I&C) systems with modern digital systems. In several plants, non-safety related

systems, such as feedwater control, are already controlled by digital equipment. The

replacement of an existing component with a new component may affect the safety and

the reliability of the overall system. In particular, this is valid if the component added,

such as a digital control system, has different failures modes compared to an analog

control system and these failure modes affect the behavior of the overall system

differently.

In the reliability modeling of digital control systems, conventional approaches based

on the event-tree/fault-tree (ET/FT) methodology have limited capabilities in the

representation of the statistical dependence between failure events. Dynamic

methodologies can be considered as an important alternative to overcome this limitation

and the Markov/CCMT (cell-to-cell mapping technique) has been proposed as an

alternative dynamic methodology for the probabilistic risk assessment (PRA) of digital

control systems.

In this thesis, the Markov/CCMT is illustrated using the digital control system of the

feedwater system of a pressurized water reactor (PWR). Discrete hardware/software/

firmware states are defined and transitions between these states are deduced from the

control logic of the system, as well as from the failure modes and effects analysis

 iii

performed on each component. The CCMT is used to represent the dynamics of the

system in terms of probability of transitions between process variable magnitude intervals

(cells) that partition the state space. The resulting event sequences is converted into

dynamic event trees (DETs) which can be incorporated into an existing ET/FT based

PRA of a PWR using an existing PRA tool such as the SAPHIRE code.

 iv

Dedication

ddeeddiiccaattoo aa ttuuttttee llee ppeerrssoonnee cchhee hhaannnnoo vviissssuuttoo ccoonn mmee qquueessttoo ssooggnnoo

ddeeddiiccaatteedd ttoo aallll tthhee ppeeooppllee wwhhoo hhaavvee lliivveedd tthhiiss ddrreeaamm wwiitthh mmee

 v

ACKNOWLEDGMENTS

I wish to thank Dr. Aldemir for his intellectual support during these years and his

guidance and enthusiasm which made this thesis possible.

I am also grateful to Dr. Miller, Dr. Ekici, Dr. Bucci, Jason Kirschenbaum and Dr.

Stovsky for their assistance and stimulating discussions.

I want to say thanks to my family which helped me a lot in these years away from

them.

Finally I want to thank Cheri for the moral support and the encouragement

 vi

VITA

1978 Born in Brescia, Italy

1997 High School Degree, Electronics and Telecommunications Technical

degree, Brescia, Italy

2004 Polytechnic of Milan, Italy: Laurea in Nuclear Engineering

Final degree score of 92/100

Thesis: “Study on pressurized water reactor cores for space applications”

2007 The Ohio State University: Master in Nuclear Engineering

PUBLICATIONS

Research publications

1. “An Event Tree/Fault Tree/Embedded Markov Model Approach for the PSAM-8

Benchmark Problem Concerning a Phased Mission Space Propulsion System”, D.

Mandelli, T. Aldemir, PSAM8: Proceedings of the 6th International Conference on

Probabilistic Safety Assessment and Management, New Orleans 2006.

2. ”A Benchmark System for the Assessment of Reliability Modeling

Methodologies for Digital Instrumentation and Control Systems in Nuclear Plants“, T.

Aldemir, D. Mandelli et al., Proceedings NPIC&HMIT 2006, Albuquerque, New Mexico

(2006).

3. “Incorporation of Markov Reliability Models for Digital Instrumentation and

Control Systems into Existing PRAs”, T. Aldemir, D. Mandelli et al., Proceedings

NPIC&HMIT 2006, Albuquerque, New Mexico (2006).

4. “Reliability Modeling of Digital Instrumentation and Control Systems for nuclear

Reactor Probabilistic Risk Assessments”, NUREG/CR-6942, U. S. Nuclear Regulatory

Commission, Washington, D.C. (2006).

5. “A Risk-Informed Approach in the Design of a Molten Salt Reactor,” T. Aldemir,

D. Mandelli et al., ANS 2007, Boston, Massachusetts (2007).

 vii

6. “A Benchmark System for the Reliability Modeling of Digital Instrumentation

and Control Systems, D. Mandelli, T. Aldemir et al., PSAM9: Proceedings of the 7th

International Conference on Probabilistic Safety Assessment and Management, Hong

Kong 2008.

7. “Markov/CCMT Modeling of the Benchmark System and Incorporation of the

Results Into an Existing PRA, D. Mandelli, T. Aldemir et al., PSAM9: Proceedings of the

7th International Conference on Probabilistic Safety Assessment and Management, Hong

Kong 2008.

FIELDS OF STUDY

Major Field: Nuclear Engineering

 viii

TABLE OF CONTENTS

Page

Abstract .. iii

Dedication .. iv

Acknowledgments... v

Vita ... vi

List of Tables .. xii

List of Figures ... xii

Chapters:

1. Introduction .. 1

1.1 Toward Digital Communication and Control Systems (I&C) 1

1.2 Motivation of this work .. 3

1.3 Thesis Organization .. 4

2. System Description .. 7

2.1 System overview ... 7

2.1.1 Actuated devices .. 8

2.1.2 Operating modes and control logic .. 9

2.2 Detailed view of the benchmark system ... 13

2.2.1 Physical connections of the DFWCS ... 13

2.2.2 Control laws ... 16

2.2.3 Fault tolerant features .. 20

3. Description of the system operation under abnorma conditions 23

3.1 Main and Backup Computer FMEAs ... 24

3.2 MFV, FP, BFV and PDI controllers ... 30

4. Finite state machine modeling ... 40

4.1 From the network structure to the system finite state machine 40

4.2 Intra-computer interactions ... 42

4.3 Inter-computer interaction .. 43

4.3.1 Transitions from MS1 to MS2 ... 45

4.3.2 Transitions from MS1 to MS3 ... 46

 ix

4.4 Computer-controller-actuated device interactions .. 47

4.5 Examples of Initiating Events ... 50

4.5.1 Scenario 1... 51

4.5.2 Scenario 2... 53

5. Simulink model of the DFWCS ... 55

5.1 Input and SG modules ... 55

5.2 Control logic module .. 58

5.3 Actuated device module .. 59

5.4 Initiating Event Simulation Results .. 59

5.4.1 Reactor Shutdown .. 60

5.4.2 Power Increase Scenario .. 61

6. Markov modeling ... 63

6.1 Main and Backup Computers.. 64

6.2 MFV, BFV and FP Controller .. 66

6.3 PDI Controller ... 68

6.4 System state recombination .. 70

6.4.1 Interactions between MC and BC .. 70

6.4.2 Interactions between MC/BC and the MFV/FP/BFV controllers 71

6.4.3 Power sources .. 73

6.5 Component state combination reduction .. 75

6.5.1 Reduced Markov transition diagram for the computers 80

6.5.2 Combined Markov transition diagrams for the MFV, BFV and FP controllers

... 81

6.5.3 Combined Markov transition diagram for the PDI controller 82

6.6 Summary of the reduced Markov transition diagrams for the EIE 83

7. The Markov/Cell-to-Cell mapping techinque .. 84

7.1 Construction of the Markov model using CCMT ... 85

7.2 Definition of the Top Events... 86

7.3 Partitioning of the State Space or the CVSS into Computational Cells 87

7.4 Definition of the Hardware/Firmware/Software States .. 88

7.5 Determination of Cell-to-Cell Transition Probabilities .. 88

7.6 Determination of Hardware/Firmware/Software State Transition Probabilities 90

7.7 Construction of the Cell-to –Cell Transitions Probabilities 91

7.8 Determination of pdf and Cdf ... 93

8. Example initiating event analysis .. 94

8.1 An example initiating event (EIE) .. 94

 x

8.2 Program description .. 101

8.2.1 Inputs.. 102

8.2.2 Classes and objects .. 103

8.2.3 Program Engine ... 107

8.2.4 EIE simulator ... 108

8.2.5 Output .. 109

8.3 Results ... 111

9. Conclusions and recomendations for future work ... 116

References ... 120

Appendix A ... 123

 xi

LIST OF TABLES

Table Page

Table 2.1 – List of symbols used in the controller algorithm 16

Table 3.2 – FMEA for the BC .. 29

Table 3.3 – FMEA for the MFV ... 34

Table 3.4 – FMEA for the BFV .. 35

Table 3.5 – FMEA for the FP ... 37

Table 3.6 – FMEA for the PDI ... 39

Table 4.1 – List of events for the first scenario .. 52

Table 4.2 – List of events for the second scenario .. 54

Table 6.1 – List of states for each component of the DFWCS after recombination ... 75

Table 6.2 – List of component states after the recombination (see Section 6.4) 83

Table 8.1 – Possible transition for the EIE ... 100

Table 8.2 – BFV position as function of the system state for the EIE 100

Table 8.3 – Transition scheme for the EIE ... 103

Table 8.4 – Example of scenario for the EIE .. 111

Table 8.5 – Summary of the event sequences generated for the EIE 112

 xii

LIST OF FIGURES

Figure Page

Fig.1.1 – General layout of the work presented in this thesis 5

Fig.2.1 – Overall overview of the feedwater system .. 8

Fig.2.2 – Analog connections for the DFWCS control system................................... 11

Fig.2.3 – Digital connections for the DFWCS control system 12

Fig.2.4 – Connection schemes for the computers (MC and BC) and the sensors....... 14

Fig.2.5 – Connection schemes for the computers (MC and BC), the watchdog timer and

the controllers.. 15

Fig.2.6 – Lookup table for the MFV and FP... 18

Fig.4.1 - Possible connection scheme: mesh (e.g., DFWCS), star, tree, bus 41

Fig.4.2 – Intra-computers interaction scheme... 43

Fig.4.3 – Inter-Computers interaction scheme .. 47

Fig.4.4 – Computer-Controller-Actuated device interactions scheme........................ 49

Fig.4.5 – Description of the first scenario through the finite state machine 53

Fig.4.6 – Description of the first scenario through the finite state machine 54

Fig.5.1 – Simulink Input modules: exponentially decay (a) and sequence of ramps (b)57

Fig.5.2 – Power behavior for the two cases under consideration: exponentially decay (a)

and sequence of ramps (b) .. 57

Fig.5.3 – Control logic module ... 58

Fig.5.4 – Simulink module for MFV, BFV and FP .. 59

Fig.5.5 – Level response during the decay heat scenario ... 60

Fig.5.6 – MFV response for the scenario presented in Fig.5.2.b 61

Fig.5.7 – FP response for the scenario presented in Fig.5.2.b 61

Fig.5.8 – Behavior of the level of the SG for the scenario presented in Fig.5.2.b 62

Fig.6.1 – Markov transition diagram for the MC.. 65

Fig.6.2 – Markov transition diagram for the BC .. 66

Fig.6.3 – Markov transition diagram for the combined BFV-BFV Controller 67

Fig.6.4 – Markov transition diagram for the PDI Controller 69

Fig.6.5 – Markov transition diagram for the combined system MC-BC 71

Fig.6.6 – Markov transition diagram of the combined system MC-BC after the

recombination ... 72

Fig.6.7 – Markov transition diagram of ensemble BFV-BFV controller after the

recombination ... 73

Fig.6.8 – Markov transition diagram for the controller power source 74

Fig.6.9– Illustrative example for the state reduction technique 76

Fig.6.10 – Reduced Markov transition diagram for the computers 81

 xiii

Fig.6.11 – Reduced Markov model for the controllers ... 82

Fig.6.12 – Reduced Markov model for the PDI controller ... 83

Fig.7.1 – Example of partitioning of the CVSS .. 87

Fig.8.1 – Finite state machine for the EIE .. 99

Fig.8.2 – Characterization of the dynamic of the points generated by the Markov/CCMT

methodology ... 104

Fig.8.3 – Class implemented in Java to define a point in CVSS for the EIE 106

Fig.8.4 – Class implemented in Java to define scenario for the EIE 107

Fig.8.5 – Program engine .. 108

Fig.8.6 – Event trees data structure and event sequences ... 110

Fig.8.7 – Number of scenarios generated for the EIE ... 113

Fig.8.8 – Number of scenarios for the two Top Events generated for the EIE 113

Fig.8.9 – Different Failure Modes as Result of Timing of BFV failure 115

 1

CHAPTER 1

INTRODUCTION

This chapter discusses the possible impact of digital control systems on nuclear power

plant operation from a reliability view point and, thus, the motivation for this thesis. The

logic structure of this work is then shown in Section 1.3

1.1 Toward Digital Communication and Control Systems (I&C)

Instrumentation and control (I&C) systems are widely used in nuclear power plants

for monitoring, control and protection [1]. Since the beginning of the nuclear era in the

1940s, analog systems have accomplished these tasks satisfactorily. Although there are

some design issues, such as inaccurate design specifications and susceptibility to certain

environmental conditions, the primary concerns with the extended use of analog systems

are the effects of aging such as mechanical failures and environmental degradation.

Digital systems are essentially free of drift that afflicts analog systems and, thus, they

maintain their calibration better. Digital systems can improve system performance due to

their accuracy and computational capabilities such as:

 2

 Self testing

 Signal validation

 Process system diagnostics

 Fault tolerance

 Higher data handling

 Storage capabilities.

In this respect, nuclear power plants are in the process of replacing and upgrading

aging and obsolete I&C systems with digital ones. The replacement of an existing system

with a new component may affect the safety and the reliability of the overall system. This

is particularly valid if the component added, such as a digital control system, has different

failures modes compared to an analog control system and these failure modes affect the

behavior of the overall system differently.

Probability risk assessment (PRA) is a commonly used tool not only in the nuclear

but also the chemical and the aeronautical industries to examine the safety and reliability

of specific systems. Due to the nature of digital systems, conventional PRA tools, such as

fault trees and event trees (FT and ET), may not possess the capability to model most

digital systems since these tools have limited capabilities in the representation of the

statistical dependence between failure events. Dynamic methodologies are those that

explicitly account for the time element in system evolution and have been proposed as

alternatives to conventional tools for the reliability modeling of digital systems. The

NUREG/CR-6901(Current State of Reliability Modeling Methodologies for Digital

 3

Systems and Their Acceptance Criteria for Nuclear Power Plant Assessments) [2]

contains a recent survey of these methodologies

In 2002 the U.S. Nuclear Regulatory Commission (NRC) initiated a collaborative

study with The Ohio State University (OSU) to develop both policies and methods for

inclusion of reliability models for digital systems into current generation nuclear power

plant PRAs. This study identified the Markov/CCMT (Chapter 7) and dynamic flowgraph

methodology (DFM) [3] as methodologies that rank as the top two with most positive

features and least negative or uncertain features (using subjective criteria based on

reported experience) [2].

1.2 Motivation of this work

The purpose of this thesis can be summarized in the following two points:

 show how it is possible to model digital control systems for PRA purposes using the

Markov/CCMT methodology, and

 produce event sequences or dynamic event trees which can be incorporated into an

existing ET/FT based PRA of a PWR using the SAPHIRE code [4].

The features of digital I&C systems that need to be accounted for in their reliability

modeling and which have been captured by the Markov/CCMT methodology are the

following:

 4

 dependence of the control action on system history,

 dependence of system failure modes on exact timing of failures,

 functional as well as intermittent failures,

 error detection capability,

 possible system recovery from failure modes.

These features and others that need to be accounted in the reliability modeling if digital

I&C systems for are described in [5].

1.3 Thesis Organization

As shown in Fig.1.1 the modeling of digital control systems through the

Markov/CCMT methodology consists of several steps which account for two types of

interactions:

 the interactions between the digital I&C system and controlled/monitored process

(defined in [2] as Type I interactions), and

 the interactions between different components of the controller itself (defined in

[2] as Type II interactions),.

For each of these two analyses, the following two steps have to be performed:

 5

 Construct a Markov model

 Apply the set of rules of the Markov/CCMT methodology

Fig.1.1 – General layout of the work presented in this thesis

Chapter 2 describes in detail the benchmark system that is analyzed: the digital

control system of a feedwater system (DFWCS) of a PWR. The components, the

connections among them and the control laws are presented in detail.

 6

The modeling of the Type II interactions is introduced in Chapters 3 and 4. Chapter 3

shows the failure modes and effects analysis (FMEA) for all the components of the

DFWCS and Chapter 4 implements the information contained in Chapter 3 using a finite

state machine description for each component.

The modeling of Type I interactions is described in Chapter 5 thorough a Simulink

model which implements the control laws and the effects of possible failures modes of

the DFWCS components on the dynamic of the system.

Chapters 6 and 7 show how the information obtained from system modeling is used to

perform the Markov/CCMT analysis. In particular, Chapter 6 shows how it is possible to

model Type II interactions thorough a Markov transition diagram. Markov transitions

diagrams are deduced from the finite state machine descriptions presented in Chapter 4 in

order to describe the temporal behavior of the controller’s components. Chapter 7 shows

how Type I interactions are modeled thorough the CCMT. This technique is used to

represent the dynamics of the system in terms of probability of transitions between

process variable magnitude intervals (cells) that partition the state space.

Finally, Chapter 8 shows how it possible to implement the Markov/CCMT

methodology on a simplified version of the benchmark system in order to obtain event

sequences and dynamic event trees which can be used as input for the SAPHIRE code.

 7

CHAPTER 2

SYSTEM DESCRIPTION

This chapter introduces the benchmark system that is used to show how it is possible to

model digital I&Cs systems using Markov/CCMT. The system is described in detail and

the components, connections among them and control laws are presented.

2.1 System overview

The system under consideration is the feedwater system of typical two loops PWR

(see Fig.2.1) [6, 7, 8, 9]. Each steam generator (SG) has its own digital feedwater

controller. The purpose of the DFWCS is to maintain the water level inside each of the

SGs optimally within ± 2 inches (with respect to some reference point) of the setpoint

level (defined at 0 inches). The controller is regarded as failed if water level in a SG rises

above +30 inches and falls below -24 inches. Each feedwater controller is connected to

three actuated devices:

 a feedwater pump (FP),

 a main feedwater regulating valve (MFV), and

 8

 a bypass feedwater regulating valve (BFV).

Fig.2.1 – Overall overview of the feedwater system

In the following sections, a detailed description of the DFWCS (components,

connection and control logic) is presented.

2.1.1 Actuated devices

The controller regulates the flow of feedwater to the steam generators to maintain a

constant water level in the own steam generator. In addition to the FP, FP seal water

system, MFV, and BFV, the feedwater control system contains high pressure (HP)

feedwater heaters and associate piping and instrumentation [6, 7, 8, 9].

Feed pumps are steam turbine driven, horizontal, double-suction, double volute,

single stage, centrifugal pumps. The pumps have a design output of 15,000 gpm at a

suction rate of 318.7 psia and a discharge pressure of 118.9 psia. The normal operating

 9

discharge pressure is approximately 1100 psig at 100%. The FP is driven by a dual

admission, horizontal, 9140 HP, 5350 rpm steam turbine. During plant operation with

power greater than 5%, the turbine is aligned to the reheat and main steam system. Steam

is supplied from the main steam system during plant startup until reheat steam pressure is

sufficient to supply the turbines. If main steam is not available or power is less than 5%,

steam can be supplied to the feed pump turbine from the auxiliary steam system. The

purpose of the FPs is to pump the feedwater through the high pressure feedwater heaters

into the SGs with sufficient pressure to overcome both the SG secondary side pressure

and the frictional losses between the feed pump and the SG inlet.

The MFV and BFV regulate the amount of feedwater going into the SG in order to

maintain a constant water level in the SG. The MFV is a 10 inch, air operated, angle

control valve with 16 inch end connections. This valve is made of steel and has a design

rating of 2160 psig at 1000°F. The actuator is a piston type actuator, with separate

instrument air supplies to the top and the bottom of the piston. Ball valves control the

admission of operating air to the piston for opening and closing operations. The BFV is a

6 inch, air operated, steel control valve.

2.1.2 Operating modes and control logic

The DFWCS operates in different modes depending on the power generated in the

primary system. These modes are the following [6, 7, 8, 9]:

 10

 Low power mode

 High power mode

 Automatic transfer from low to high power mode

 Automatic transfer from high to low power mode

Low power mode of operation occurs when the reactor operates between 2% and 15%

reactor power. In this mode, the BFV is used exclusively to control the feedwater flow.

The MFV is closed and the FP is set to a minimal speed. The control laws use the

feedwater flow, feedwater temperature, feedwater level in the steam generator, and

neutron flux to compute the BFV position. The feedwater level is fed to a proportional

integral differential (PID) controller using the feedwater temperature to determine the

gain. Then this value is summed with the feedwater flow and neutron flux. Essentially,

neutron flux and feedwater flow are used to predict required changes in water levels.

High power mode is used when the reactor power is between 15% and 100% reactor

power. In this mode, the MFV and the FP are used to control the feedwater flow. The

BFV is closed in a manner that is similar to low power mode. The control laws (see

Section 2.2.2) use the feedwater level in the steam generator, steam flow, and feedwater

flow to compute the total feedwater demand. This computed value is used to determine

both the position of the MFV and the speed of the FP. The FP also uses the other digital

feedwater MFV controller’s output to compute the speed needed. The feedwater flow and

steam flow are summed and fed to a set of PI controller algorithms. The output from

these controller algorithms is added to the feedwater level and that result is fed to a PI

controller algorithm that uses the steam flow for the controller algorithm’s gain.

 11

Each digital feedwater controller is comprised of several components (see Fig.2.2 and

Fig.2.3) which provide both control and fault tolerant capabilities. The control algorithms

are executed on both a main computer (MC) and backup computer (BC). These

computers produce both analog and digital output signals for the MFV, BFV, FP and

pressure differential indicator (PDI) controllers, as shown in Fig.s 2.2 and 2.3,

respectively.

Fig.2.2 – Analog connections for the DFWCS control system

 12

Fig.2.3 – Digital connections for the DFWCS control system

Each of these controllers forward the MC or BC’s outputs to their respective

controlled device (MFV, BFV or FP), or it can maintain the previous output to that

device. If the controllers decide to maintain a previous output value to a controlled

device, it is necessary for operators to override the controller.

Transitions between low and high power are controlled by the neutron flux readings.

When the system is in low power mode and the neutron flux increases to a point at which

high power mode is necessary, the MFV is signaled to open while the BFV closes to

maintain needed feedwater flow. The opposite situation occurs when the system is in high

power mode and the neutron flux decreases to a point when low power mode is needed.

 13

2.2 Detailed view of the benchmark system

This section describes the DFWCS at a greater level of detail [6, 7, 8, 9]. In

particular, the physical connections between the sensors, computers, controllers and

actuated devices (MFV, BFP and FP) are examined. In addition, the control laws are

stated and the fault tolerant features of the architecture are described.

2.2.1 Physical connections of the DFWCS

The DFWCS obtains information about the state of the controlled process through the

use of several sensors that measure (see Fig.2.1):

 feedwater level,

 neutron flux,

 feedwater flow,

 steam flow, and

 feedwater temperature.

As shown in Fig.2.4, the sensor signals are routed to provide information to both the

MC and BC. The set point data is delivered from the MFV controller to the MC and BC

through an analog signal.

 14

Fig.2.4 – Connection schemes for the computers (MC and BC) and the sensors

The DFWCS components are connected together in several different ways as shown

in Fig.2.2 and Fig.2.3. First, both the MC and BC provide input signals to the MFV, BFV

and FP controllers through an analog control signal and failure status signals. The MFV,

BFV, and FP controllers are configured within the DFWCS to share status information.

The PDI controller serves as a backup for the MFV controller by sampling the output of

 15

the MFV controller. If the MFV controller output is lost, the PDI will send the last good

MFV controller signal to the MFV. The PDI controller also shares status information

with the MFV, BFV and FP controllers.

Figure 2.5 shows the connections between computer, controller and the watchdog

timer. A watchdog timer is a hardware timer used to determine if a software error or other

computer failure has rendered a processor unusable. A normally functioning computer

resets the watchdog timer at regular intervals. However, in the presence of a software

error or another computer failure, the timer will not be reset by the computer and the

timer can go off. For example, a runaway process, halted (failed) processor, or a

sufficiently lengthy computational delay may result in failure to reset the watchdog timer.

As a result, the watchdog timer may go off. If the timer goes off, all components in the

controller connected to the watchdog timer are notified of the computer failure. In the

case of the benchmark system, the MV, BFV, and FP controllers are notified and transfer

control away from the affected computer.

Fig.2.5 – Connection schemes for the computers (MC and BC), the watchdog timer and the controllers

 16

2.2.2 Control laws

The control laws for the feedwater controller for SGn (n = 1, 2; see Fig.2.1) under

normal system operation have been taken from the control algorithm of the DFWCS

(written in C code) of an operating PWR and can be expressed as in Eqs. (2.1) – (2.13)

below [6, 7, 8, 9]. The symbols used in Eqs. (2.1) – (2.13) are listed in Table 2.1. As

mentioned in Section 2.1, the inputs of the computers are the readings of the sensors (i.e.

SG level, feedwater flow, steam flow, power and feedwater temperature). The first step

of the calculation determines the flow demand needed. This value is also function of the

operating modes of the controller (i.e. high or low power mode).

 Variable Symbol Variable Name

 xn Level [ft]

 fwn Feedwater flow

 fsn Steam flow

 A SG sectional area [ft
2
]

 CLn Compensated water level

 EFn Compensated flow error

 pn Compensated power

 Cpn Power

 CFn Flow demand (High Power)

 CBn Flow demand (Low Power)

 rn Level set point

 σMn MFV Demand

 σBn BFV Demand

 σFn FP Demand

)(
~

tSFn
 FP position

)(
~

tSMn
 MFV position

)(
~

tS Bn
 BFV position

Table 2.1 – List of symbols used in the controller algorithm

 17

Rate of level change:)(snwn

n ffA
dt

dx
 (2.1)

Compensated water level:)(12 snwnnLn
Ln ffxC

dt

dC
  (2.2)

Compensated flow error:)()(76
dt

df

dt

df
tE

dt

dE xnwn
Ln

Fn   (2.3)

Compensated power:
dt

dp
ptC

dt

dC
n

npn

pn

34)(  (2.4)

Flow demand (High Power):

)()]()([)()(BnFnFnLnnsnFnFn tEtCrdtftC    (2.5)

Flow Demand (Low Power):

)()]([)()(MnMnLnnwnBnPnBnMBnBn tCrdthCtC    (2.6)

Value of the flow demand (CFn or CBn) is then translated into demand, position (σBn σMn

for BFV and MFV respectively) or speed (σFn for FP), for all the three actuated devices

(MFV, BFV, FP). This is done through lookup tables as shown in Fig.2.6 for the MFV

and FP. Flow demand is a normalized valued which can range in the interval 0-100,

valve position and pump speed are values located in the interval 1-10.

FP Demand:


 


 Power)(High)))(C,(max(C

Power) (Low 0)(C
)(

Fn

1

Fn

Fn

MnFn

Fn

Fn t



 (2.7)

 18

MFV Demand:





Power)(High)(C

Power) (Low 0
)(

FnMn

Mn t


 (2.8)

BFV Demand:





Power)(High 0

Power) (Low)(
)(

tC
t

Bn

Bn (2.9)

Fig.2.6 – Lookup table for the MFV and FP

Finally, the value of the actuated device demand is translated into speed or position.

At the position, the status of the MC and BC computers (i.e., computer operating or

computer down) is taken into account.

FP Speed:










down MC down, BC

down MCoperating, BC

operating MC

)(
~

Fn

Fnb

Fnm

Fn tS







 (2.10)

 19

MFV Position:










down MC down, BC

down MCoperating, BC

operating MC

)(
~

Mn

Mnb

Mnm

Mn tS







 (2.11)

BFV Position:










down MC down, BC

down MCoperating, BC

operating MC

)(
~

Bn

Bnb

Bnm

Bn tS







 (2.12)

As mentioned in Section 2.1.2, the PDI controller enters into action in case of a loss

of communication between MFV controller and MFV. The PDI decision logic can be

expressed as the following:

PDI Decision:


 


Otherwise

0S
~

 0
)(Mn

Bn

Fn tS


 (2.13)

Also, all sensor inputs are averaged before being processed by the control laws. For

example, the feedwater level for SG1 is the average of the two feedwater level sensors

LV1 and LV2 (see Fig.2.1). Equations 2.2 - 2.4 compute the flow demand for high power

mode for the feedwater controller. Equation 2.6 computes the BFV demand for low

power mode. The dynamic gain βBn(hwn) and λMn(σMn) in Eq. 2.6 obtained from a lookup

table on the feedwater temperature and the MFV opening respectively. The subscripts m

and b in Eqs. 2.10-2.13 refer to signals from the main and backup CPUs respectively. The

ηFn , ηMn and ηBn in Eqs. 2.10-2.13 denote history data for the FP, MFV and BFV

 20

positions, respectively. If both the MC and the BC have failed, these data are used to

determine the FP, MFV and BFV positions.

2.2.3 Fault tolerant features

Since the MFV, BFV and FP controllers forward the control signals to the

corresponding control points (the MFV, BFV, and FP, respectively, as well as the PDI

controller), they provide a level of fault tolerance [6, 7, 8, 9] if both the MC and BC fail

by allowing the operators time to intervene by holding the outputs of each to a previously

valid value.

The MC and BC, the MFV, BFV and FP and the PDI controllers are each connected

to an independent power source wired to a separate bus. A single power source failure

can only affect one computer, all of the MFV/BFV/FP controllers, or the PDI controller

at one time.

Both the MC and BC are set to oversample at 3 times the Nyquist criterion (the

Nyquist criterion states that the highest frequency present in a signal must be less than

half of the sample frequency) to avoid aliasing. Moreover, a failure in the MC or BC can

be detected and the fail over (fail over is the process in which a degraded component is

removed from control and replaced by a healthy component) to a healthy component can

occur with enough time to meet the response requirements of the process.

The water level set point is taken from a switch connected to the MFV and is

propagated to both the MC and BC. If the set point signal goes out of range, then the

computers fall back on a preprogrammed set point value.

 21

Each computer (MC or BC) is connected to a watchdog timer. A watchdog timer is a

hardware timer and associated connections used to determine if a software error or other

computer failure has rendered a processor unusable. A normally functioning computer

resets the watchdog timer at regular, defined intervals so the timer does not “go off.”

However, in the presence of a software error or another computer failure, the timer will

not be reset by the computer and the timer can go off. For example, a runaway process,

halted (failed) processor, or a sufficiently lengthy computational delay may result in

failure to reset the watchdog timer. As a result, the watchdog timer may go off. If the

timer goes off, all components in the controller connected to the watchdog timer are

notified of the computer failure. In the case of the benchmark system, the MFV, BFV,

and FP controllers are notified and transfer control away from the affected computer.

Each computer (MC or BC) verifies and validates its inputs, checking for out range

and excessive rate changes in the inputs that would indicate errors in the sensor readings

or problems with the analog to digital conversion of the values. Each computer will

ignore input that fails these checks if the other inputs are still valid.

Deviation between the two sensors is detected and, if the deviation is large enough,

the computer can signal a deviation error to the MFV, BFV, and FP controllers so they

may switch to the other computer.

The PDI controller provides one more level of fault tolerance, in that it holds the

MFV to a needed position if the MFV does not produce output.

The MFV, BFV and FP controllers also send their outputs to the MC and BC. When

the MC (or BC) is in control, it compares its output to the signals that the MFV, BFV and

FP controllers output signal to the actuators. If the output signal differs, then the

 22

computer indicates to the MFV, BFV and FP controllers that it has failed. The digital

feedwater controller failover logic consists of the following: the MC has control of the

control points initially, with the BC in “hot” standby. If the MC fails, then the BC takes

control. If the BC fails after the MC has failed, then the MFV, BFV, and FP controllers

each use one of their recent output value from the computer (essentially the last one that

the controller can store) and recycle that value to the control points. Any time a

component fails, the operator console is notified to allow operators to take mitigating

actions.

 23

CHAPTER 3

DESCRIPTION OF THE SYSTEM OPERATION

UNDER ABNORMAL CONDITIONS

This section presents a failure modes and effects analysis (FMEA) of the DFWCS [7].

The failure classes may include sensor failures, output failures, input failures and internal

failures. Each of the failure classes may contain a large number of faults. For example,

sensor failure may be the result of a physical sensor failure, cut wires, loose connections,

or hardware (such as analog to digital converters) on the receiver failing. While these

failure classes may be general, they are expected to capture the necessary information

about possible failures of the benchmark feedwater control system. Each component type

in the system, MC, BC, MFV controller, BFV controller, FP controller and PDI controller

has a separate FMEA chart associated with that component. In addition, the actuated

devices (i.e. MFV, BFV and FP) may fail to perform their design due to mechanical

failure. The only mechanical failures that will be considered for the benchmark DFWCS

are the valves getting stuck in their current position.

 24

3.1 Main and Backup Computer FMEAs

Table 3.1 summarizes MC failure classes [7]. Sensor failures may occur from many

possible sources, including decaying or broken wires, failed sensors, intermittent

transmission failures, or analog to digital conversion errors. A sensor failure is detected

through the use of rate of change checks, range checks, and comparison to previous

values used by both the MC and BC. For illustration, if the sensor was reading a 1.5 feet

water level signal and then it received a 150 feet signal, then this value is considered to

be an invalid sensor reading. Also, an indicator light illuminates on the operator console.

The MC and BC each disregard an invalid sensor reading if there is one sensor of

each type that is valid and wait for one computation interval before indicating their

failure. Subsequently, a common mode sensor failure that causes one sensor of a type

from both the MC and BC will not cause the MC and BC to fail. Rather, they will operate

using only one sensor. Thus, the controlled process is not affected by a single sensor

failure. However, due to the physical wiring of the sensors, if one sensor fails, its failure

may affect sensor readings for several computers on both steam generators and may lead

to a common mode failure. Even with this type of failure, the digital feedwater system

can still maintain control. As in the case of single sensor failure described above, this

event may occur from many possible sources including decayed or broken wires, failed

sensors, and intermittent transmission failures. Multiple sensor failures are detected in the

same manner as the single sensor failure described earlier.

The MC and BC uses previous values to perform their computations if multiple

sensors fail as in the single sensor failure case. Also, the MC and BC notifies the MFV,

 25

BFV, and FP controllers that it considers itself failed if the sensor readings do not return

to normal after a brief delay (which depends on the sampling requirements of the physical

process). This notification forces the MFV, BFV, and FP controllers to switch their input

acquisition device as necessary (i.e. they switch from the MC to BC, BC to MC). In case

both the MC and BF are failed, all the controllers maintain the latest valid value. Power

level changes are disabled in this mode. An indicator light illuminates on the operators’

console.

Control could be affected if the MC and BC have invalid data and the MFV, BFV,

and FP controllers are forced to control the process. The MC failure status signal can be

activated if the MC takes itself down through sensor validity checks, through application

failures or through a communication problem with the MFV, BFV, and FP controllers.

The MC failure status signal can also be activated if the MC detects that the output it sent

to the MFV, BFV or FP controllers differs from the output actually used by those

controllers. Alternatively, the MC’s watchdog timer may go off. Finally, the MC may fail

and its failure may not be detected due to a communication failure with the MFV, BFV,

and FP controllers. Failure is detected through the use of a watchdog timer and the

computer’s internal validity checks. If the watchdog timer goes off, it signals the MFV,

BFV and FP controllers to notify them that the MC has failed. These are the only

components that are affected by a MC failure.

The MC also checks and indicates that it is unreliable if any detectable errors occur.

For instance, the MC indicates that it is unreliable if it can detect that its sensors readings

are invalid. A detected failure causes the MC to signal failure and the system then

transfers to using the BC. If a failure is not detected, then the system continues to use the

 26

MC until either the output goes out of range or the rate of change exceeds what is

allowed. Then the BC takes over. The impact of a detected failure is minimal as the BC

takes control due to the watchdog timer reset. The system can maintain control. However,

an undetected failure may act as a Byzantine
1
 failure. For example, if the MC experiences

a crash, possibly an arbitrary value may be the output to the BFV, MFV and FP

controllers. This is one of the possible additional failure modes of digital I&C systems.

Also, the MC’s output may drift or simply fail to send an output signal. At some point,

the output signal may change such that it goes out of range, the rate of change becomes

too high or the output signal is lost. Should this situation occur, the MFV, BFV, and FP

controller(s) detect the error and switch to the BC. However, there still may be a loss of

control until the failure is detected. It is assumed that the arbitrary value category

includes any Byzantine failures that may occur.

Failure type Detection of Failure Effect of Failure on

Controller

Effects on

Controlled/Monitored

Process Variables

Loss of one sensor

inputs of a type of

input via computer

diagnostics.

Computer detects loss

in sensor reading.

Computer ignores

failed sensor. If the

sensor does not return

(to valid input),

computer indicates it

has failed if the other

computer is operating

normally.

None. Backup

Computer takes control

if the sensor does not

return.

Table 3.1 – FMEA for the MC

Continued

1
 A Byzantine failure is one in which any failed processes are modeled as actively trying to disrupt the

normal goals of the system

 27

Table 3.1 continued

Loss of both sensor

inputs of a type of

input via computer

diagnostics.

Computer detects loss

in sensor reading.

Computer uses the old

values of the sensor

reading. If the sensor

reading does not return,

computer indicates that

it has failed.

None. At the worst

case the Backup

Computer takes

control.

Intermittent sensor

failure.

Computer detects out

of range output and

physically impossible

rates of change.

Computer ignores

sensor input and uses

old values. It fails itself

if sensor does not

return to valid return.

None. At the worst

case the backup

computer takes

control.

Sensor failure.

Main and backup

computers detect this

via range output and

physically impossible

rates of change.

Computer ignores

sensor input and uses

old values. It fails itself

if sensor does not

return.

Both the main and

backup computers

will fail themselves if

the sensor does not

return.

Both sensors fail.

Main and backup

computers detect this

via range output and

physically impossible

rates of change.

Computer ignores

sensor input and uses

old values. It fails itself

if sensor does not

return.

Both the main and

backup computers

will fail themselves if

the sensors do not

return.

Loss of an output (0.0

vdc).

Component connected

to computer detects 0.0

vdc input reading.

Component signals that

this computer has

failed.

None. The backup

computer takes

control.

Loss of Power.

Computer failed signal

is tripped.

Continue with fail over

logic.

None. The backup

computer takes

control and no effect

on water level.

Roundoff/truncation/

sampling rate errors.

Detected by

connecting

components if output

ever is out of range or

exceeds the physically

possible rate.

Component fails the

computer.

If not detected, water

level may drift.

If detected, the

backup computer

takes control and no

effect on water level.

Unable to meet needed

response requirements.

Watchdog timer

detects the failed

computer.

Failover action occurs.

None. Backup

computer takes

control with no effect

on water level.

Continued

 28

Table 3.1 continued

Watchdog timer fails

to activate.

Detectable when

outputs of computer go

out of range or exceed

the physically possible

rate.

Failover action occurs

if detected.

If not detected, water

level may drift. If

detected, the backup

computer takes

control with no effect

on water level.

Watchdog timer

activates when

computer has not

failed.

Not detectable.

Failover action occurs.

None. Backup

computer takes

control.

Arbitrary value output.

Detectable by

connected component

if the computer does

not reset the watchdog

timer.

Component connected

to output signals that

this computer has

failed.

If not detected, water

level may increase or

decrease.

If detected, the

backup computer

takes control and no

effect on water level.

MFV/BFV/FP

controllers do not use

the output that the MC

computed.

Detected by comparing

outputs of

MFV/BFV/FP

controllers with MC

output

Component initiates

failover operation.

The valves and

feedwater pump will

remain in the same

state if the fail over

fails to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Setpoint drift.

Detectable by the

computers once the

setpoint has drifted out

of range.

Computers revert to

using a preprogrammed

value.

Water level will

increase or

decrease until it

reaches the

setpoint that has

drifted out of range,

then water level will

settle to the

preprogrammed

value.

Table 3.2 shows BC failure modes [7]. A simultaneous MC and BC failure is detected

through the use of watchdog timers. If the watchdog timers go off, the MFV, BFV and FP

controllers are notified of the computer failures. The MFV, BFV, and FP controllers are

 29

the only components that are affected directly by this failure. An indicator light

illuminates on the operators’ console. The failure is mitigated by the action of the MFV,

BFV, and FP controllers to hold the outputs at their old values.

The impact of these failures is, as expected, quite significant. In this case, the digital

control system has failed and the operators must intervene to take manual control of the

process as the MFV, BFV, and FP controllers continue to output old values to the MFRV,

BFRV, and FP controllers. The problems resulting from a MC and BC failure get worse

if the failures are not detected, as the MFV, BFV, and FP controllers will take more time

before they take over.

Failure type Detection of Failure Effect of Failure on

Controller

Effects on

Controlled/Monitored

Process Variables

Loss of one sensor

inputs of a type of

input via computer

diagnostics.

Computer detects loss

in sensor reading.

Computer ignores

failed sensor. If the

sensor does not

return (to valid input),

computer indicates it

has failed.

None.

Loss of both sensor

inputs of a type of

input via computer

diagnostics.

Computer detects loss

in sensor reading.

Computer uses the old

values of the sensor

reading. If the sensor

reading does not return,

computer indicates that

it has failed.

The valves and

feedwater pump will

remain in the same

state if the failover to

the MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Table 3.2 – FMEA for the BC

Continued

 30

Table 3.2 continued

Intermittent sensor

failure.

Computer detects out

of range output and

physically impossible

rates of change.

Computer ignores

sensor input and uses

old values. It fails itself

if sensor does not

return to valid input.

The valves and

feedwater pump will

remain in the same

state if fail over to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Sensor failure.

Main and backup

computers detect this

via range output and

physically impossible

rates of change.

Computer ignores

sensor input and uses

old values. It fails itself

if sensor does not

return.

Both the main and

backup computers

will fail themselves if

the sensor does not

return.

Both sensors fail.

Main and backup

computers detect this

via range output and

physically impossible

rates of change.

Computer ignores

sensor input and uses

old values. It fails itself

if sensor does not

return.

Both the main and

backup computers

will fail themselves if

the sensors do not

return.

Loss of an output (0.0

vdc).

Component connected

to computer detects 0.0

vdc input reading.

Component signals that

this computer has

failed.

None. The backup

computer takes

control.

Loss of Power.

Computer failed signal

is tripped.

Continue with fail over

logic.

The valves and

feedwater pump will

remain in the same

state if fail over fails

to the MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Continued

 31

Table 3.2 continued

Roundoff/truncation/

sampling rate errors.

Detected by

connecting

components if output

ever is out of range or

exceeds the physically

possible rate.

Component fails the

computer.

If not detected,

unknown.

If detected, the valves

and

feedwater pump will

remain in the

same state if fail over

fails to the

MFV/BFV/FP

controllers, thus the

effect on the process

variables depends on

the event in

consideration.

Unable to meet needed

response requirements.

Watchdog timer

detects the failed

computer.

Failover action occurs.

The valves and

feedwater pump will

remain in the same

state if fail over fails

to the MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Watchdog timer fails

to activate.

Detectable when

outputs of computer go

out of range or exceed

the physically possible

rate.

Failover action occurs

if detected.

If not detected,

unknown.

If detected, the valves

and feedwater pump

will remain in the

same state if fail over

fails to the

MFV/BFV/FP

controllers, thus the

effect on the process

variables depends on

the event in

consideration.

Continued

 32

Table 3.2 continued

Watchdog timer

activates when

computer has not

failed.

Not detectable.

Failover action occurs.

The valves and

feedwater pump will

remain in the same

state if fail over fails

to the MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Arbitrary value output.

Detectable by

connected component

if the computer does

not reset the watchdog

timer.

Component connected

to output signals that

this computer has

failed.

If not detected,

unknown.

If detected, the valves

and

feedwater pump will

remain in the

same state if fail over

fails to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

MFV/BFV/FP

controllers do not use

the output that the MC

computed.

Detected by comparing

outputs of

MFV/BFV/FP

controllers with MC

output

Component initiates

failover operation.

The valves and

feedwater pump will

remain in the same

state if the fail over

fails to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Setpoint drift.

Detectable by the

computers once the

setpoint has drifted out

of range.

Computers revert to

using a preprogrammed

value.

Water level will

increase or decrease

until it reaches the

setpoint that has

drifted out of range,

then water level will

settle to the

preprogrammed

value.

 33

3.2 MFV, FP, BFV and PDI controllers

The FMEA for MFV, BFV and FP controllers are given in Tables 3.3, 3.4, and 3.5,

respectively [7]. The MFV controller may fail due to a power loss or an internal program

crash (possibly from hanging, hard crash, or output failure). This event can only be

detected if the MFV controller output drops to 0.0 volts. In this case, the PDI controller

senses the drop in output and asserts the old value of the MFV controller’s output to the

MFV. The PDI controller acts as the MFV would, outputting the old output to the MFV.

At best, the digital feedwater control system reverts to a manual mode (and fails). At

worst, the MFV controller does not output the correct signals to the MFV and can cause

loss of control of the process.

The BFV controllers may fail because of a power loss or a program crash. This event

cannot be detected by the digital feedwater control system. If the BFV controller does not

output the correct signals to the BFV, loss of control of the process may occur. The

MFV/BFV/FP controllers may disagree as to the failure states of each computer. It is then

possible for the MFV controller to be accepting different signals than the FP and BFV

controllers. This event cannot be detected. The impact of this failure is that the SG water

level may increase or decrease depending on the failure of the MC/BC and the

MFV/BFV/FP controller’s indication of those failures.

Also, communication between the MFV, BFV, FP and PDI controller occurs only to

coordinate failure detection. This communication type of failure is captured by the

computer erroneously reported failed or not failed. Finally, it is noted that the MFV,

 34

BFV, PDI and FP controllers are all digital also, and as such may experience crashes that

may cause them to be unable to detect failures or output arbitrary values.

Failure type Detection of Failure Effect of Failure on

Controller

Effects on

Controlled/Monitored

Process Variables

Loss of power.

Detected by PDI.

PDI uses old signal for

the

MFV.

The MFV will remain

in the same state. Thus

the effect on the

process variables

depends on the event in

consideration.

Loss of output signal.

Detected by PDI.

PDI uses old signal for

the

MFV.

The MFV will remain

in the same state. Thus

the effect on the

process variables

depends on the event in

consideration.

Computer erroneously

reported failed.

Not detected.

Component initiates

failover operation.

The MFV will remain

in the same state if the

fail over fails to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Computer erroneously

reported not failed.

Can be detected if

computer fails and

output of computer is

out of range, the rate of

change is too great, or

the watchdog timer

goes off.

Component initiates

failover operation.

If detected the MFV

will remain in the same

state if the fail over

fails to the

MFV/BFV/FP

controllers, thus the

effect on the process

variables depends on

the event in

consideration.

Otherwise, unknown.

Table 3.3 – FMEA for the MFV

Continued

 35

Table 3.3 continued

MFV, BFV, FP

controllers do not

agree from which

computer to accept

input.

Cannot be detected.

MFV, BFV, and FP

may receive

inconsistent input.

Unknown effect may

increase or decrease

water level.

High output.

Cannot be detected.

MFV will be driven

open.

Feedwater flow will

increase, causing the

water level to

increase.

Low output.

Cannot be detected.

MFV will be driven

shut.

Feedwater flow will

decrease unless the

computer is operating

in low power mode.

In low power mode,

there will be no

effect.

Arbitrary value

output.

Cannot be detected.

MFV will open/close

according to the output.

Unknown effect; may

increase or decrease

water level.

Table 3.4 shows the FMEA table for the BFV controller.

Failure type Detection of Failure Effect of Failure on

Controller

Effects on

Controlled/Monitored

Process Variables

Loss of power.

Not detected.

Nothing.

Unknown effect on

water level.

Loss of output signal.

Not detected.

Nothing.

Unknown effect on

water level.

Table 3.4 – FMEA for the BFV

Continued

 36

Table 3.4 continued

Computer erroneously

reported failed.

Not detected.

Component initiates

failover operation.

The valves and

feedwater pump will

remain in the same

state if the fail over

fails to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Computer erroneously

reported not failed.

Can be detected if

computer fails and

output

of computer is out of

range, the rate of

change

is too great, or the

watchdog timer goes

off.

Component initiates

failover if detected.

If detected the valves

and feedwater pump

will remain in the

same state if the fail

over fails to the

MFV/BFV/FP

controllers.

Thus the effect on the

process variables

depends on the event

in consideration.

Otherwise, unknown.

MFV, BFV, FP

controllers do not

agree from which

computer to accept

input.

Cannot be detected.

MFV, BFV, and FP

may receive

inconsistent input.

Unknown effect may

increase or decrease

water level.

High output.

Cannot be detected.

BFV will be driven

open.

Feedwater flow will

increase, causing the

water level to

increase.

Low output.

Cannot be detected.

BFV will be driven

shut.

Feedwater flow will

decrease unless the

computer is operating

in low power mode.

In high power mode,

there will be no

effect.

Arbitrary value

output.

Cannot be detected.

BFV will open/close

according to the output.

Unknown effect; may

increase or decrease

water level

 37

The FP controller may fail because of a power loss or a program crash as the MFV or

BFV controller could. This event cannot be detected by the DFWCS. The FP controller

would not output the correct signal to the feedwater pump and thus would be unable to

control the feedwater pump.

Failure type Detection of Failure Effect of Failure on

Controller

Effects on

Controlled/Monitored

Process Variables

Loss of power. Not detected. Nothing.

Unknown effect on

water level.

Loss of output signal.

Not detected. Nothing.

Feedwater flow will

decrease to the

minimal value,

possibly decreasing the

water level.

Computer

erroneously reported

failed.

Not detected. Component initiates

failover operation.

The valves and

feedwater pump will

remain in the same

state if the fail over

fails to the

MFV/BFV/FP

controllers. Thus the

effect on the process

variables depends on

the event in

consideration.

Table 3.5 – FMEA for the FP

Continued

 38

Table 3.5 Continued

Computer

erroneously reported

not failed.

Can be detected if

computer fails and

output of computer is

out of range, the rate

of change is too great,

or the watchdog timer

goes off.

Component initiates

failover if detected.

If detected the valves

and feedwater pump

will remain in the

same state if the fail

over fails to the

MFV/BFV/FP

controllers, thus the

effect on the process

variables depends on

the event in

consideration.

Otherwise, unknown.

High output.

Cannot be detected.

FP will be driven to

increased pressure.

Feedwater flow will

increase, causing the

water level to increase.

Low output.

Cannot be detected.

FP will be driven to

decreased pressure.

Feedwater flow will

decrease, causing the

water level to

decrease.

Arbitrary value

output.

Cannot be detected.

FP will speed up/slow

down according to the

output.

Unknown effect. May

increase or decrease

water level.

MFV, BFV, FP

controllers do not

agree from which

computer to accept

input.

Cannot be detected.

MFV, BFV, and FP

may receive

inconsistent input.

Unknown effect. May

increase or decrease

water level.

The FMEA table for the PDI controller is shown in [7]. The PDI controller may also fail

because of a power loss or a program crash as the MFV, BFV and FP controllers and

event will not be detected by the digital feedwater control system. If the PDI controller

fails by loss of output, then a failed MFV controller will not be detected. If the PDI fails

by sending a spurious signal to the MFV when the MFV controller has not failed, then

 39

the MFV and PDI controller outputs will sum and give an increased signal to the MFV,

causing the MFV to open more than it should.

Failure type Detection of Failure Effect of Failure on

Controller

Effects on

Controlled/Monitored

Process Variables

Loss of inputs (0.0

vdc).

PDI detects a 0.0 vdc

input.

PDI outputs an old

value of the MFV

controller output to the

MFV.

The MFV valve will

receive a signal that is

the sum of the PDI and

MFV controller

signals, thus increasing

feedwater flow.

Loss of power.

Not detected.

None.

None directly, unless

the MFV controller has

failed, then resulting

effect is unknown.

Loss of Outputs.

Not detected.

None.

None directly, unless

the MFV controller has

failed, then resulting

effect is unknown.

Arbitrary failure.

Not detected.

PDI can output any

value to MFV.

The MFV valve will

receive a signal that is

the sum of the PDI and

MFV controller

signals, thus increasing

feedwater flow.

Table 3.6 – FMEA for the PDI

 40

CHAPTER 4

FINITE STATE MACHINE MODELING

As presented in Section 1 and Fig.1.1, the next step in the modeling of digital control

systems using the Markov/CCMT after the definition of the FMEA is the construction of

a finite state machine model for each component of the DFWCS [7]. The purpose of this

section is to show how it is possible to construct a finite state machine model from the

FMEA presented in Section 3.

4.1 From the network structure to the system finite state machine

As a general discussion, the design of a system finite state machine for digital control

systems takes into account several aspects that can be summarized as follows:

1. The structure and the topology of the network. The concept of topology applied to

networks refers to how data are shared and passed among the components

connected to the network itself. Figure 4.1 shows the basic connection schemes

which it is possible to encounter in the analysis of digital control systems. Figure

 41

4.1 also indicates how the DFWCS described in Section 2 can be considered as a

simple mesh scheme.

Fig.4.1 - Possible connection scheme: mesh (e.g., DFWCS), star, tree, bus

2. The format of the data. Data on the line can be transmitted in two different

formats: analog or digital. From [10] an analog signal is defined as a continuous

wave form that changes smoothly over time; as the wave moves from the

minimum to the maximum value it passes through and includes an infinite number

of values along its path. A digital signal, however, has only a limited number of

defined values depending on the encoding scheme. From a reliability view point

the format of the data affects the resilience property of the communication

systems from external events and how the communication system itself is able to

detect and correct errors in the data transmitted on the line.

3. Transmission media. Different types of media can be used to transmit data.

Guided (e.g., coaxial or fiber-optic cable) and unguided (e.g., electromagnetic

waves used without a physical conductor) media can be used.

 42

In building a finite state machine for each component (computers, controller, etc.) of

the DFWCS, states and transition must reflect the FMEA presented in Section 3.

Redundant components are modeled together by merging the finite state machines of the

redundant components into a single finite state machine. Moreover, the inter-component

dependability (for example, due to the topology of the network) is taken into account

inserting the finite state machine of a component inside specific states of another

component.

The DFWCS can be regarded as consisting of three layers of interaction [7]:

 Intra-computer interactions: a layer which describes the status of the single

computer (MC or BC)

 Inter-computer interactions: a layer which describes the status of the set of both

computers (MC and BC)

 Computer-controller-actuated device interactions: a layer which describes the

status of the controllers (MFV, BFV and FP controllers).

In Sections 4.2, 4.3 and 4.4 these three layers are presented and described.

4.2 Intra-computer interactions

The intra-computer interactions layer consists of 5 states (see Fig.4.2) [7]. These

interactions can be regarded as transitions between the possible states of a single

computer. In State A, the computer is operating correctly. In State B, the computer

 43

detects loss/invalid output for 1 sensor of any type (e.g. water level). State C represents

loss/invalid output for 2 sensors of any one type. In state D the computer has detected an

internal problem and is signaling that it has to be ignored. In State E, either the sensor

output is invalid or there is an internal processing error in the computer; however, the

computer does not detect the fault and is transmitting the wrong information to the

controllers. These states capture the possible failures in the FMEAs presented in Section

3.2, and that occur within both the MC and BC.

Fig.4.2 – Intra-computers interaction scheme

4.3 Inter-computer interaction

The inter-computer interaction layer displayed in Fig.4.3 [7], shows the interactions

between the two computers (MC and BC). In particular, the transfer of control from the

MC to the BC is represented here.

 44

In this layer, 3 computer macro-states (MSs) are identified. Each of these macro-

states indicates the status of both the computers:

1. In State 1 both MC and BC are operating normally.

2. In State 2, one computer is operating correctly and the other is down but can be

recovered.

3. In State 3, again one computer is operating correctly and the other is down but it

is not recoverable.

Transitions between the MSs depend upon the state of the controlling computer. Primary

and secondary computers correspond, respectively, to the computer that is sending data to

the controller and to the computer that is waiting in hot standby. Both the MC and BC

can be the primary or the secondary computer.

Transitions from MS1 to MS2 are due to recoverable failures while transitions from

MS1 to MS3 are due to not recoverable failures. Recoverable and non-recoverable

failures are defined as the following:

 Recoverable failure corresponds to the momentarily inability for the computer

(which is still operating correctly) to send valid data to the controller (e.g. due to a

loss of input from one couple of sensors). Since, it is possible to recover from

type of this failure, transitions from MS2 to MS1 are possible.

 45

 Non-recoverable failure corresponds to an internal failure of the computer (e.g.

the trip of the watchdog timer) or to a loss of output of the computer itself. Since,

it is not possible to recover this failure: transitions from MS3 to MS1 are possible.

4.3.1 Transitions from MS1 to MS2

If the secondary computer (i.e. the computer that is not in control) fails and it is still

recoverable, a transition from MS 1 to MS 2 occurs (see Fig.4.3). These transitions

simply take each state in MS 1 to the corresponding state in MS 2. For example, State A

(or operational) in MS 1 would have a transition to State A in MS 2. When the secondary

computer recovers, the opposite transitions occur (from MS 2 to MS 1). Again, for

example, if the operating computer is in State A, MS 1, then the transition would start

there and end in State A in MS 1.

From the State D in MS 1 the possible transitions represent the takeover of control of

the process by the secondary computer (which from now on will be regarded as the

primary computer). The transitions from this state go to all states except for State D in

MS 2. The rationale behind these transitions is that the secondary computer was operating

and may have transitioned to states other than State A in MS 2. The reason that State D in

MS 2 is not a possible destination is that if State D is reached by the secondary computer,

then another transition from MS 1 to MS 2 must have already taken that into account.

 46

4.3.2 Transitions from MS1 to MS3

The fail-over action from MS 1 to MS 3 is a result of controller action via the

watchdog timer or detecting the output failure from the computer. This action takes down

the failed computer permanently and can occur to both the primary and secondary

computer. If it occurs to the secondary, the transitions mimic the action of the secondary

failure transitions from MS 1 to MS 3 by simply transitioning from a state in MS 1 to the

respective state in MS 3. For example, State A in MS 1 would have a transition to State A

in MS 3.

If the primary computer fails in a non-recoverable manner when both MC and BC are

operating (i.e. when the DFWCS is in MS1), then the DFWCS can go to any state in MS

3 except State D by the same rationale for transitions between MS1 and MS2. The

transitions must take into account that the secondary computer may have already entered

different states and these must be represented in the transitions to MS 3.

 47

Fig.4.3 – Inter-Computers interaction scheme

4.4 Computer-controller-actuated device interactions

Figure 4.4 shows all the possible controller-computer-actuated device interactions [7]

according to the FMEA charts presented in Section 3.3. The shaded circles represent

signals to the actuated devices (MFV, BFV, FP) upon computer/controller failure, as well

as the mechanical failure of the actuated device (Device Stuck). As indicated in the

beginning of Section 2, mechanical failure of the actuated device leads to the device

maintaining its current position for MFV and BFV or to zero flow for FP.

The planes represent the communication status between the controller and actuated

devices. The two-way transitions between Planes I and II are necessary to keep track of

 48

the computer from which the controller is receiving data when the communications

between controller and actuated device are restored.

The scheme shown in Fig.4.4 shows the connection between a single controller (e.g.,

the MFV controller) and the computers (MC and the BC) and its own actuated device

(MFV). In particular, the following types of controller failures are under consideration:

 Arbitrary output: random data are generated and sent to the actuated device (i.e.,

MFV, BFV and FP)

 Output high: output value is stuck at the maximum value (i.e. valve totally open

or pump at the maximum speed)

 Output low: output value is stuck at the minimum value (i.e. valve totally closed

or pump stopped)

 0 vdc output: loss of communications between controller and actuated device

 mechanical failure of the actuated device

 49

Fig.4.4 – Computer-Controller-Actuated device interactions scheme

Moreover, as a result of the failure of both computers, the controller can recognize the

failure and send to the actuated devices (i.e. pump or valves) the old valid value (i.e.

Freeze). If the controller does not recognize the failure, then it will simply pass on false

information (Arbitrary Output) to the actuated device. Figure 4.4 also shows how the

computer-computer interactions (presented in Fig.4.3) integrate with computer-controller

and controller-actuated device interactions.

Device Stuck refers to mechanical failures and is independent of the failure modes of the

computers and controllers. The behavior of the controller under normal and failed

operation can be described as follows:

 50

 When both MC and BC are down, the controller transits to the Freeze state. The

actuated device remains in the position corresponding to the last valid value.

 If the controller is operating and an Output High or an Output Low or an

Arbitrary Output failure occurs, the controller transits to the corresponding state

and the actuated device assumes the highest, the lowest or an arbitrary position,

respectively.

 If the controller is in the Freeze state and an Output High, Output Low or

Arbitrary Output failure occurs, the controller transits to the corresponding state

and the actuated device assumes the highest, the lowest or an arbitrary position,

respectively.

 If a loss of output occurs when the controller is failed (i.e. the controller is

sending Arbitrary Output, Output High or Output Low state), then the actuated

device receives a 0 vdc as input which correspond to the lowest position.

4.5 Examples of Initiating Events

In this section two scenarios are presented in order to show how the finite state

machine description (see Fig.4.2, Fig.4.3, and Fig.4.4) described above can be used to

model several accident scenarios which have taken place in existing nuclear power

plants.

 51

4.5.1 Scenario 1

The scenario starts with the benchmark system operating at high power at 90%

reactor power with the MC controlling the MFV, BFV, and FP, the BC operating

correctly and the MFV, BFV, FP, and PDI controllers operating correctly (i.e., state A of

MS1 of Fig.4.5). When the FP controller was installed, the MC to FP and BC to FP

failure signal wire were not soldered correctly [1]. As a result of the improper soldering

and vibration within the plant, the integrity of these connections has become

compromised. Additionally, as has been encountered in operating nuclear power plants

[12], corrosion problems have affected the wiring.

In this scenario, the corrosion affects one of the water level sensor wires from level

sensor 1 (LVL1). As a consequence of the corrosion, the MC receives intermittently no

signal from LVL1 over the course of several months. Due to wear-out affecting the

connection from level sensor 2 (LVL2), the sensor is unable to transmit a signal and fails

to report a value (resulting in 0.0 DC volts on the line). The MC senses this signal loss

and ignores the invalid input.

At this point, corrosion in the connection from LVL1 described above causes the

connection to fail completely, resulting in 0.0 DC volts on the line. Consequently, no

signal is received by the MC from LVL1. At this point, all level sensor transmissions to

the MC have failed. The MC waits for one processing cycle, determines the level sensor

inputs are still unavailable and then signals failure to the MFV, BFV, and FP controllers.

As a result of the MC failure, the MFV, BFV, and FP controllers each attempt to transfer

 52

control to the BC (i.e., looking at Fig.4.5, a transition from state A to state D of MS1

occurs and then a transition from state D of MS1 to state A of MS2 occurs).

Due to vibration, the FP controller’s MC and BC failure status wires become completely

disconnected from the controller. This disconnection causes the FP controller to consider

both the MC and BC as failed. By following its fail over procedure, the FP controller

recycles its last good output. The FP controller then signals MC and BC failure to the

MFV and BFV controllers. This causes the MFV and BFV controllers to recycle their last

good outputs until operators intervene. (i.e., looking at Fig.4.5, a transition from state A

of MS2 to state D of MS2 occurs and then a transition from state D of MS2 to state

Freeze of MS2 occurs).

1

Level sensor two fails due to a broken

connection.

2

Level sensor one fails as the corrosion causes

the wire to degrade too much to be usable.

3
MC activates failure status signal.

4

MFV, BFV, and FP controllers transfer control

to the BC.

5

MC to FP and BC to FP controller failure

status lines become disconnected due to

vibration.

6

FP signals BC and MC failure to other

controllers and uses last good output value.

7
MFV and BFV controllers use last good output

Table 4.1 – List of events for the first scenario

 53

Fig.4.5 – Description of the first scenario through the finite state machine

4.5.2 Scenario 2

Scenario 2 starts with the system operating normally in high power at 90% reactor

power with the MC in control and all other controllers and components operating

normally (i.e., state A of MS1 of Fig.4.6). The BC fails and causes the watchdog timer to

expire. This timer expiration is detected as BC failure by the MFV, BFV, and FP

controllers (i.e., looking at Fig.4.6, a transition from state A of MS1 to state A of MS3

occurs).

Due to corrosion of an inline power supply fuse, the power supply to the MC shuts

down [11, 12], resulting in an MC failure (i.e., looking at Fig.4.6, a transition from state

A of MS3 to state D of MS3 occurs). The MFV, BFV, and FP controllers detect the loss

of the MC and take control holding the valves and pumps settings at their current values

 54

until operators are able to intervene (i.e., looking at Fig.4.6, a transition from state D of

MS3 to Freeze state occurs). Scenario 2 is summarized in Table III. This scenario

demonstrates the benchmark system’s ability to fulfill requirements 2 and 9, namely the

representation of electrical power needs and the use of the watchdog timer.

1

BC’s watchdog timer expires. MFV, BFV, and FP

controllers take control and maintain pumps/valve settings

at current values until operators intervene.

2
MC fails: MC power supply fails.

3

MFV, BFV, and FP controllers take control and maintain

pumps/valve settings at current values until operators

intervene.

Table 4.2 – List of events for the second scenario

Fig.4.6 – Description of the first scenario through the finite state machine

 55

CHAPTER 5

SIMULINK MODEL OF THE DFWCS

In order to perform the tuning and to confirm the validity of the control laws deduced

from the control algorithm of the DFWCS (written in C code) of an operating PWR, a

Simulink model has been built. This model is divided into modules in order to keep the

model easy to tune, adaptable and comprehensible. The main modules are the following:

 Input module and SG module

 Control logic module

 Actuated device module.

In the following paragraphs, each of these modules is described in detail.

5.1 Input and SG modules

The input module includes a set of inputs (see Fig.5.1) which represent the power

generated in the primary circuit. In this model it is supposed that the steam flow exiting

the SG is proportional to the power generated by the reactor. A detailed model of the SG

 56

is not included and thus, the level of the SG is determined by a simple mass balance

equation (see Eq.2.1).

In particular, two kind of power profile has been analyzed:

1. Power decreasing exponentially due to the reactor shutdown (see Fig.5.2-a). In

this case, the power P(t) of the reactor, previously operating at full power (3000

MWth) for more than one year (3.15 10
7
 s), drops almost instantaneously from

100% to 6.6% and then it starts to decrease exponentially following Eq.5.1 [13]:
















2.072.0)1015.3(

1

)10(

1
)0(066.0)(

tt
PtP (5.1)

2. Power increasing from 70% to 72% through a sequence of brief ramps (see

Fig.5.2-b).

Figure 5.1 displays how these input models have been implemented. In particular

Fig.5.1.a shows how the power decay after a shutdown is implemented through a

separate math file (.m file) while Fig.5.1.b shows the implementation of the sequence

of ramps.

 57

 (a) (b)

Fig.5.1 – Simulink Input modules: exponentially decay (a) and sequence of ramps (b)

 (a)

(b)

Fig.5.2 – Power behavior for the two cases under consideration: exponentially decay (a) and sequence of

ramps (b)

 58

5.2 Control logic module

The control logic module, shown in Fig.5.3, implements the control laws presented in

Section 2 for both the High and Low power mode. Transition from High to Low power

and vice versa are also realized. In this module, Eqs.2.2-2.6 are implemented.

Fig.5.3 – Control logic module

 59

5.3 Actuated device module

This module implements the response of the actuated devices (MFV, BFV and FP). In

particular it translates the signal representing the feedwater demand coming from the

control logic module into position of the MFV and BFV and speed of the FP. Here are

implemented the lookup tables presented in Section 2 and shown in Fig.2.6. Mechanical

(i.e., failed totally open or totally closed) and control failures (i.e., random data send to

the actuated device or old valid value maintained in output) are also implemented here

using time dependent blocks.

Fig.5.4 – Simulink module for MFV, BFV and FP

5.4 Initiating Event Simulation Results

As presented in Section 2, the equations representing the control laws of the DFWCS

have been deduced from the C-code the DWCS controller of an existing PWR. It was not

 60

possible to deduce all the internal variables contained in these equations and the

controller needed to be tuned.

The purpose of this section is to show the response of the digital feedwater model

under the scenarios presented in Section 5.1 and Fig.5.2. The main concern is to obtain a

stable response of the model under several power excursions. Moreover, the responses of

the three actuated devices (i.e., MFV, BFV and FP) have to be reasonable in terms of rate

of change of position (for MFV and BFV) or rate of change of speed (for FP). Sections

5.4.1 and 5.4.2 show the results obtained for the two scenarios presented in Section 5.1.

5.4.1 Reactor Shutdown

As presented in Section 5.1 the power is decaying exponentially starting from a value

of 6.6% in this scenario. Since this scenario takes place in Low Power mode, the FP

speed is set at 63% and only the BFV affects the feedwater flow (see Section 2). Figure

5.5 shows how the level of the SG is stabilizing during this scenario.

Fig.5.5 – Level response during the decay heat scenario

 61

5.4.2 Power Increase Scenario

Figures 5.6 and 5.7 show the response of the FP and MFV for the second scenario

presented in Sec.5.1 and Fig.5.2.b. For both MFV and FP the scale is ranging form 1 to

10.

 (a) (b)

Fig.5.6 – MFV response for the scenario presented in Fig.5.2.b

 (a) (b)

Fig.5.7 – FP response for the scenario presented in Fig.5.2.b

The rate of change of the power generated by the reactor strongly affects the

oscillations of both MFV and FP
2
. Moreover, since each ramp performs a 0.5% increment

2
 Since the power is always above 15% the BFV is never used for the entire scenario.

 62

of power (this value agrees with the normal operation of a typical PWR during a power

excursion when control rods are moved out of the core by small amounts), the FP and

MFV response for this scenario are very smooth as shown in Fig.5.6 and Fig.5.7. The

main purpose of the DFWCS is to maintain the level of the SG between -24 and 30

inches (-2 and 3 ft) and Fig.5.8 shows that the behavior of the level of the SG for the

scenario presented in Fig.5.2.b is consistent with this purpose.

Fig.5.8 – Behavior of the level of the SG for the scenario presented in Fig.5.2.b

 63

CHAPTER 6

MARKOV MODELING

In general, the construction of a Markov transition [14, 15] diagram for a single

component assumes that:

 a set of mutually exclusive and exhaustive states nm (m=1,...,M; nm =1,...,Nm) has

already been defined for component m, i.e.,

0,

1)(

''

1






mmmm

M

m

m

nnnn

np

 (6.1)

 probability of transitions between states has been determined.

The choice of the failure states is based on the FMEA tables presented in Section 3. The

Markov modeling of each component of the DFWCS (see Section 2.1) is presented in

Sections 6.1 through 6.4. Section 6.5 shows how the grouping of several components into

macro-components can be useful to simplify the modeling and to reduce the

computational effort. Section 6.4 presents some considerations regarding possible

 64

rearrangement of the states of the components in order to create Markov transition

diagrams that are independent from each other.

6.1 Main and Backup Computers

In Section 4 it is shown how it is possible to obtain the finite state machine model for

both the MC and BC given the FMEA presented in and . In this model, sensors have

been incorporated in the computer Markov transition diagrams. This merging procedure

has been widely used in the Markov/CCMT methodology to minimize the overall number

of states of the DFWCS (components state combination) which is simply the product of

the number states of each component involved.

For the computers, the Markov finite state diagram is similar to the finite state

machine of the MC and BC. Thus, Markov transition diagram for each computer consists

of the following five states [7]:

1. Computer operating: the computer is operating correctly

2. Loss of one input: loss of input from one sensor of a monitored variable (e.g., the

computer detects 0.0 vdc in the sensor reading or a value which is out of range for

the measured variable or a physically impossible rate of change)

3. Loss of both inputs: loss of input from both sensors

4. Arbitrary output: the computer is sending random output to the controllers

 65

5. Computer down: the computer recognizes a communication failure between itself

and the sensors and the computer and takes itself down. Consequently, the

computer is not sending any output to the controllers

The Markov models for the MC and BC are represented in Fig.6.1 and Fig.6.2

respectively.

Fig.6.1 – Markov transition diagram for the MC

 66

Fig.6.2 – Markov transition diagram for the BC

6.2 MFV, BFV and FP Controller

Section 4.4 shows how it is possible to merge two or more components into macro-

components in order to reduce the computational efforts of the Markov/CCMT analysis.

In this respect, it is convenient to merge the controllers and their associated activated

devices (e.g., the MFV controller and the MFV). From Section 4.4 it is possible to

identify the following eight states for the combined controller-actuated device Markov

models [7]:

1. Controller is operating and communicating with the actuated device

2. Controller is operating and not communicating with the actuated device

3. Freeze: the controller is sending the last valid value to the actuated device

4. Output high: the controller is sending the highest value to the actuated device

 67

5. Output low: the controller is sending the lowest value to the actuated device

6. Arbitrary output: the controller is sending a random value to the actuated device

7. 0 vdc output: permanent no communication between controller and actuated

device. 0 volts are detected from the actuated device

8. Stuck: actuated device is stuck in the previous position

Figure 6.3 shows the Markov model for the ensemble BFV-BFV controller which is

conceptually identical to the combined MFV-MFV controller and FP-FP controller.

Fig.6.3 – Markov transition diagram for the combined BFV-BFV Controller

 68

6.3 PDI Controller

The PDI controller has been modeled taking into account the failures presented in

Section 2.5 and in Table 2.5.1 which are listed below [7]:

 Loss of inputs

 Loss of power

 Loss of outputs

 Arbitrary failure

Then it is possible to define the following states:

 Operating: PDI controller operating correctly.

 Loss of inputs: PDI controller does not receive any signal from the MFV

controller

 Arbitrary failure: PDI controller is sending random value to the MFV

From Section 2.1, the loss of communication between the PDI controller and the

MFV can be recovered. This recoverable failure (which introduces the need to remember

the state of the components before the failure) can be modeled in a similar way as was

done for the controllers (see Section 6.2); that is by duplicating the 3 states presented

earlier (operating, loss of inputs and arbitrary failure). This approach results in:

 69

 3 states (operating, loss of inputs and arbitrary failure) when MFV and PDI are

communicating correctly and,

 another set of 3 states (operating, loss of inputs and arbitrary failure) when MFV

and PDI are not communicating.

The resulting model for the PDI controller is shown in Fig.6.4.

Fig.6.4 – Markov transition diagram for the PDI Controller

 70

6.4 System state recombination

During the construction of the Markov transition diagrams for the components of the

system under consideration, it is important to make sure that transitions in the Markov

diagrams of a component are not dependent on another transition or a state of a different

model. Such an independence is very useful to determine the component state transition

probabilities as presented in Section 7.6.

In this respect, for the DFWCS system description presented in Section 2.1, there are

3 main issues which must be taken into account:

 The interactions between MC and BC

 The interactions between MC/BC and the MFV/FP/BFV controllers

 Commonality of power sources, one in common for MC and BC, one in common

for MFV/FP/BFV controllers.

Sections 6.4.1 though 6.4.3 address these issues, respectively

6.4.1 Interactions between MC and BC

As shown in Section 2.1, the MC and BC transitions are coupled since one can take

over if the other is failed. Since they are identical, the two computers have been merged

into a single macro-computer. As a result of this combination, the MC and BC can be

 71

represented in a single Markov transition diagram with 15 states instead of 25 (5 state for

the two computers: 5·5 = 25 states) as presented in Fig.6.5.

Fig.6.5 – Markov transition diagram for the combined system MC-BC

6.4.2 Interactions between MC/BC and the MFV/FP/BFV controllers

As presented in Section 4.4, when both the MC and BC are down, the MFV, BFV and

FP controllers freeze their output. However, looking at Fig.6.3, there is not a single

“Freeze” state in common for all the 3 controllers but there is “Freeze” state one for each

controller. The goal is to obtain Markov transition diagrams for the computers and the

controllers such that the transition to the “Freeze” is in common for all the controllers.

Thus, the problem consists into the decoupling of the Markov transition diagrams of the 3

controllers.

This can be accomplished by removing the “Freeze” states from the MFV, BFV, and

FP controllers transition diagrams and inserting a single “Freeze” state into the computer

 72

diagram as shown in Section 6.4.1 (see Fig.6.5). The Markov transition diagrams for the

computer and for the combined BFV-BFV controller are shown in Fig.6.6 and Fig.6.7

respectively. The combined MFV-MFV controller and FP-FP controller the Markov

models are similar to that of the combined BFV-BFV controller.

Fig.6.6 – Markov transition diagram of the combined system MC-BC after the recombination

 73

Fig.6.7 – Markov transition diagram of ensemble BFV-BFV controller after the recombination

6.4.3 Power sources

The two computers (MC and BC) and the three controllers (MFV, BFV, and FP)

share the different power sources (Chapter 2). Thus, a failure in the power source of the

computer or the controller, affects all the computers or all the controllers respectively.

In the Markov transition diagram of the controllers, a failure in the power source is

represented through a transition to the “Output Low” state and to the “0 vdc output” state

(sees Fig.6.7). This common cause failure can be modeled as follows:

1. introducing a separate Markov model for the power source of the controllers and,

2. removing the transitions to the “Output low” and “0 vdc output” states (see

Fig.6.7) due to loss of power failure only

 74

Then transition to the “Output low” state for the controllers is now due only to the “Low

failure” of the controller according to , , .

The controller power source can be modeled simply as a two state Markov transition

diagram where the states are the following:

 Operating: controllers power source active and,

 No power: no power is provided to the controllers.

The resulting model is shown in Fig.6.8.

Fig.6.8 – Markov transition diagram for the controller power source

In 1 and , a failure in the computer power source causes the failure of both computers.

Thus, the controllers freeze their outputs. This implies that a failure of the computers

power source can be represented with a transition to the “Freeze” state (see Fig.6.1 and

Fig.6.2). In this case a separate model is not necessary since the Markov model for the

 75

computers include both the MC and the BC. However, from every state of Fig.6.6, a

transition to the “Freeze” state has to be added.

6.5 Component state combination reduction

Based on the discussion above, the number of the states of the Markov transition

diagrams for each of the components of the DFWCS is as shown in .

Components # states

Computers (Fig.6.6) 15

MFV Controller (Fig.6.7) 7

BFV Controller (Fig.6.7) 7

FP Controller (Fig.6.7) 7

PDI Controller (Fig.6.4) 6

Controller power (Fig.6.8) 2

Table 6.1 – List of states for each component of the DFWCS after recombination

The resulting total number of component state combinations N is equal to the product of

the states of all the components involved: N = 15·7·7·7·6·2 = 61740.

Since the number of event sequences generated at every Markov time step increases

exponentially with a base factor of N, it is necessary to reduce the number of components

state combinations in order to obtain an analysis of the system with reasonable computing

time. This reduction may be achieved by

 76

1. reducing the number of components by merging two or more components

together, and,

2. reducing the number of states of a component by merging two or more states

together.

The first step has been already investigated and used in Section 6.2 and 6.4.1 for the

controllers and for the computers respectively. The second step requires the merging of

states. It is here chosen to merge all states in each Markov transition diagrams that have

the same impact on the dynamics of the system.

As an example, the system of Fig.6.9 is considered. In this case, states 2 and 3 have

the same impact and, thus, these states are merged.

 (a) Original Markov transition diagram (b) Reduced Markov transition diagram

Fig.6.9– Illustrative example for the state reduction technique

 77

Figure 6.9 shows how states 2 and 3 have been merged in a single state named X. After

the merging process, transitions 1-X, and X-4 have to be determined. This is done as

following:

1. Solve the original Markov model: determine the state probabilities functions. For

the system of Fig.6.9, P1(t), P2(t), P3(t), P4(t), P5(t) are determined first. Usually

for small systems (e.g., Markov models with fewer than 5-6 states) it is possible

to solve a system of first order differential equations symbolically using codes

like Mathematica or solving it numerically with codes like Matlab. For systems

with a greater number of states (i.e., more than 10) it is possible to solve a system

of first order differential equations using matrices [2].

2. Determine the new transition probabilities λ(t) of the reduced diagrams.

The set of equations which describes the original Markov transitions diagram (Fig.6.9.a)

are:

 

   

     

     

 )(
)(

)()()(
)(

)()()(
)(

)()(
)(

)(
)(

445
4

334114445
4

113223334

3

112223
2

1141312
1

tP
dt

tdP

tPtPtP
dt

tdP

tPtPtP
dt

tdP

tPtP
dt

tdP

tP
dt

tdP

a

a

a

a

a
























































 78

The set of equations which describes the reduced Markov transitions diagram (Fig.6.9.b)

are:

 

   

     

 )(
)(

)()()(
)(

)()(
)(

)(
)(

445
4

4114445
4

114

1141
1

tP
dt

tdP

tPtPtP
dt

tdP

tPtP
dt

tdP

tP
dt

tdP

b

XX

b

XXX

b

X

X

b













































Assuming that all the transition rates of the original system of Fig.6.9 are constant with

time, λx4(t) can be found in the following manner:

1. Determine the equations which describe the time evolution of state 4 for both the

model a) and b) of Fig.6.9. These equations are:

     )()()(
)(

 334114445
4 tPtPtP
dt

tdP

a









 (6.2)

(Model (a) of Fig.4.11)

     )()()(
)(

 4114445
4 tPtPtP
dt

tdP
XX

b









 (6.3)

(Model (b) of Fig.4.11)

 79

2. Compare the two expression and then determine the equation of λx4(t), as shown

in Eq.4.6.

   

   
)()(

)(

)(

)(
)(

)()(
)()(

32

334334

44

4334
44

tPtP

tP

tP

tP
t

tPtP
dt

tdP

dt

tdP

X

XX

XX

ba
































 (6.4)

Equation 4.6 shows that λx4(t) is essentially an averaging of the transition rates for

the transitions 2-3 and 2-4 of Fig.6.9., i.e.

     

   )()(
)(

)()()(
))(2)((

114

113112334
1

tPtP
dt

tdP

tPtPtP
dt

tPtPd

XXX

a

X

a

















 





 (6.5)

Repeating the procedure presented before for the other transition rate of Fig.6.9 it is

possible to get:

13121)( tX (6.6)

 
)()(

)(
)(

32

334

4
tPtP

tP
tX







 (6.7)

 80

Note the new transition probabilities for the reduced model are time dependent.

6.5.1 Reduced Markov transition diagram for the computers

As mentioned in Section 6.5, it was chosen to merge the states of a Markov transition

diagram which have the same impact of the controller behavior. For the computers (see

Fig.6.6), the possible outputs are:

 Correct values: values of MFV, BFV aperture and FP speed calculated from the

input received form the sensors (i.e., states 1, 6, and 11 of Fig.6.5),

 Old value: last correct values of MFV, BFV aperture and FP speed (i.e., states 2,

3, 4, 7, 8, 9, 12, 13, 14, and 16 of Fig.6.5),

 Arbitrary value: random generated value (i.e., states 5, 10, and 15 of Fig.6.5).

The resulting reduced Markov model for the computers is shown in Fig.6.10.

 81

Fig.6.10 – Reduced Markov transition diagram for the computers

6.5.2 Combined Markov transition diagrams for the MFV, BFV and FP controllers

Looking at Fig.6.7, the possible outputs of the controllers are:

 Correct value: the controller is sending the correct values of MFV, BFV aperture

and FP speed received by the computers (i.e., state 1 of Fig.6.7)

 Old value: the controller is sending the oldest correct values of MFV, BFV

aperture and FP speed (i.e., state 8 of Fig.6.7)

 Output high: the controller is sending the highest values of MFV, BFV aperture

and FP speed (i.e., state 4 of Fig.6.7)

 Output low: the controller is sending the lowest values of MFV, BFV aperture and

FP speed (i.e., state 2, 5 and 7 of Fig.6.7)

 Arbitrary output: the controller is sending a random generated value of MFV,

BFV aperture and FP speed (i.e., state 6 of Fig.6.7).

 82

The resulting combined Markov model for the controllers is shown in Fig.6.11.

Fig.6.11 – Reduced Markov model for the controllers

6.5.3 Combined Markov transition diagram for the PDI controller

The possible outputs of the PDI controller are:

 Values of MFV aperture calculated from the computers (i.e., state 1of Fig.6.4),

 Last correct values of MFV aperture(i.e., state 2 Fig.6.4),

 Random generated value (i.e., state 3 of Fig.6.4),

 0 vdc (i.e., state 4, 5 and 6 of Fig.6.4).

 83

Fig.6.12 – Reduced Markov model for the PDI controller

6.6 Summary of the reduced Markov transition diagrams for the EIE

After the recombination (see Section 6.4) and reducing (see Section 6.5) processes, the

overall number of components is considerably decreased from N = 61740 (see Section

6.5 and) to N = 3·5·5·5·4·2 = 3000 as shown in

Components # states

Computers (Fig.6.10) 3

MFV Controller (Fig.6.11) 5

BFV Controller (Fig.6.11) 5

FP Controller (Fig.6.11) 5

PDI Controller (Fig.6.12) 4

Controller power (Fig.6.8) 2

Table 6.2 – List of component states after the recombination (see Section 6.4)

and reduction processes (see Section 6.5)

 84

CHAPTER 7

THE MARKOV/CELL-TO-CELL MAPPING TECHNIQUE

In the reliability model construction of digital I&C systems using the Markov/CCMT,

the system failure probability (i.e., the probability that Top Events are reached) is

evaluated throughout a series of discrete transitions within the controlled variable state

space (CVSS). These discrete transitions take into account:

1. the natural dynamic behavior of the system (e.g. mass and energy conservation

laws),

2. the control laws, and,

3. hardware/firmware/software states and their impact on the controlled/monitored

process variables.

Items 1 and 2 above are modeled using the CCMT. Item 3 is modeled using a

Markov transition diagrams presented in Section 6 for each of the components listed in

Section 2. This section gives an overview of the mathematical foundation of the

Markov/CCMT.

 85

7.1 Construction of the Markov model using CCMT

The CCMT [16] is a systematic procedure used to describe the dynamics of both

linear and non-linear systems in discrete time and in a discretized system state space (or

the subspace of the controlled variables only). The CCMT first requires the partitioning

of the state space or the CVSS into Vj (j = 1,...,J) cells (Section 7.3). Top events are

represented as sink cells.

The evolution of the system is modeled and described through the probability pn,j(k)

that the controlled variables are in a predefined region or cell Vj in the state space at time

t = k·Δt (k = 0,1,...) with the system components (such as pumps, valves, or controllers)

having a component states combination n = 1,..,N (see Section 6.6). The state

combination represents the system configuration at a given time and contains information

regarding the operational (or the failure) status of each component.

Transitions between cells depend on:

 the dynamic behavior of the system

 control logic of the control system

 hardware/firmware/software states.

The dynamic behavior of the system is usually described by a set of differential or

algebraic equations as well as the set of control laws, as presented in Section 2. The

operating/failure states of each component are specified by the user. The procedure to

determine:

 86

 the cumulative distribution function (Cdf) of each Top Event,

 the probability distribution function (pdf) of each Top Event,

 the event sequences

follows several steps. These sequences of steps are explained in the following sections

Section 7.2 to 7.8.

7.2 Definition of the Top Events

The controller is regarded as failed if water level in SGn rises above +30 inches and

falls below -24 inches (see Section 2). Subsequently, there are two Top Events:

 xn < -24 in (Low Level)

 xn > +30 in (High Level).

The cells that correspond to Top Events are modeled as absorbing cells or sink cells, i.e.,

the system can not move out of these cells and thus the transition probabilities from these

cells to others cells in the state space or CVSS are equal to 0.

 87

7.3 Partitioning of the State Space or the CVSS into Computational Cells

The dynamics of the system is modeled as transitions between cells Vj (j = 1,...,J) that

partition the state space or CVSS [7]. The partitioning needs to be performed in such a

way that, other than Vj being disjoint and covering the whole space (definition of

partitioning), values of the controlled variables defining the Top Events (in our case xn)

and the setpoints must fall on the boundary of Vj and not within Vj. Figure 7.1 graphically

shows a possible partition of the CVSS of a system characterized by only three variables.

An important issue is the direct coupling between the discretization of the CVSS and

the time step (Δt) of the simulation. In fact, given a discretization of the CVSS, a too low

value of Δt could lead, in principle, to the system being unable to exit the starting cells

unless properly chosen.

Fig.7.1 – Example of partitioning of the CVSS

 88

7.4 Definition of the Hardware/Firmware/Software States

The definition of states in the construction of the Markov transitions diagrams for the

components of the DFWCS described in Section 2 is presented in Section 6. In particular,

Section 6.6 and summarize the final results for the Markov modeling of the DFWCS

components.

7.5 Determination of Cell-to-Cell Transition Probabilities

As presented in Section 7.1, the evolution of any dynamic system depends on three

factors essentially:

 the dynamic equations of the system,

 the control laws of the control system, and

 the state of each component.

Consequently, the probability of the system to transit from a cell Vj' to cell Vj also

depends on these three factors presented earlier. In the Markov/CCMT [7] [17], the first

two factors are accounted for in the transition probability g(j|j',n',k) while the third one is

captured by the transition probability h(n|n',j'→ j) (see Section 7.6).

The cell-to-cell transition probabilities g(j|j',n',k) are conditional probabilities that the

controlled variables are in the cell Vj at time t = (k+1)Δt given that:

 89

 the controlled variables are in the cell Vj’ at time t = kΔt, and,

 the system components are in component state combination n(k) = n' at time t.

It can be shown that the g(j|j',n',k) can be found from [7]:

 

jV

kj

j

knxxedknjjg)},','(~{'
1

)1,','|(1


 (7.1)










otherwise

Vx
xe

jk

kj
0

~1
}~{ (7.2)

where:

 vj is the volume of the cell Vj

 kx~ is the arrival point in the state space/CVSS at time t = (k+1)Δt

 x' is the starting point in the cell Vj’ at time t = kΔt

 n' is the component state combination at time t = kΔt.

The algorithm to determine g(j|j',n',k) is the following:

1. Partition a cell j’ into Np subcells.

2. Choose the midpoint of each subcell, integrate the equations which describe the

dynamic behavior of the system (e.g., for the DFWCS the equations are presented

in Section 2.2.2) over the time interval kΔt ≤ t ≤ (k+1)Δt under the assumption

 90

that the component state combination remains n’ at all times during kΔt ≤ t ≤

(k+1)Δt.

3. Observe the number of arrivals in Np+1 at time t = kΔt (i.e.,),','(~
1 knxxk).

4. Obtain g(j|j',n',k) = Np / (Np+1).

This process is equivalent to approximating the integral in Eq.(7.1) by an Np point, equal

weight quadrature scheme.

7.6 Determination of Hardware/Firmware/Software State Transition Probabilities

The stochastic behavior of hardware/software/firmware is represented through

h(n|n',j'→j), which is the probability that the component state combination (see Section

6.6 and) at time t = (k+1)Δt is n, given that:

 n(k) = n' at t = kΔt, and

 the controlled variables transit from cell Vj' to cell Vj during kΔt ≤ t < (k+1)Δt.

For components with statistically independent failures, the probabilities h(n|n',j'→j)

are the products of the individual component failure or non-failure probabilities during

the mapping time step from kΔt to (k+1)Δt, i.e.,





M

m

mmm jjnncjjnnh
1

)','|()','|((7.3)

 91

where cm(nm|n'm,j'→j) is the transition probability for component m from the combination

n'm to nm within [kΔt, (k+1)Δt] during the transition from the cell Vj' to Vj. Each

cm(nm|n'm,j'→j) is thus determined from the transitions diagrams presented in Section 6.

It is important to highlight that after the recombination and reducing processes

presented in Sections 6.4 and 6.5, respectively, the transition probabilities of the DFWCS

components are time dependent.

7.7 Construction of the Cell-to –Cell Transitions Probabilities

The definition of the two transition probabilities h(n|n',j'→j) and g(j|j',n',k) consent to

determine the evolution of the system in terms of the probabilities pn,j(k+1). In particular,

the probability pn,j(k+1) that, at t = (k+1)Δt, the controlled variables are in cell Vj and the

component state combination is n is the sum of N×J terms where N is the total number of

component state combinations and J tis the total number of cells which partition the

CVSS.

Each of these terms is the product of two factors:

 the probability q(n,j|n',j',k) for the system to transit from the cell Vj’ and

component state combination n' to cell Vj and component state combination n,

and,

 the probability that the system is in the initial cell Vj’ and state combination n’

(pn,j(k)).

 92

Thus:

)(),','|,()1('',

1' 1'

, kpkjnjnqkp jn

N

n

J

j

jn 
 

 (7.4)

The elements of the transition matrix q(n,j|n',j',k) are functions of both

 the cell to cell transition probability g(j|j',n',k) (see Section 7.5), and

 the component state transition probability h(n|n',j'→j) (see Section 7.6)

From [14]:

)','|(),','|(),','|,(jjnnhkjnjgkjnjnq  (7.5)

Since cells Vj cover the whole CVSS and N includes all the possible state combinations:

1)(

1),','|,(

1' 1'

','

1' 1'









 

 

N

n

J

j

jn

N

n

J

j

kp

kjnjnq

 (7.6)

 93

7.8 Determination of pdf and Cdf

After computing pn,j(k) at the end of each time step k, the Cdf Fγ(k) and pdf wn,γ(k) for

the TopEvent γ (γ = 1,..., Γ) can be calculated as presented in Eq.7.8:

 )()1(
1

)(

)()(

,,,

1

,

kpkp
t

kw

kpkF

nnn

N

n

n











 (7.7)

Each Top Event γ is a set of cells in the CVSS.

Statistical importance of hardware/software/firmware configuration n to failure event

γ at time t= kΔt can be determined from:










N

n

n

Sn

n

n

kw

kw

k n

1

,

,

,

)(

)(

)((Im)





 (7.8)

where Sn is the set of system states containing the hardware/software/firmware

configuration n.

 94

CHAPTER 8

EXAMPLE INITIATING EVENT ANALYSIS

This section shows how it is possible to implement the Markov/CCMT methodology

presented in the previous sections. The system under consideration is presented in

Section 8.1 and it is a simplified version of the DFWCS presented in Section 2. The

implementation of the Markov/CCMT methodology has been accomplished with a code

written in Java and presented in Section 8.2 and in Appendix A. Since, the code

SAPHIRE requires as input are dynamic event trees (DET) [18], Markov/CCMT produce

event sequences which can be easily interpreted as dynamic event trees (DET) as shown

in Section 8.3.

8.1 An example initiating event (EIE)

Most of the analysis performed for Level 2 PRA assumes that the reactor is shutdown

in all the initiating events. In this respect, the following initiating event (EIE) [7] is used

in order to illustrate how it is possible to implement Markov/CCMT methodology for the

reliability analysis of digital control systems:

 95

1. Turbine trips

2. Reactor is shutdown

3. Power P(t) is generated from the decay heat

4. Reactor power and steam flow rate decay from 6.6% of 3000 MWth (or 1500

MWth/SG) and the analysis starts10 second after reactor shutdown

5. Feedwater flow and level are initially at nominal value

6. Off-site power is available

7. Main computer is failed.

In summary, the reactor is originally at full power (3000 MWth)., Following the

turbine trip (initiating event), the reactor is shut down. Ten seconds after shutdown, the

decay power for a reactor operating previously for one year at full power (3000MWth) is

[13]:
















2.072.0)1015.3(

1

)10(

1
300066.0)(

tt
tP (8.1)

From Section 2, the control laws needed for the EIE are the following:

Rate of level change:)(snwn

n ffA
dt

dx
 (8.2)

Compensated water level:)(12 snwnnLn
Ln ffxC

dt

dC
  (8.3)

 96

Compensated power:
dt

dp
ptC

dt

dC
n

npn

pn

34)(  (8.4)

Flow Demand (Low Power):

)()]([)()(MnMnLnnwnBnPnBnMBnBn tCrdthCtC    (8.5)

BFV Demand: 




Power)(High 0

Power) (Low)(
)(

tC
t

Bn

Fn

 (8.6)

FP Demand: 

 


 Power)(High)))(C,(max(C

Power) (Low 0)(C
)(

Fn

1

Fn

Fn

MnFn

Fn

Fn t





 (8.7)

BFV Position:










down MC down, BC

down MCoperating, BC

operating MC

)(
~

Bn

Bnb

Bnm

Bn tS







 (8.8)

The feedwater flow is obtained from the solution of:

 (8.9)

For the example initiating event, the state space is 4-dimensional (see Fig.7.1) and is

comprised of

 97

 level xn

 level error ELn

 compensated level Cln

 BFV position SBn.

As presented above, the components involved in the EIE are BC, BFV and BFV

controller. In order to simplify the overall system presented in Sections 2 and 4 for

illustration purposes, the following assumptions are introduced:

1. Only loss of both inputs can occur (and not possibly one).

2. Only the BFV controller failure can generate arbitrary output. If BC generates

arbitrary output due to internal failure, it is recognized by the BC and BC transits

to State D.

3. Loss of communications between the sensors and BC and between BC and BFV

controller cannot be recovered.

4. The BFV controller cannot fail in Output High mode.

5. FP cannot fail.

The BFV controller Output Low mode failure is included in 0 vdc Output in Fig.6.7

since they have the same effect on the actuated device (i.e. valve totally closed). Also,

since the MC has failed (not recoverable) and only the BC computer is operating, the

computer-computer connections (see Fig.6.6) are reduced to the one presented in MS 3

 98

only. Due to Assumptions 1 and 2, Loss of One Input and Arbitrary Output (see Fig.6.5)

are not considered in intra-computer interactions.

From Assumption 3, the Plane 2 that represents the loss of output of the controller in

Fig.6.7 is no longer needed. Subsequently, Loss of Output leads the controller to transit to

the 0 vdc Output directly.

Figure 8.1 shows the finite state machine model of the DFWCS for the EIE. The

states of this Markov transition diagram are:

 Controller/Device Communicating: This macro state indicates that the combined

BFV-BFV controller is operating correctly and it contains the following BC

states:

o State A: BC operating correctly

o State B-C: BC does not receive any signals from the sensors (BC detects

vdc in the sensor reading)

o State D: BC down

 Freeze: BFV controller recognizes that BC is down and maintains the position of

the BFV.

 Stuck: BFV remains stuck in the same position due to mechanical failure.

 Arbitrary Output: BFV controller is sending random data to the BFV due to

internal failure (software/firmware/hardware).

 99

 0 vdc Output: 0.0 vdc on the line which connects controller and valve. This can be

due to both a loss of communication between BFV controller and BFV or also due

to the Low Output mode failure of the BFV controller.

Fig.8.1 – Finite state machine for the EIE

A list of the possible transitions between these states is presented in Table 8.1

.

 100

Table 8.1 – Possible transition for the EIE

The BFV position is function of both the BC and BFV controller states and may

reflect history dependence. In this respect, shows the BFV position as function of the

possible components state combinations.

Table 8.2 – BFV position as function of the system state for the EIE

 101

8.2 Program description

The implementation of the Markov/CCMT applied to the EIE presented in Section

8.1 has been accomplished by building a program written in Java and presented in

Appendix A. Java is an object-oriented language developed by Sun Microsystems in the

mid ‘90s. This language derives great part of its syntax from the C language and it has

great capabilities to deal with objects. This feature is particularly useful for the

implementation of the Markov/CCMT methodology.

The main idea of the program is to build a “dynamic’ array of objects where each

object is an event sequence. As mentioned in Section 7, each event sequence is the

trajectory of a single point in the CVSS (see Fig.7.1). In computing language, an array is

simply a vector of objects with a finite length fixed by user at the moment of its

declaration. The concept of dynamic arrays has been introduced to compensate the need

of an array whose length is a variable and where new objects can be inserted or deleted

easily. Each object, in this case, is representing the trajectory of a point in the CVSS

during the mission time.

The mission time is divided into “time steps” where each time step has the same time

length. During this time step, also called Markov time, the component state combination

remains untouched.

Starting from a fixed number of initial points in a cell of the CVSS (see Fig.7.1), the

program starts to follow the trajectories of these points. As presented in Section 7, the

transition from a cell to another depends on the component state combination and the

dynamic of the system (i.e., the control laws).

 102

In Sections 8.2.1 - 8.2.3 the program is described in detail.

8.2.1 Inputs

The inputs needed for the Markov/CCMT analysis include the information on both

Type I and Type II interactions as shown in Fig.1.1 and in Section 1.

Type I interactions relate to indirect interactions between the system components

through the controlled/monitored process and have been presented in Section 2. These

interactions are modeled by the set equations presented in Section 8.1 and the numerical

implementation shown in Section 8.2.3.

Type II interactions relate to direct interactions between the components of the

control system. These interactions have been modeled using Markov transition diagrams

as presented in Section 6. Section 8.1 shows the finite state machine for the EIE. The

resulting Markov transition diagram has the same number of states as the finite state

machine and transitions between these states can be described using a matrix M. The

matrix M for the EIE is presented in . Each element m[i,j] of M indicate the probability of

transition from state i to j. Since failure data are not available, m[i,j] is 1 if the transition

is not possible and 0 otherwise.

 103

State 1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

Table 8.3 – Transition scheme for the EIE

The level range was partitioned into three cells, one cell corresponding to the normal

operating range and the other two cells corresponding to the two Top Events, High Level

and Low Level.

8.2.2 Classes and objects

In several programming languages it is possible to define more complicated structures

(known also as classes) other than the elementary structures such as characters, numbers

or Boolean. The purpose of these structures is to incorporate several variables of different

formats (such as characters, numbers or Boolean) in a single entity: a class.

For the EIE (but, in general, for every Markov/CCMT analysis) the trajectory of each

scenario is a sequence of several points where each point is characterized by the

following information:

 104

 the components state combination n

 the cell j in the CVSS

Figure 8.2 shows two event sequences (i.e., the trajectories of 2 points).

Fig.8.2 – Characterization of the dynamic of the points generated by the Markov/CCMT methodology

Moreover, as presented in Section 8.1, every cells j is characterized by the following

variables:

 level

 compensated level

 level error

 BFV position

Note that since the whole normal operating range is characterized by one cell, all the

arrival points 1
~

kx and departure points 'x in Eq.(7.1) that fall within the normal

 105

operating range are contained within the same cell. Subsequently,)1,','|(knjjg =1

for j’ corresponding to the normal operating range unless j corresponds to High Level or

Low Level. In the latter two cases,)1,','|(knjjg =0 for j’ and j corresponding to the

normal operating range.

Figure 8.2 shows how it has been possible to implement a point using Java thorough a

specific class called “step” which incorporate the following variables:

 the component state combination n

 level

 compensated level

 level error

 BFV position

 106

Fig.8.3 – Class implemented in Java to define a point in CVSS for the EIE

A single event sequence is simply a sequence of points and is implemented in Java as an

array of “step”. This array is called “branch” and it is shown in Fig.8.4.

public class step

{

 public int n; // component state combination

 public double l; // level

 public double cl; // compensated level

 public double le; // level error

 public double bfvpos; // BFV pos

 public step ()

 {

 n = 0;

 l = 0;

 cl = 0;

 le = 0;

 bfvpos = 0;

 }

public step (int stateComb, double level, double compensatedLevel,

double levelError, double bfv)

 {

 n = stateComb;

 l = level;

 cl = compensatedLevel;

 le = levelError;

 bfvpos = bfv;

 }

}

 107

Fig.8.4 – Class implemented in Java to define scenario for the EIE

8.2.3 Program Engine

The main purpose of the engine program, shown in Fig.8.5, is to follow and analyze

the path of every point. This engine performs the following operations for every Markov

time step and for each point in CVSS:

1. generate new points, one for each transition in the Markov model (see)

2. determine the new position of the original step and the position of the points

generated in 1 using the EIE simulator (See Section 8.2.4).

public class branch

{

 public step [] path ;

 public int completedSteps;

 public branch (int tSteps)

 {

 path = new step [tSteps];

 completedSteps = 1;

 int initialStateCombination = 0;

 double initialLevel = 0;

 double initialCompensatedLevel = 0;

 double initialLevelError = 0.0;

 double bfvpos = 0.0;

 for (int k=0 ; k<tSteps ; k++)

 {

 path[k] = new step(initialStateCombination ,

initialLevel, initialCompensatedLevel, initialLevelError, bfvpos);

 }

 }

}

 108

The function which accomplishes this task is the function “nodeAnalysis” and it is shown

in Fig.8.5 and entirely in Appendix A

Fig.8.5 – Program engine

8.2.4 EIE simulator

The simulator for the EIE is implemented directly in Java as a separate function. This

function receives as inputs the following parameters:

 the initial point (n, j)

 the Markov time step t

The program, given the cell of the initial point, determines the value of the theoretical

aperture of the BFV. Then, depending on the status of the components state combination,

it determines the real aperture of the BFV and the consequent feedwater flow. Thus, the

arriving cell j’ is determined. The point generated (situated in cell j’ and having the same

component state combination n) is then saved in the array.

for (int i = 0 ; i < tree.capacity() ; i++)

{

temp = tree.elementAt(i);

 for (int j = temp.completedSteps-1 ; j<timesteps-1 ; j++)

 {

 tree = nodesAnalysis (tree, i, j, matrix_n, dt);

 }

}

 109

8.2.5 Output

The output of the program is a list of all the possible trajectories (i.e., a list of all the

possible event sequences) given the set of initial points. Since the CVSS (level) is

represented by a single cell, the Cdf for High Level (PH) or Low Level (PL) occurrence

at time t=kt can be found from





k

k n n

H kjnHnqP
1' '

),','|,(and 



k

k n n

L kjnLnqP
1' '

),','|,((8.10)

where j’ corresponds to the normal operating range.

Event sequences and DET are logically equivalent. In fact, assuming that the system

starts in an operational state where all process variables are in the nominal range and all

system components are operational, the algorithm starts branching through discrete time

steps such that each level of branching in the tree represents all the possible states in

which the system may be after a given time interval. Branching stops any time a branch

reaches a "sink" state (i.e., a state from which the system cannot move out) or the

probability associated with the branch is below a chosen threshold. It is also possible to

stop after a certain amount of system time has elapsed or, equivalently, once the

branching has reached a chosen depth in the tree.

 110

Fig.8.6 – Event trees data structure and event sequences

The DET is represented by a tree data structure. A tree data structure is composed of

"nodes" (where information is stored) and "links" that connect the nodes. The nodes in

the tree data structure correspond to the branching points in the DET and the links

represent the branches. Figure 8.6 shows 3 event sequences (E.S. 1, E.S. 2 and E.S. 3),

the relative event tree and a tree data structure that might be used to represent it. In the

example, the tree nodes hold the information about the system component states: MC, BC

and BFV. The event corresponding to a specific branch in the tree can be deduced by

comparing the configurations at the beginning and at the end of the branch. Since the

level is partitioned only into three cells, a large number of nodes will fall within the

normal operating range for level. In this situation, it is also possible to regard the CVSS

cells as the nodes. Then if the)1,','|(knjjg obtained from the trajectories generated

 111

by the algorithms in Figs. 8.4 and 8.5 (see Section 8.2.2) are used to determine the links

between these nodes, the links represent the expected behavior of the trajectories,

weighted by the probability of occurrence of the trajectories as determined by

)','|(jjnnh  .

8.3 Results

The tool used to generate event sequences starts from a normal state in which all the

system components are operational and the process variables are within their nominal

range.

Table 8.4 shows an example of failure scenario. For each time step are indicated the

system configuration, the level of the SG and comments regarding the status of the

DFWCS.

Time [s] System configuration Level [ft] Comments

1

BC: Operating

BFV: Communicating 0

Both BFV and BC are in their operational

state, and all process variables are in their

nominal range.

2

BC: Operating

BFV: Communicating -0.404

Both BFV and BC are in their operational

state, and all process variables are in their

nominal range.

3
BC: Loss of Input

BFV: Communicating
0.534 BC loses and input from one sensor.

4
BC: Down

BFV: Communicating
1.039

Since BC does not recover the loss of input,

it takes itself down.

5
BC: Down

BFV: Freeze
1.555

Since BC is down, controller BFV controller

freezes its output.

6
BC: Down

BFV: Arbitrary Output

2.610

(High)

Internal failure of the BFV controller which

generate arbitrary output.

Table 8.4 – Example of scenario for the EIE

 112

Table 8.5 summarizes the event sequences generated by the program for the EIE. In

particular, it shows the number of scenarios generated for different time steps and the

percentage of high and low scenarios. Moreover, Fig.8.7 and Fig.8.8 display the number

of failure scenarios as function of time steps.

time steps Tot Low High % Low % High

0 0 0 0 0 0

1 1 0 0 0 0

2 7 0 0 0 0

3 26 0 0 0 0

4 70 0 0 0 0

5 155 0 1 0 0.6

6 301 0 12 0 4.0

7 532 45 22 8.5 4.1

8 876 80 37 9.1 4.2

9 1365 133 66 9.7 4.8

10 2035 259 137 12.7 6.7

11 2926 456 304 15.6 10.4

12 4082 739 510 18.1 12.5

13 5551 1064 803 19.2 14.5

14 7385 1629 1307 22.1 17.7

15 9640 2346 1885 24.3 19.6

Table 8.5 – Summary of the event sequences generated for the EIE

 113

Fig.8.7 – Number of scenarios generated for the EIE

Fig.8.8 – Number of scenarios for the two Top Events generated for the EIE

 114

Figure 8.9 shows that the exact timing of the failure of a system component can have

an impact on the resulting system failure. In particular, Fig.8.9 depicts the evolution of

the level variable under two distinct scenarios starting both from the same initial

conditions as presented in Section 8.1 for the EIE.

In one case, the BFV fails stuck at the current position at time t = 5 sec. In the other

case, the BFV fails stuck at time t = 4 sec. The first scenario results in the level failing

low (xn < - 2.0 feet), while the second scenario results in the level failing high (xn > 2.5

feet).

This example is important because, for a system similar to the digital feedwater

control system in an operating PWR, it illustrates:

 what has been reported in the literature on the possible sensitivity of the system

failure mode to the exact timing of component failures [2] , and,

 that an analysis that considers only the order of events and ignores their exact

timing may result in the failure to identify possible failure modes.

 115

Fig.8.9 – Different Failure Modes as Result of Timing of BFV failure

Since)','|(jjnnh  data were not available, no attempt was made to determine PL and

PH.

 116

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

The methodology described in this thesis shows how it is possible to model digital

control systems for PRA purposes using Markov/CCMT. In particular, it shows how it is

possible to perform the analysis starting from a detailed description and understanding of

the system under consideration. These inputs are the control laws, system topology,

control logic and the analysis of the failures and effects performed for all the components

of the system.

The analysis of the system is performed merging two separate models, one for each of

the two types of interactions. Type I interactions take into account the dynamic of the

system and how the process and the controller affect each other. These are modeled using

the CCMT which describes the dynamic of the process through transitions between cells

that compose the CVSS. Type II interactions, on the other hand, take into account the

interactions among the components of the controller. These are modeled thorough

Markov transitions diagrams, one for each component. Discrete hardware/software/

firmware states are defined and transitions between these states are deduced from the

control logic of the system, as well as from the failure modes and effects analysis

performed on each component.

 117

Starting form a finite set of initial point distributed in the CVSS, the Markov/CCMT

follows the trajectories originating from these points. At each time step and for each

point, new point, having the same location in the CVSS but different system

configuration based on the Markov models previously built, are generated.

The set of the overall trajectories are in principle event sequences which can be

simply converted into dynamic event trees. These event sequences can be incorporated

into an existing ET/FT based PRA of a PWR using the SAPHIRE code. Markov/CCMT

also yields DETs that represent the ensemble average of the event sequences for the

partitioning defined for the CVSS.

Thus, the objectives of this thesis presented in Section 1 are met and fulfilled. These

objectives include:

1. show how it is possible to model digital control systems for PRA using the

Markov/CCMT methodology, and

2. produce dynamic event trees which can be incorporated into an existing ET/FT

based PRA of a PWR using the SAPHIRE code.

The methodology can capture:

1. dependence of the control action on system history,

2. dependence of system failure modes on exact timing of failures,

3. functional as well as intermittent failures,

4. error detection capability,

 118

5. possible system recovery from failure modes

The first three requirements are satisfied by using auxiliary process variables as

appropriate. For example, in the EIE, it is shown how the need to keep track of the BFV

position (due to the freeze state of the controllers) is satisfied by adding the variable

“BFV position”. In general, every time that the system under consideration shows history

dependence properties, a new variable or a new state would need to be added. The

drawback is a greater computational effort. I

This thesis also shows how the interplay of computers and controllers is modeled

through a 3-layer finite state machine model. A layer shows the interactions among one

or more components. The definition and the consequently construction of each layer

would strongly depend on the connection network of the components themselves.

The error detection capabilities and the system recovery from failure modes of the

control system are specified in the FMEA. The recovery form failure can be implemented

simply adding a transition to the finite state machine model from the same state failure

state to the operating state. For example, in the DFWCS, recovery from a failure in the

communication (between sensors and computers or between computer and controllers)

are implemented in this way.

Some areas require additional research and study. The exponential growth of the

event sequences for the EIE indicates a computational challenge even for simple systems

for a large number of time steps. This growth can be by either reducing the number of

states of the Markov transitions diagrams or increasing the Markov time step t. This

thesis illustrates how it is possible to reduce drastically the number of states by merging

 119

components together or states of the same Markov transition diagram. An investigation

regarding the effect of the length Markov time on the overall analysis should be

performed once failure rates for the failures presented in the FMEA will be available.

Thus, it could be possible to observe how the Cdf and pdf of the Top Events are affected

by the choice of the length of the Markov time step.

According to Perrow in [19], the DFWCS is a loosely coupled system. It is suggested

to perform a Markov/CCMT analysis on tightly coupled systems [19] in order to

demonstrate the feasibility of the methodology for systems with more complicated

topologies.

 120

REFERENCES

[1] “Digital Instrumentation and Control Systems in Nuclear Power Plants”, National

Research Council, Nation Academy Press, Washington D.C.

[2] T. Aldemir, D. W. Miller, M. Stovsky, J. Kirschenbaum, P. Bucci, A. W.

Fentiman, and L. M. Mangan, “Current State of Reliability Modeling

Methodologies for Digital Systems and Their Acceptance Criteria for Nuclear

Power Plant Assessments”, NUREG/CR-6901, U. S. Nuclear Regulatory

Commission, Washington, D.C. (2006)

[3] S. Guarro, M. Yau, and M. Motamed, “Development of Tools for Safety Analysis

of Control Software in Advanced Reactors”, NUREG/CR-6465, U.S. Nuclear

Regulatory Commission, Washington, D.C. (1996)

[4] C. L. Smith, J. Knudsen, M. Calley, S. BeckK, K. Kvarfordt and S. T. Wood,

“SAPHIRE Basics: An Introduction to Probability Risk Assessment Via the

Systems Analysis Program for Hands-on Integrated Reliability Evaluations”

SAPHIRE Software, Idaho National Laboratory, Idaho Falls, ID (2005).

[5] J. Kirscehbaum, M. Stovsky, P. Bucci, T. Aldemir and S. A. Arndt, ”Benchmark

Development for Comparing Digital Instrumentation and Control System

Reliability Modeling Approaches“, American Nuclear Society, LaGrange Park, IL

(2005).

[6] T. Aldemir, D. Mandelli et al.,”A Benchmark System for the Assessment of

Reliability Modeling Methodologies for Digital Instrumentation and Control

Systems in Nuclear Plants“, Proceedings NPIC&HMIT 2006, Albuquerque, New

Mexico (2006).

[7] “Reliability Modeling of Digital Instrumentation and Control Systems for nuclear

Reactor Probabilistic Risk Assessments”, NUREG/CR-6942, U. S. Nuclear

Regulatory Commission, Washington, D.C. (2006).

[8] J. Kirschenbaum, P. Bucci, M. Stovsky, D. Mandelli, T. Aldemir, M. Yau, S.

Guarro, E. Ekici, S.A. Arndt, “A Benchmark System for Comparing Reliability

Modeling Approaches for Digital Instrumentation and Control Systems”,

submitted to Nuclear Technology, 2007.

 121

[9] J. Kirschenbaum, M. Stovsky, P. Bucci, T. Aldemir, S. A. Arndt, , ”Benchmark

Development for Comparing Digital Instrumentation and Control System

Reliability Modeling Approaches“, American Nuclear Society, LaGrange Park,

IL, 2005.

[10] B. Forouzan, “Data Communication and Networking”, 2
nd

 Edition, Mc Graw Hill,

1991.

[11] Technical Specification Non-Compliance Due to Loose Wire on a HPCI System

Valve Logic Relay, 4-03-0, (2006)

[12] J. K. Kirkwood, Reactor Trip Due to Low Steam Generator Water Level After

Feed Pump Trip, 2004-01-00, (3-23-2004)

[13] N. E. Todreas and M. S. Kazimi, “Nuclear Systems: Thermal Hydraulic

Fundamentals”, Hemisphere Publishing. Corp. (1990).

[14] T. Aldemir, “Computer-Assisted Markov Modeling of Process Control Systems,”

IEEE Trans. Reliability, R-36, 133-144, 1987.

[15] N. J. McCormick, “Reliability and Risk Analysis: Methods and Nuclear Power

Plant Applications”, Academic Press, Inc, Boston, 1981.

[16] C.S. Hsu, “Cell-to-Cell Mapping: a Method of Global Analysis for Nonlinear

Systems”, Springer-Verlag, New York, 1987.

[17] T. Aldemir, “Utilization of the Cell-To-Cell Mapping Technique to Construct

Markov Failure Models for Process Control Systems“, Probabilistic Safety

Assessment and Management: PSAM1, 1431-1436, Elsevier, New York, 1991.

[18] T. Aldemir, D. Mandelli et al., “Incorporation of Markov Reliability Models for

Digital Instrumentation and Control Systems into Existing PRAs”, Proceedings

NPIC&HMIT 2006, Albuquerque, New Mexico (2006).

[19] C. Perrow, “Normal Accident, Living with High Risk Technologies”, Princeton

University Press.

[20] S. Guarro, M. Yau and M. Motamed, ”Development of Tools for Safety Analysis

of Control Software in Advanced Reactors”, NUREG/CR – 6465, U.S. Nuclear

Regulatory Commission, Washington, D.C., 1996.

[21] P.E. Labeau, C. Smidts, S. Swaminathan, “Dynamic Reliability: Towards an

Integrated Platform for Probability Risk Assessment, Reliability and System

Safety”, Vol. 68, 2000.

 122

[22] M. Hassan, T. Aldemir, ”A Data Base Oriented Dynamic Methodology for the

Failure Analysis of Closed Loop Control Systems in Process Plants“, Reliability

Engineering & System Safety, Vol. 27, 275-322, February 1990.

[23] B. Tombuyses, T. Aldemir, ”Continuous Cell-to-Cell Mapping“, J. Sound and

Vibration, Vol. 202(3), 395-415, May 1997.

[24] M. Belhadj, T. Aldemir, “Some Computational Improvements in Process System

Reliability and Safety Analysis Using Dynamic Methodologies”, Reliability and

System Safety, Vol. 52, 1996.

 123

APPENDIX A

PROGRAM

 124

The program which implements the Markov/CCMT methodology for the EIE is

presented in the following pages.

import java.util.Scanner;

import java.io.*;

import java.util.Vector;

import java.lang.Math;

import flanagan.integration.RungeKutta;

public class EIE

{

 public static void main(String[] args) throws IOException

 {

 double [][] matrix_n =

 {

 {1,1,1,1,1,1,1},

 {0,0,1,1,1,1,1},

 {0,0,0,1,1,1,1},

 {0,0,0,1,1,1,1},

 {0,0,0,0,1,1,1},

 {0,0,0,0,0,1,1},

 {0,0,0,0,0,0,1},

 };

 int simulationtime = 2; // in seconds

 int dt = 1;

 int timesteps = simulationtime/dt;

 Vector<branch> tree = new Vector<branch>(0,1);

 branch zero = new branch (timesteps);

 tree.add(0, zero);

 branch temp; // temp e' il branch sotto considerazione

 for (int i=0 ; i<tree.capacity() ; i++) {

 temp = tree.elementAt(i);

 for (int j=temp.completedSteps-1 ; j<timesteps-1 ;

j++) {

 tree = nodesAnalysis (tree, i, j, matrix_n,

dt);

 }

 }

 PrintWriter outputFile = new PrintWriter (new

FileWriter("c:\\eie.csv"));

 branch temp2;

 for (int y = 0 ; y < tree.capacity() ; y++)

 {

 125

 temp2 = tree.elementAt(y);

 for (int x = 0 ; x < timesteps ; x++)

 {

 outputFile.print(temp2.path[x].n + " , ");

 }

 outputFile.println();

 }

 outputFile.close();

 System.out.println(tree.capacity());

 branch temp3;

 int failH = 0;

 int failL = 0;

 int OK = 0;

 for (int y = 0 ; y < tree.capacity() ; y++)

 {

 boolean H = false;

 boolean L = false;

 boolean sistemOK = true;

 temp3 = tree.elementAt(y);

 for (int x = 0 ; ((x<timesteps) && sistemOK) ; x++)

 {

 if (temp3.path[x].l<(-2))

 {

 L = true;

 sistemOK = false;

 failL++;

 }

 if (temp3.path[x].l>2.5)

 {

 H = true;

 sistemOK = false;

 failH++;

 }

 }

 }

 System.out.println(tree.capacity() + " , " + failL + " , "

+ failH);

 }

 public static step nextStep (step initial, int t, int deltatau,

int n)

 {

 126

 step fin = new step(n, initial.l, initial.cl, initial.le,

initial.bfvpos);

 DifferentialEquations des =

DifferentialEquations.getInstance();

 if (initial.n == 0) // CV

 {

 des.setUseOldBfvPosition(false);

 }

 if (initial.n == 1) // OV

 {

 des.setUseOldBfvPosition(true);

 des.setBfvPosition(initial.bfvpos);

 }

 if (initial.n == 2) // OV

 {

 des.setUseOldBfvPosition(true);

 des.setBfvPosition(initial.bfvpos);

 }

 if (initial.n == 3) // OV

 {

 des.setUseOldBfvPosition(true);

 des.setBfvPosition(initial.bfvpos);

 }

 if (initial.n == 4) // AO

 {

 des.setUseOldBfvPosition(false);

 des.setBfvPosition(Math.random()*100);

 }

 if (initial.n == 5) // 0 vdc

 {

 des.setUseOldBfvPosition(false);

 des.setBfvPosition(0);

 }

 if (initial.n == 6) // OV

 {

 des.setUseOldBfvPosition(true);

 des.setBfvPosition(initial.bfvpos);

 }

 double[] X = RungeKutta.fourthOrder(des, t , new double[] {

initial.l , initial.le , initial.cl }, t + deltatau, 0.01 * deltatau);

 fin.n = n;

 fin.l = X[0];

 fin.le = X[1];

 fin.cl = X[2];

 fin.bfvpos = clamp(des.getBfvPosition(), 0.0, 100.0);

 fin.bfvpos = des.getBfvPosition();

 return fin;

 }

 127

 public static Vector<branch> nodesAnalysis (Vector<branch>

oldtree, int row, int column, double [][] g, int dt)

 {

 branch origin = oldtree.elementAt(row);

 int combination = origin.path[column].n;

 int count = 0;

 for (int l=0 ; l<7 ; l++)

 {

 if (g [combination][l] == 1)

 {

 count++;

 if (count == 1)

 {

 origin.path[column+1] =

nextStep(origin.path[column], column*dt, dt, l);

 origin.completedSteps++;

 oldtree.removeElementAt(row);

 oldtree.add(row,origin);

 }

 else // crea una nuova branch

 {

 oldtree = branchGeneration(oldtree, row,

column, l, dt);

 }

 }

 }

 return oldtree;

 }

 public static Vector<branch> branchGeneration (Vector<branch> ot,

int r, int c, int stateComb, int t)

 {

 branch or = new branch (ot.elementAt(r).path.length);

 or.completedSteps = ot.elementAt(r).completedSteps;

 for (int i=0; i<ot.elementAt(r).completedSteps ; i++)

 {

 or.path[i] = new step (ot.elementAt(r).path[i].n ,

ot.elementAt(r).path[i].l , ot.elementAt(r).path[i].cl,

ot.elementAt(r).path[i].le, ot.elementAt(r).path[i].bfvpos);

 }

 int d = or.completedSteps-1;

 or.path[d].n = stateComb;

 128

 or.path[d] = nextStep(or.path[d] , c*t , t , stateComb);

 ot.add(or);

 return ot;

 }

 public static double clamp(double currBfvPos, double min, double

max)

 {

 if (currBfvPos < min)

 {

 return min;

 }

 else if (currBfvPos > max)

 {

 return max;

 }

 else

 {

 return currBfvPos;

 }

 }

}

