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ABSTRACT

The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA)
explicitly accounts for the time element in modeling the probabilistic system evolution and uses
numerical simulation tools to account for possible dependencies between failure events. The
Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic
PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce
which may be difficult to visualize and analyze in order to extract useful information. We present a
software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset
as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide
structural analysis of such a function at multiple scales and provide insight into the relationship
between the input parameters and the output. Second, we enable exploratory analysis for users, where
we help the users to differentiate features from noise through multi-scale analysis on an interactive
platform, based on domain knowledge and data characterization. Our analysis is performed by
exploiting the topological and geometric properties of the domain, building statistical models based on
its topological segmentations and providing interactive visual interfaces to facilitate such explorations.
We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities,
along with a use case involving dataset from a nuclear reactor safety simulation.

Key Words: high-dimensional data analysis, computational topology, nuclear reactor safety analysis,

visualization

1 INTRODUCTION

Dynamic Probabilistic Risk Assessment (PRA) methodologies [19] couple numerical simulation tools and
time-dependent stochastic models (i.e., probabilistic failure models or parameter uncertainties), to perform
system safety analysis. Widely used dynamic PRA methodologies are based on Monte-Carlo [36] or
Dynamic Event Tree algorithms [25]. The common underlying idea is to run a large number of simulations
(by employing system simulators) where values of system stochastic parameters (e.g., timing of failure of a
specific component or an uncertain parameter) are sampled from their own distribution at each run. This
type of PRA analysis can be very time-consuming when a large number of stochastic parameters are
considered and when large and complex system simulators are used. Moreover, a large volume of data is
typically generated. Such large amounts of information can be difficult to organize for extracting useful
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information. Furthermore, it is often not sufficient to merely calculate a quantitative value for the risk and
its associated uncertainties. The development of risk insights that can increase system safety and improve
system performance requires the interpretation of scenario evolutions and the principal characteristics of
the events that contribute to the risk.

The need for software tools able to both analyze and visualize large amount of data generated by Dynamic
PRA methodologies has been emerging only in recent years. A first step has been shown in [38, 39] using
clustering-based algorithms which focus more on the analysis part than the visualization side.

In this paper, we present a software tool that provides scientists and domain experts with an interactive
analysis and visualization environment for understanding the structures of high-dimensional nuclear
simulation data. Our tool adapts and extends the innovative framework called HDViz first proposed by
Gerber et. al. [26] in exploring high-dimensional scalar functions, and applies the underlying techniques to
nuclear reactor safety analysis and visualization. Our tool includes a host of various analysis and
visualization capabilities. We describe each of these capabilities on a modular basis, by explaining the
underpinning theories and presenting usage cases. The software segments the domain of a high-dimension
function into regions of uniform gradient flow by decomposing the data based on its approximate
Morse-Smale complex. Points belonging to a particular segment have similar geometric and topological
properties, and from these we can create compact statistical summaries of each segment. Such summaries
are then presented to the user in an intuitive manner that highlights features of the dataset which are
otherwise hidden in a global view of the data. In addition, the visual interfaces provided by the system are
highly interactive and tightly integrated, providing users with the ability to explore various aspects of the
datasets for both analysis and visualization purposes.

In Section 2, we review the technical background of the Morse-Smale complex, its approximation in high
dimensions, persistence simplification, and visualizing high-dimensional data. We describe each analysis
and visualization module in Section 3 applied to a nuclear reactor safety analysis data set.

2 PRELIMINARIES

Morse-Smale Complex. Several topological structures have been used in practice for analyzing the
structure of a scalar function, such as Reeb graphs [44, 45], countour trees [6, 12, 34], and Morse-Smale
complexes [7, 21, 27, 28]. Each of these structures provides an abstract view of the data that highlights the
salient features within the function. Algorithms exist to compute these topological structures in low
dimensions [7, 21, 28, 34, 44], and recent developments [12, 26] have enabled us to compute or approximate
these structures in high dimensions.

The body of work presented in this paper relies heavily on the structure known as the Morse-Smale
complex. The Morse-Smale complex is based on Morse theory [41, 42]. Let M be a smooth manifold
embedded in Rn without boundary and f : M→ R be a smooth function with gradient∇f . A point x ∈M
is called critical if∇f(x) = 0, otherwise it is regular. At any regular point x the gradient is well-defined
and integrating it in both (ascending/descending) directions traces out an integral line, which is a maximal
path whose tangent vectors agree with the gradient [21]. Each integral line begins and ends at critical
points of f . Therefore, all regular points can trace their ascending integral line to a local maximum.
Similarly, tracing the descending integral line of a regular point will associate a point with a local
minimum. The unstable/stable manifolds (or ascending/descending manifolds) of a critical point p are
defined as all the points whose integral lines start/end at p. The set of intersections of unstable and stable
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manifolds creates the Morse-Smale complex of f . Each cell (crystal) of the Morse-Smale complex is a
union of integral lines that all share the same origin and the same destination. In other words, all the points
inside a single crystal have uniform gradient flow behavior. These crystals yield a decomposition into
monotonic, non-overlapping regions of the domain. Figure 1 shows these individual partitions of a scalar
function over a 2D surface.

Figure 1. From left to right: unstable manifolds, stable manifolds, Morse-Smale complex. Each partition is
colored by its corresponding gradient behavior, where points share the same color if: (Left) their ascending
gradient flow end at the same local maximum; (Middle) their descending gradient flow end at the same local
minimum and (Right) their gradient flow begin and end at the same maximum-minimum pair.

Approximating the Morse-Smale Complex in High Dimension. Suppose our input domain is a finite set
of points X in Rn rather than a smooth n-manifold. To approximate the Morse-Smale complex in high
dimension, our first task is to estimate the gradient at the input points, X, by employing a version of the
quick shift algorithm [50]. First, we compute a neighborhood graph such as the k-nearest neighbor graph
of X. At each point in X, we choose the steepest ascending/descending edge to represent the gradient. With
this gradient approximation, we can determine the local extrema by labeling all points with no neighbors of
higher values as local maximum and all points with no neighbors of lower values as local minimum. We
then label all points in X according to the local extrema at which its ascending and descending gradients
terminate. Subsequently, we collect all vertices with the same pair of labels into crystals and add the
extrema to all crystals that share the corresponding label. These crystals then serve as an approximation of
the Morse-Smale complex [26]. Some research is underway [17, 37] to understand how different
neighborhood graphs (i.e. empty region graphs [8]) may impact our approximations, and what sampling
conditions we should impose on the data to guarantee the approximation quality.

Persistence Simplification. We also introduce the notion of scale for learning the structure of a function
defined on a point cloud through the concept of persistence. Persistence studies the evolution of vectors in
a sequence of vector spaces [14]. One main example of such a sequence comes from the homology groups
of a sequence of sublevel sets of a real-valued function. Homology is an easily computed topological
invariant, where homology features are components, tunnels, voids and high-dimensional “holes” of a
space; a background is given in [29, 43]. Persistence provides a way of ranking the significance of the
topological (homological) features in the sublevel sets of a real-valued function and is essential to achieve
the robustness of our methods. The theory of persistence was first introduced in [11, 23], but borrows from
the conventional notion of the saliency of watersheds in image segmentation. It has since been applied to a
number of problems, including sensor networks [18], surface description and reconstruction [9], protein
shapes [20] and images analysis [10]. In visualization, it has been used to simplify Morse-Smale
complexes [7, 22, 27], Reeb graphs [16, 45] and contour trees [13, 48].
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In real datasets, there is often noise which may manifest itself as small topological artifacts, either spurious
extrema that may not truly exist in the data or small features the user does not deem relevant. To account
for this and allow the user to select a scale (complexity level) appropriate for the specified dataset, we
introduce the notion of persistence simplification whereby less salient features are merged with
neighboring, more significant features. In the case of the Morse-Smale complex, we assign a persistence to
each critical point in the complex which intuitively describes the scale at which a critical point would
disappear through simplification. An example of this simplification is shown in Figure 2, where at the
finest level there are four maxima in the data, but as we increase the scale, neighboring topological features
are merged where the upward gradient flow is directed to its more salient neighboring maxima. We thus
build a filtration of segmentations where Morse-Smale crystals are merged based on the persistence value
of their associated extrema.

Figure 2. Progressive simplification of the critical points of a 2D function.

Visualization in high dimensions. A common approach to visualize the high-dimensional data is based on
projecting them onto one-, two- or three-dimensional subspaces and show labeled scatter plots or some
interpolation of those densities. Common projection approaches focus on linear subspaces, such as those
used by PCA and projection pursuit [24]. Slight variations of these methods look at sequences of
projections onto different directions or multiple subspaces, such as Andrew’s plots [1], parallel
coordinates [32] and the grand tour approach [3]. The high-dimensional data is embedded onto the
hyperbolic plane in [51], and 3D-sphere in [31]. Recently, specific tools have been developed to facilitate
interactive visualization of high-dimensional data in conjunction with nonlinear dimensionality reduction
techniques, such as VisuMap [35], VisHD [52] and Hyperbolic MDS [51]. Tools targeted towards specific
applications in high-dimensional data visualization include design galleries [40] for exploring the
parameter space of transfer functions in volume rendering, and Click and Expander [47] for identifying
clusters in gene expression data. In the machine learning community, visualization of the low-dimensional
embedding is a common strategy for quantifying the effectiveness of manifold learning
approaches [5, 30, 46, 49]. Our work uses parallel coordinate plots, and adapts several high-dimensional
projection schemes, including PCA, ISOMAP [49] and Hypervolume visualization [4]. We plan to expand
our visualization capacities by designing more modules that employ a wide variety of projection and
visualization techniques in high dimensions.

3 ANALYSIS AND VISUALIZATION MODULES

In this section, we describe each analysis and visualization module within our integrated system that are
either part of the original capabilities provided by HDViz [26] or part of our extension. The modules
included in the software and described below are: topological summary, statistical summary, parallel
coordinate plot, pairwise scatter plots, inverse coordinate plots and interactive projection. We demonstrate
our infrastructure with an example dataset from nuclear plan safety analysis.
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3.1 Example Dataset

We use a 6-dimensional dataset as an example for demonstration purposes. The data is extracted from a
VR+

2 nuclear reactor simulator and represents an ensemble of 10000 simulation trials where a SCRAM is
simulated due to a failure in the system. A SCRAM event is when the control rods of the reactor are
inserted into the core in order to prevent overheating of the reactor core. The output variable is the peak
coolant temperature (PCT), measured in Kelvin. The domain scientists are interested in what combination
of conditions (in the form of input parameters) can cause potential reactor failure (i.e. nuclear meltdown
witnessed by PCT exceeding a threshold value). The input space is defined by six parameters:

• PumpTripPre - the minimum pressure (MPa) in the heat exchange pump causing the SCRAM to trip
• PumpStopTime - the relaxation time (sec) of pump’s phase-out
• PumpPow - end power of the pump
• SCRAMtemp - the maximum temperature in the system causing the SCRAM to trip
• CRinject - the control rod position at the end of SCRAM
• CRtime - the relaxation time (sec) of the control rod system.

3.2 Topological Summary

The visual interface designed for topological summary is inherited and extended from the capabilities
provided by HDViz [26]. Considered as the main visual display of our software, this interface summarizes
each Morse-Smale crystal into a 1D curve in high-dimensional space which is then projected onto a
viewable 3D space. Each curve is encased in a transparent tube where the width of the tube represents the
“spread” of the data at a particular scale, and the luminance of the tube encodes the density of data points
within each crystal. The interface encodes three steps to arrive at a 3D representation for analysis and
visualization of the d-dimensional scalar function, f , defined on a point cloud, X [26]: (1) Morse-Smale
Approximation: Compute segmentation Xi and Yi = f(Xi) using a Morse-Smale complex approximation
of f , where

⋃
Xi = X; (2) Geometric Summaries: Construct regression curves, ri, as a geometric

summary of each segment Xi and Yi; and (3) Dimension Reduction: Embed regression curves in 2D using
a two-step dimension reduction approach. The third dimension is reserved for the output parameter. We
give a high level description of this process, for details see [26].

Morse-Smale Approximation. We approximate the Morse-Smale crystals in high dimension using an
approximate k-nearest neighbor graph [2] and the quick shift algorithm as detailed in Section 2. However,
this is just one of many approximation schemes. Some of our on-going work [37] focuses on understanding
the possibilities for approximating these complexes and the implications of those approximations.

Geometric Summaries. For each crystal of the Morse-Smale complex, a geometric summary is
constructed by an inverse regression. This yields a 1D curve in the d-dimensional domain of f . Formally,
the input domain for each crystal, Ci, with samples (Xi,Yi) is summarized by a parametric curve ri in Rd.
Modeling the curve by the conditional expectation ri(y) = E[X ∈ Ci|Y] yields a representation of the
crystal Ci as the average of the level sets {x : f(x) = y, x ∈ Ci} within the partition. The conditional
expectation is then estimated with locally linear regression [15], see [26] for its detailed derivation.

Dimension Reduction. The set of regression curves can be represented by a graph embedded in Rd with
each edge corresponding to a curve and vertices corresponding to extremal points. For visualization, we
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embed this graph into the plane preserving the spatial relation among extrema and the geometry of the
partitions that connect them. It is important to point out that the goal of this dimension reduction is to
provide an informative illustration of f rather than manifold learning of X. As a first attempt, we compute
the projection into the plane using a three-step approach: first, vertices are embedded using PCA or
ISOMAP [49] on the corresponding point set; second, edges are embedded individually through their first
two principle components; and third, the resulting two-dimensional curves are attached to the projected
vertices through affine transformations. We plan to apply more general graph embedding techniques to
provide representations suitable for visual exploration.

Figure 3. Left: a simple 2D surface decomposed into its Morse-Smale cells. Right: The topological
summary visual interface of the simple 2D function shown in the left image.

Visual Components of the Framework. The visual components of the above framework are shown in
Figure 3 for a simple 2D function with four Morse-Smale crystals. Users are given the flexibility to view
the topological summary of a high-dimensional function by switching between PCA and ISOMAP
projections, and using affine transformations to manipulate the projection directly on the screen. PCA finds
and projects data into a space defined by principal components which are linearly uncorrelated directions of
highest variance in the data. The ISOMAP differs by respecting geodesics of high dimension points which
sometimes can more faithfully convey the geometry of the high-dimension manifold in lower dimensions.

In order to preserve the “width” of a crystal at a given scale, we compute the standard deviation with
respect to each input parameter and also a single average standard deviation across all input parameters.
The latter is direction-independent and can therefore be used as a generalized width of the data at a
particular output level. The radius of the outer transparent tubes are defined by this direction-independent
standard deviation. The last visual cue is the darkness of the edge of the transparent tube. Where the
sampling density is high, the outline of the tube is drawn black and as the sampling density decreases, the
luminance of this edge increases.

To enable multi-scale analysis, we use a modified version of the persistence diagram [23], referred to as the
persistence graph. This is shown as a visual component at the bottom of Figure 3. It shows the number of
Morse-Smale crystals (y-axis) as a function of scale (i.e. x-axis, persistence threshold normalized by the
range of the dataset). A selected scale is drawn with a red box and a corresponding number of
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Morse-Smale crystals is displayed along the y-axis in red. Stable features are considered as those that exist
over a large range of scales (i.e. a sequence of persistence simplification with increasing scales), which
correspond to long horizontal lines in the persistence graph.

Figure 4 shows several examples of simple 2D surfaces represented using the techniques described in this
section. Each function has one local maximum and a single local minimum surrounded by a flat area.
Using an evenly sampled grid, the density of points available at each level is mapped to the color on the
edge of the transparent tubes. The widths of the tubes vary with respect to the spread of the data at each
level set. Note how the sharp spike in (a) is represented in the topological display. The steep peak covers a
small area and the small width of the transparent tube demonstrates this in the area near the maximum. (b)
has a wider area surrounding the peak and while its representing curve remains a single straight line, the
tube surrounding it changes behavior to account for the width of each level set. The plateau function in (c)
even maps the discontinuity in the curve by making a sudden jump from a low value to a high value. Note
how the edge of the tube has high luminance in the middle section denoting a lack of data used to compute
this section, whereas the most densely sampled region is at the maximum value which has a black outline.

(a) (c)(b)

Figure 4. Three simple surfaces represented using geometric summary tubes.

We demonstrate how the topological summary visual interface allows the users to explore the data at
multiple scales. We look at a dataset (initially shown in Figure 2) under several levels of persistence
simplification in Figure 5. Here the leftmost image shows the full resolution of data with four local
maxima, while each subsequent image reduces the number of maxima by one until we are left with a single
crystal describing the gradient flow from the global minimum to the global maximum. The numbers in red,
shown in the persistence graphs, indicate the total number of crystals displayed, from left to right, as 8, 6, 4
and 1. Instead of giving the users a representation of the data at a fixed scale, we provide an interactive
platform to help them differentiate features from noise through multi-scale analysis and to choose the
appropriate scale based on domain knowledge and data characterization.

As a final example, we illustrate our analysis and visualization interface with our 6D demo example in
Figure 6 under multiple scales. This dataset (described in Section 3.1) contains 753 individual crystals at
the finest level, though due to low persistence and visual clutter caused by these crystals, we restrict our
analysis to only a handful of the most salient crystals. During the persistence simplification steps, the
topological summaries consist of 6, 3 and 1 Morse-Smale crystal(s), respectively.

At each of the shown persistence level, the dataset is characterized by a single global minimum with high
sampling density. The widths of all the crystals at the minimum is expansive compared to the widths at the
maxima. We could infer from this analysis result that most of the data points (simulations) represent lower
PCTs and the conditions to reach these lower PCTs varies widely in the domain space. On the other hand,
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Figure 5. The topological summary of a simple dataset shown at various scales.

the maximum PCTs are reached at more specific input ranges which is made clear through the narrow
widths of the tubes (of one standard deviation) surrounding the red maxima.

Figure 6. The topological summary of our demo dataset shown at various scales.

3.3 Statistical Summary

The visual interface shown in Figure 7 demonstrates statistical and geometric (i.e. gradient) information
associated with the selected point in the topological summary interface. Each input dimension, or
coordinate, is viewed as an inverse function of the output parameter. In the left column of the statistical
summary window, each horizontal axis describes the range of values of each input parameter and the
coordinate mean and coordinate standard deviation associated with the selected point. The right column
encodes the gradient information, that is, the change in the output with respect to the change in each input
parameter. In Figure 7, we can see that three parameters have quite large standard deviations,
PumpStopTime, SCRAMtemp, and CRtime, whereas the other parameters vary much less. The topological
summary interface on the left of Figure 7 is a global summary of the data that presents the user with a
transparent tube of moderate width that approximate such kind of detail. The statistical summary and the
remaining display methods are integrated within the topological summary to provide deeper meanings to
the analyst.
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Figure 7. A snapshot of the statistical summary visual interface with highlighted visual components.

3.4 Parallel Coordinate Plots

We use parallel coordinate [33] plots to illustrate the correlations among input parameters in the high
dimensional datasets. We showcase this visual interface using our example 6D function in the left image of
Figure 8. In the parallel coordinate plots, each dimension is plotted as a vertical axis. A single line
connecting two parallel axes represents the two adjacent dimensions of a given data point. The variations
among lines connecting the six dimensions (i.e. PumpTripPre, PumpPow, PumpStopTime, SCRAMtemp,
CRinject, and CRtime) indicate correlations among various dimensions of the datasets. In addition, the
mean value (from the inverse regression) of the selected crystal is mapped as a bold line in the parallel
coordinate plots, and a grey area surrounding it denotes one standard deviation off the mean. One
important question associated with parallel coordinate plots is the ordering of the input parameters, we plan
to use statistical techniques to infer the dependencies among these parameters to obtain the optimal order in
the visual layout.

Figure 8. Left: Parallel coordinates plot. Right: Pairwise scatter plots.
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3.5 Pairwise Scatter Plots

Similar to the parallel coordinate plots, we also demonstrate the 2D pairwise scatter plots on our 6D
example (right image of Figure 8), for data points associated with each Morse-Smale crystal. Here, the user
is presented with a series of 2D scatter plots that display each input parameter against every other input
parameter, where the color of a point is mapped to the value of its output. The regression curve of a
selected crystal is also projected onto the scatter plot. The transparent grey tube surrounding it represents
one standard deviation. However, as dimension of the dataset increases, pairwise scatter plots will
eventually become a dense visual clutter, rendering the interface ineffective. We are currently investigating
ways to reduce such a visual clutter.

3.6 Inverse Coordinate Plots

In the inverse coordinate plots, each input parameter is considered as a one-dimensional function of the
output variable. This visual interface is shown in Figure 9 for our 6D example. On the left, at the
persistence level with three crystals, the interface displays the inverse coordinate plot for data points
associated with the selected Morse-Smale crystal in the topological summary interface. On the right, at the
persistence level with six crystals, the interface shows combined inverse coordinate plots associated with
all the crystals. For the selected crystal(s), the regression curve is drawn in the inverse coordinate plots
with a grey tube representing the parameter-specific standard deviation.

From the right image in Figure 9, we see the top set of axes where each of the six regression curves is
readily distinguishable with respect to different ranges of values for PumpTripPre, whereas in the lower
plots they vary little toward the left and only slightly at the right. On the other hand, parameters such as
PumpPow and CRinject result in high temperatures only at specific levels. This conclusion is based upon
the tight configuration of points resulting in high PCT and it is also supported by the consistent locations of
the mean values across all crystals and the low standard deviations of these parameters.

Figure 9. Left: Inverse coordinate plots shown for the highlighted crystal for the three crystal case. Right:
Inverse coordinate plots shown for the six crystal case of the same 6D data.
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3.7 Interactive Projection

The interactive projection visual interface (shown in Figure 10) is similar to the topological summary,
except that instead of using computed projections into screen space, like PCA and ISOMAP, the data
remains in high dimension, and a graphical user interface is used to define how the data is projected onto
the screen space. We discuss the theory behind this interface and its implementation in the presented
software.

As the number of dimensions increases for a high-dimensional function defined on the sampled point set,
selecting the interesting projection dimensions while interacting with the high-dimensional function could
become counter-intuitive. We design an interactive visualization interface that provides simple and fully
explanatory pictures that give comprehensive insights into the global structure of the high-dimensional
function. Based on hypervolume visualization techniques developed in [4], our basic idea is a
generalization of direct parallel projection methods. We first create an independent viewing system that
scales with the number of dimensions where the user is allowed to manipulate how each axis is projected.
We then apply these manipulations to project the geometric summaries from the functional space to the
screen space [4].

To implement such a technique, consider a point x ∈ Rn to be projected onto R2 using a 2× n matrix L.
Let ei be the unit vector of the i-th dimension. Its projection onto the 2D image space is obtained by
multiplying L:

vi = Lei =

[
lx1 · · · lxn
ly1 · · · lyn

]e
i
1
...
ein


Since each unit vector has only one non-zero component, this multiplication directly extracts the ith column
of L. We therefore design an interface where the user manipulates, in 2D, the direction and magnitude of
each projected vector, vi. In other words, the user decides how each unit vector is projected on to the 2D
image space. The combined projected vectors vi are then used to construct the projection matrix L.

Users are provided with a wheel of labeled axes which they can manipulate by stretching, contracting, and
rotating. The geometry of the inverse regression curves therefore is meaningfully preserved. With a single
manipulated projection displayed at a time, the interactive nature of such a tool provides the user with
intuition that is otherwise lost in a PCA or ISOMAP projection. Currently, this system only supports a view
of the geometric summaries, but a possible extension is to create a full hypervolume visualization of the
raw high-dimensional data points as proposed in [4].

4 CONCLUSIONS

In this paper, we present a software tool suitable to analyze and visualize datasets generated by safety
analysis codes. In particular, our software could be interfaced with Dynamic PRA algorithms. In such a
configuration, a large number of runs of the safety analysis code are performed, where during each run,
initial conditions and timing/sequencing of events are changed accordingly to their statistical distribution.
For large complex systems, this type of code generates a large amount of data, modeled as
high-dimensional scalar functions. Our software is designed to assist the user in the process of extracting
useful information from such functions. We describe each analysis and visualization module in the system,
by explaining the theories and techniques based on a specific application of the software in a 6-dimensional
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Figure 10. Interactive Projection Visual Interface for the 6D demo example. (a)-(b) represents the 2-step
PCA topological summary detailed in section 3.2. The data is segmented into three crystals shown in (a)
based on a chosen scale in (b). (c) shows the projection of the high-dimensional inverse regression curves
and their associated standard deviation tubes, based on the mapping shown in the square in (d). In (d), each
input dimension is mapped to a single green line segment, which the user can manipulate by stretching and
rotation, to emphasize or diminish the effect of a particular dimension on the projection.

demo example involving nuclear safety simulation. Such an example is based on code performed on 10000
simulations of a simplified PWR system for a SCRAM scenario. Our software allows us to identify and
visualize the correlations among six parameters and the maximum coolant temperature. We first perform
topological analysis to identify the underlying topological structure of the dataset. Statistical information is
then summarized and linked to the topological structures extracted from the data, allowing the users to
identify correlations between timing/sequencing of events and simulation outcome such as core
temperature. We have obtained some intuitive understanding of the structures of such a high-dimensional
function, although a more comprehensive interpretation of our results depends on extensive testing and
explorations from our collaborators. We expect to work closely with the domain scientists and obtain
feedbacks from the end users regarding (a) the interpretation of the testing datasets using our software, (b)
the limitations and potential improvements of current analysis techniques, and (c) the potential
improvements of the visualization interfaces in terms of usability and interactivity.
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