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ABSTRACT: The recent trend to use a best estimate plus uncertainty (BEPU) approach to nuclear
reactor safety analysis instead of the traditional conservative approach can lead to the production of
very large amounts of data. Therefore the need for methodologies that can facilitate the analysis of high
volumes of data in terms of both the cardinality (due to the high number of uncertainties included in
the analysis) and the dimensionality (due to the complexity of systems) arises. Clustering methodologies
offer powerful tools that can help the user to identify scenario groups that are representative of the
data and thus can reduce the effort involved in data analysis. In this paper, we consider data that are
generated using the dynamic event tree approach for nuclear power reactor transients which contain a
large set of state variables (e.g., temperature, pressure of specific nodes in the simulator) and information
regarding the status of specific components/systems. Techniques for clustering of the raw data, using in
particular Mean-Shift methodology, are discussed and evaluated. We highlight the lessons learned from
the research activities at The Ohio State University and possible future research directions. In addition,
pre-processing of the raw data and dimensionality reduction techniques are described and compared using
several examples.

1 INTRODUCTION

The new generation of safety analysis codes1

will incorporate a new series of algorithms
and dynamic probabilistic safety assessment
methodologies (Aldemir, Catalyurek, Denning,
Smidts, Sun, & Yilmaz 2011) that are able to

• model system dynamics,

• model human interaction and digital control
systems, and,

• perform uncertainty quantification and
sensitivity analysis.

An objective in this trend is to use a best estimate
plus uncertainty (BEPU) approach to nuclear
reactor safety analysis instead of the traditional
conservative approach. This process may result

1LWR Sustainability Program (INL/EXT-07-13543,
‘‘Strategic Plan for Light Water Reactor Research and
Development,’’ Idaho National Laboratory, November
2007).

in large amounts of data generated that can be
difficult to analyze and, from a user point of view,
might be difficult to assess with regard to the main
contributors to risk and most relevant trends.

Clustering methodologies (Bishop 2007) offer
powerful tools that can help the user to identify
scenario groups that are representative of the
data. In the nuclear industry, the data analysis
problem has been tackled by using classification
algorithms (Zio & Baraldi 2005, Mercurio,
Podofillini, Zio, & Dang 2009). Clustering differs
from classification from the fact that it is an
unsupervised type of classification where classes are
not predefined. Classification, on the other hand, is
a supervised methodology where classes are defined
a priori by the user.

This article will summarize the research activities
carried out at The Ohio State University (OSU)
in the past few years towards the development
of clustering algorithms that can reduce the
complexity of data analysis efforts. In Sections 2
and 3 we will introduce the clustering problem
and give an overview of the major steps that



are required to analyze data correctly. Section 4
provides examples of some methodologies available
in order to pre-process the raw data before
the clustering step. This section also shows
how each scenario can be represented and how
dimensionality can be decreased in order to reduce
the computational time of the clustering process.
Sections 5, 6 and 7 introduce the clustering
algorithms that we have developed at OSU
including a comparison of the major clustering
algorithms applied to scenario analysis. In Section 8,
we present some of the results obtained by
the clustering algorithms for different types of
data sets and highlight the applications of these
methodologies in a safety analysis environment.

2 SCENARIO ANALYSIS

The data generated by dynamic methodologies (Siu
1994) such as the dynamic event tree (DET)
methodology (Cojazzi 1996) for the analysis of
nuclear power plants are usually inhomogeneous
due to the fact that they contain

• the temporal descriptions of the state
variables of each node of the simulator (e.g.,
temperature, pressure, level or concentration
of particular elements), and,

• the status of system components, both
hardware and software (e.g., aperture of a
valve or status of a digital control system), and
sub-systems (e.g., Emergency Core Cooling
System) of the plant under consideration

While the former data type is generally continuous,
the latter is typically discrete. When dealing with
nuclear transients, it is possible to group the set of
scenarios into two possible modes:

• End State Analysis which groups scenarios into
clusters based on the end state of the scenarios
(e.g., NUREG-1150 (U.S.NRC 1990))

• Transient Analysis which groups scenarios
into clusters based on their time
evolution (Mandelli, Aldemir, Yilmaz,
Metzroth, & Denning 2010b)

Moreover, it is possible to characterize each
scenario based on

• the status of a set of components (Zio &
Baraldi 2005), and,

• the temporal behavior of a set of state
variables (Mandelli, Aldemir, Yilmaz,
Metzroth, & Denning 2010b) (e.g., node
pressure, temperature)

Figure 1: The flow chart for a clustering process.

Our research activity is focused on the latter type
of scenario characterization (Mandelli, Aldemir,
Yilmaz, Metzroth, & Denning 2010b). Figure 1
gives an overview of the major steps involved in
the analysis of the scenarios generated by dynamic
methodologies:

Pre-processing. The user chooses how each is
scenario is being characterized. Dimensionality
reduction and data normalization are also
performed (see Section 4).

Measure Selection. Similarity measure (e.g.,
distance metrics), along with other clustering
parameters, are chosen (see Section 5).

Clustering. Data are partitioned into clusters
according to the chosen distance metric.
Cluster centers and cluster memberships are
determined (see Section 6).

Post-Processing. Each cluster is characterized
by analyzing sequencing and timing of events
for all the scenarios contained in it (see
Section 8).

3 DATA REPRESENTATION

Since the temporal evolution of each scenario
is typically described by the time evolution of
all system state variables (e.g., pressure and
temperature at a computational node), we chose to
represent each scenario ~xi (i = 1, . . . , I) byM state
variables xim (m = 1, . . . ,M) plus time t (ranging
from 0 to T ) as the state vector

~xi = [xi1(t1), . . . , xiM(t1),
. . . , xi1(tK), . . . , xiM(tK)]

(1)

where xim(tk) corresponds to the value of the
variable xm (e.g., temperature, pressure at a
computational node) sampled at time tk (e.g.,
t1 = 0 and tK = T ) for scenario i. Note that
the dimensionality of each scenario is M ·K and
can be extremely high for complex systems (i.e.,
large number of state variables and large number
of samples).
The variables of interest may be chosen a priori

by the user depending on which phenomena the
user is looking for. Alternatively, depending on the
complexity of the system, the user can chose all
the state variables. In both cases, we investigated



the possibility of using dimensionality reduction
algorithms in order to reduce the number of
variables xm by analyzing their correlation2 (see
Section 4).
It is worth highlighting that the chosen

representation gives the flexibility of including
new information other than the state variables
to characterize each scenario. New information can
be included by simply adding new dimensions to
the vector shown in Eq. (1). These new dimensions
can include

• timing of Q events tq (q = 1, . . . , Q)

• status of R components cr (r = 1, . . . , R), and,

• scenario probability pi

as shown in Eq. (2)

~xi = [xi1(t1), . . . , xiM(t1),
. . . , xi1(tK), . . . , xiM(tK),
t1, . . . , tQ, c1, . . . , cR, pi].

(2)

4 DATA PRE-PROCESSING

Dimensionality reduction is the process of finding
a bijective mapping function F

F : RD 7→ Rd (where d < D) (3)

which maps the data points from theD-dimensional
space into a reduced d-dimensional space (i.e.
embedding on a manifold) in such a way that the
distances between each point and its neighbors are
preserved. In our applications D =M + 1, i.e. M
state variables plus time t.
A classical example of manifold analysis is the

Swiss-roll (see Fig. 2) which can be studied by only
using non-linear algorithms. In this case, points are
distributed in a 3-dimensional space (i.e., D = 3)
which are actually lying on a 2-dimensional space
(i.e., d = 2). The manifold in this case is represented
by a 2-dimensional plane. In our approach, we
tackled this dimensionality reduction problem in
two possible ways:

Manifold Analysis. This series of algorithms
can identify subspaces around each point by
generating a graph around its neighbors as
in the ISOMAP (Tenenbaum, de Silva, &
Langford 2000).

Local Principal Component Analysis (PCA).
This methodology relies on the local
application of PCA, which assumes local
linear correlation among variables, to model a
global non-linear correlation (Jolliffe 2002).

2Correlations originated from the balance (e.g., mass or
energy) and the state equations (e.g., gas state equation)

Figure 2: Swiss-roll: example of a 2-dimensional
manifold (d = 2) in a 3-dimensional space (D = 3).

For dimensionality reduction, we first
implemented the ISOMAP algorithm and
applied it to a dataset3 (Mandelli, Yilmaz, &
Aldemir 2011a) composed by a series of 104
scenarios each one represented by eight state
variables of interest4 (i.e., M = 8 and D = 9).
In (Mandelli, Yilmaz, & Aldemir 2011a), we show
that it is possible reduce the number of dimensions
from D = 9 to d = 6 without losing accuracy in
the clustering process.

Classical PCA (Jolliffe 2002) can model only
linear dependencies among variables using the
eigenspace decomposition. For complex systems,
state variables are related thorough non-linear
relationships. However the local application of
the PCA algorithm shows promising results for
the dimensionality reduction problem as shown
in (Mandelli, Yilmaz, & Aldemir 2011c).

Once each scenario is characterized using (1),
data normalization is often required due to the fact
that the state variables are different in nature and
consequently, in their range. This problem can be
solved in two ways:

• Normalize each dimension into the [0, 1]
interval

• Normalize each dimension by dividing it by
its standard-deviation.

3The initiating event investigated is a station blackout
(SBO) at a U.S. PWR and the MELCOR code is linked to
the ADAPT tool to determine the evolution for each DET
scenario. The simulations using the MELCOR model of the
transient from the occurrence of the SBO through the core
melting phase and up to point of containment failure and
release of radionuclides to the environment.

4Seal LOCA flow rate, hydrogen mass generated, core
water level, system pressure, core vapor temperature,
hot leg vapor temperature, intact core fraction and fuel
temperature.



Table 1: Summary of the commonly used measures.

Measure Form

Minkowski dn(~xi, ~xj) = (

M ·K∑
r=1

|~xi(r)− ~xj(r)|n)
1
n

Euclidean d2(~xi, ~xj) = (

M ·K∑
r=1

|~xi(r)− ~xj(r)|2)
1
2

Taxicab d1(~xi, ~xj) =

M ·K∑
r=1

|~xi(r)− ~xj(r)|

Supremum d0(~xi, ~xj) = maxr|~xi(r)− ~xj(r)|
Mahalanobis dM (~xi, ~xj) = (~xi − ~xj)

TS−1(~xi − ~xj)

5 MEASURES

A cluster is a collection of objects which are
similar to each other and are dissimilar to
the objects belonging to other clusters (Rui &
Ii 2005). Common measures of similarities (or,
dissimilarities) which are used in this article are
distances. In the literature (Mendelson 1990), it
is possible to find several types of distances other
than the Euclidean distance and its more general
formulation (i.e., the Minkowski distance) as shown
in Table 1. The approach of using distance metrics
to clustering is called distance-based clustering
which is used in the following discussion.
In most of our past work, we have used the

Euclidean distance. Clustering by using different
type of metrics is still part of our ongoing research.

6 CLUSTERING ALGORITHMS

From a mathematical viewpoint, the concept of
clustering (Rui & Ii 2005) that we aim is to find
a partition C = {C1, . . . , Cl, . . . , CL} of the set of
I scenarios X = { ~x1, . . . , ~xi, . . . , ~xI} where each
scenario ~xi is represented as a multi-dimensional
vector as shown in (1). Each Cl (l = 1, . . . , L) is
called a cluster. The partition C of X is given as
follows:


Cl 6= ∅, l = 1, . . . , L

⋃L
l=1Cl = X

(4)

As shown in Fig. 3 (Jain, Dubes, & Richard 1988),
the main division between clustering methodologies
can be made by partitioning them into two
classes (Rui & Ii 2005):

• Hierarchical algorithms

• Partitional algorithms

Hierarchical algorithms build a hierarchical tree
from the individual point (leaf) by progressively
merging them into clusters until all points are

Figure 3: Taxonomy of clustering methodologies.

inside a single cluster (root). Partitional clustering,
on the other hand, seeks a single partition of the
data sets instead of a nested sequence of partitions
obtained by hierarchical methodologies. Under this
category it is possible to classify methodologies
under five main sub-categories: Squared Error (e.g.,
K-Means (MacQueen 1967)), Fuzzy clustering (e.g.,
Fuzzy C-Means (Bezdek 1981)), Mode Seeking (e.g.,
Mean-Shift (Fukunaga & Hostetler 1975)), Graph
Theoretical (van Groenewoud 1974) and Neural
Network based (Wei, Su, Qiu, Ni, & Yang 2010).
We initially evaluated hierarchical algorithms as

well as partitional algorithms including (Mandelli,
Yilmaz, & Aldemir 2011b):

• Squared Error

• Fuzzy C-Means

• Mode-Seeking

Hierarchical algorithms (Duda, Hart, & Stork
2000) organize data into a hierarchical structure
accordingly to a proximity matrix in which an entry
(α, β) is some measure of the similarity (or distance)
between the items to which row α and column
β corresponds. Usually, the final result of these
algorithms is a binary tree, also called dendrogram,
in which the root of the tree represents the whole
dataset and each leaf is a data point.
Squared Error (Duda, Hart, & Stork 2000)

algorithms assign each point to a cluster whose
center (also called centroid) is nearest. The cluster
center is the average of all the points in the cluster,
that is, its coordinates are the arithmetic mean of
each dimension independently over all the points
in the same cluster. The most famous and used
methodology is the K-Means algorithm (MacQueen
1967), where the user specifies a priori the number
of clusters to be determined.
Fuzzy C-Means (Bezdek 1981) clustering is very

similar to K-Means but it assigns a degree of
belonging ul(~xi) for each point ~xi to each cluster
l, as in fuzzy logic, rather than assigning it to a
single cluster.



Mode-Seeking (Cheng 1995) is based on the
assumption that the distribution of the points in the
state space can be described through an unknown
probability density function (pdf). The goal is to
find the modes with highest probability, i.e. the
regions in the state space with higher data densities.
In this case, the number of obtained clusters is
dependent on local density function that are used.
A particular mode seeking approach the Mean-Shift
methodology (Fukunaga & Hostetler 1975), which
has been used for a number of applications in
different fields.
For our purpose, we identify Mean-Shift

algorithm as the most promising approach for the
following reasons:

• Hierarchical, K-Means and Fuzzy C-Means
algorithms are able to identify clusters of
points having only spherical or ellipsoidal
shape while Mean-Shift can identify clusters
having any arbitrary geometry.

• Hierarchical, K-Means and Fuzzy C-Means
algorithms have difficulty identifying outliers,
i.e., clusters having a very small number of
points in it. On the other side, Mean-Shift can
easily identify scenarios that are considerably
distant from the others.

• The level of discrimination between the
clusters could be specified using the bandwidth
parameter of the Mean-Shift algorithm. In that
way, the appropriate number of clusters is
determined by the algorithm itself instead of
specifying the number of clusters that are going
to be determined as required by K-Means and
Fuzzy C-Means algorithms.

7 MEAN-SHIFT ALGORITHM

Mean-Shift algorithm (Fukunaga & Hostetler 1975)
is a non-parametric iterative procedure that shifts
each data point to the average of data points in
its neighborhood in order to determine the cluster
centers and to assign each point to one cluster
center only. By cluster center we mean a region
with high observation density (i.e., the modes of
the dataset).
The main idea is to consider each point ~xi (i =

1, . . . , I) of the dataset as an empirical distribution
density function, or kernel, K(~x) distributed in a
multidimensional space where regions with high
data density (i.e., modes) correspond to local
maxima of the multivariate kernel density estimate
fI(~x) (Cacoullos 1966) (see Fig. 4) defined as:

fI(~x) =
1

Ihd

I∑
i=1

K

(
~x− ~xi
h

)
(5)

Figure 4: Density function (red line) for points
distributed in a 1-dimensional space modeled using
kernels (blue lines)

Figure 5: Determination of a cluster center in a
2-dimensional space using a Mean-Shift algorithm.

where each element ~x ∈ RM ·K5.
In order to determine the points with high data

density (i.e., the modes of fI(~x)), we are interested
in the solution of ∇fI(~x) = 0.
Starting from an arbitrary point (e.g., point SA

in Fig. 5), the algorithm associates a hypersphere
(depending on the number of dimensions of the state
space) centered at that point with radius equal to h.
The objective is to consider all the points that are
inside the hypersphere and determine the center of
mass6 of these points from the point m(SA) (see
Fig. 5 for illustration):

m(sA) =

∑
s∈S K(s− sA)s∑
s∈S K(s− sA)

(6)

where the function K(x) is the kernel chosen to
model the local distribution.
The algorithm then moves from the original point

SA in Fig. 5 into the calculated position m(sA) and
repeatedly computes the center of mass for the

5Note that it is possible to perform a probabilistic
clustering by using the probability as a weighting factor.
Each scenario has a different weight wi proportional to its
own probability and fI(~x) can be rewritten in this form:

fI(~x) =
1

Ihd

∑I
i=1 wiK

(
~x− ~xi

h

)
6The center of mass of a finite set of points is a weighted

average position of these points in the space.



points included inside the hypersphere but now
centered on m(SA). This operation converges to
the mode when the distance between the new center
of mass and the old one is below a fixed threshold
(point SC in Fig. 5). When this condition is reached:

• point SC is considered the center of a cluster

• the original point SA is uniquely associated to
the cluster centered by point SC

Repeating this process for all the points in the
dataset provides:

• the center of all the clusters and the list of all
the points that belong to that specific cluster

• the cluster to which each point belongs (as
mentioned, each point belongs to one cluster
only)

An important issue about the application of
clustering algorithm is the computational time
required to analyze large data sets generated by
DET. Typical sizes are of the order of megabytes
or gigabytes which may require several hours of
computation for a single value of bandwidth. Thus,
we implement the algorithm in a parallel fashion in
C++ using parallel directives of OpenMP (Chandra
2001). Due to the nature of the algorithm, this
step did not require major changes in the original
structure of the code. In particular, the analysis
of the membership of each point to a cluster,
through the sequence of computations of center
of mass, is divided into threads (one thread for
the computation of a single point). The choice of
OpenMP is primarily due to the fact that each
thread requires the full dataset and, hence, a set
of shared memory directives (e.g., OpenMP) is
required.

8 APPLICATIONS

We applied the Mean-Shift algorithm on several
data sets. The first dataset is generated by a DET
algorithm for the analysis of the controller of heated
water tank (Mandelli, Aldemir, Yilmaz, & Denning
2010). This dataset contains a set of 619 scenarios
where each one is described by two variables
(temperature and level) sampled 200 times over
a period of four hours. Clustering results are shown
in (Mandelli, Aldemir, Yilmaz, & Denning 2010).
The other data sets we consider are larger data sets
as introduced in the following sections.

8.1 ABR1000 Analysis

This data set is more complex and is generated by
ADAPT (Rutt, Catalyurek, Hakobyan, Metzroth,
Aldemir, Denning, Dunagan, & Kunsman 2006)
for the analysis of an aircraft crash scenario

Figure 6: Graphical representation of the scenarios
generated by ADAPT for the aircraft crash scenario.

of a ABR1000 reactor (Kim, Yang, Grandy,
& Hill 2008). ADAPT is a DET generation
methodology coupled to a dynamic model of the
system under consideration (Rutt, Catalyurek,
Hakobyan, Metzroth, Aldemir, Denning, Dunagan,
& Kunsman 2006). The dataset is generated by
an initiating event in the form of an aircraft
crashing into the plant at time zero with the
plant operating at 100% power (Winningham,
Metzroth, Aldemir, & Denning 2009). Three of
the four towers are assumed to be destroyed,
producing debris that blocks the air passages
(hence, impeding the possibility to remove the
decay heat). The reactor trips, offsite power is
lost, the pump trips and coasts down. A recovery
crew and heavy equipment are used to remove
the debris from each tower once at at time. The
analysis has been carried out using ADAPT coupled
with RELAP5 (RELAP5-3D Code Development
Team 2005) as the system simulator; the
generated dataset contains 610 different scenarios
as illustrated in Fig. 6.

In this scenario, the processed data consists of
the temporal description of the only one variable
chosen (maximum temperature of the core) and
the timing of the events such as the arrival of the
recovery crew and the recovery of the three towers.
We sampled the maximum temperature of the core
at 56 time points. In (Mandelli, Aldemir, Yilmaz,
Metzroth, & Denning 2010a) we performed the
clustering using Mean-Shift methodology. Figure 7
shows the obtained cluster centers that correspond
to the representative scenarios.

We use the timings of crew arrival and tower
recovery to characterize each scenario. Figure 8
shows these quantities for Cluster 1. Figure 8(a)
shows a comparison between the cluster center
and the scenarios that belong to it. Figure 8(b)
presents a histogram which shows the timing of
events (crew arrival time and tower recovery) for
member scenarios.



Figure 7: Cluster centers for the RVACS system for h =
1.5. The numbers in the legend indicate the fraction
of scenarios that fall in each cluster. The numbers in
the parenthesis show the number of scenarios in the
cluster

8.2 Pump Seal Leakage Model

We evaluate the difference between three different
datasets generated by ADAPT for Zion plant
during an‘‘offsite power loss’’ scenario. The
differences between the three system configurations
are the models implemented to describe the pump
seal leakage.
We performed the clustering of the three datasets

separately. Figures 9(a), 9(b) and 9(c) show the
clusters corresponding to each of the three pump
seal leakage models where the primary system
pressure is used as the scenario descriptor. The
lines in Fig. 9 denote the estimated cluster centers.
Figure 9 also shows the shaded regions around the
cluster center which indicate the member scenarios
contained in them. These shaded regions spread
around the cluster centers in a manner analogous
to the error bars and their width indicates how the
scenarios contained in that cluster are spread in
the state space.
From Fig. 9 we identify the following:

• Cluster 1: Figures 9(a), 9(b) and 9(c) have
this cluster in common which is composed of
a single scenario

• Cluster 2: Figures 9(a), 9(b) and 9(c) have
in common this cluster but in Fig. 9(b) the
shaded bar is narrower

• Clusters 3 and 4: Figures 9(a), 9(b) and 9(c)
have in common these clusters composed by a
single scenario.

• Cluster 5: This cluster is in common in
Fig. 9(a) and Fig. 9(c) while is not present
in case (b).

As a last remark, it is possible to note that in
the region marked as 6, Fig. 9(a) and Fig. 9(c) are
very similar while in Fig. 9(b) there is only one
cluster scenario which includes scenarios that after

6000 s are characterized by stable system pressure
at 16 · 106 Pa.

9 CONCLUSIONS

We have presented a summary of the research
carried out at OSU for the analysis of a
large number of data sets generated by safety
analysis codes. Each scenario contains information
about the temporal behavior of the state
variables, status of the components/systems, and
timing/sequence of the events. We focused our
attention on the major steps involved in the
analysis: pre-processing, measure selection, data
clustering and cluster analysis. We then showed
some relevant applications.
We illustrated how the data can be grouped

into clusters depending on their temporal evolution.
The estimated cluster centers provide the most
relevant trends of the overall analysis. The grouping
of scenarios into clusters is shown to be helpful
for identifying such trends and evaluating their
characteristics. Such groupings are also valuable to
identify the differences between data sets generated
for different system configurations.
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