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INTRODUCTION

Reliability/safety analysis of stochastic dynamic systems
(e.g., nuclear power plants, airplanes, chemical plants) is cur-
rently performed through a combination of Event-Trees and
Fault-Trees [1]. However, these methods are characterized by
the following disadvantages:

• Timing of events is not explicitly modeled

• Ordering of events is preset by the analyst

• The modeling of complex accident scenarios can be driven
by expert judgment

For these reasons, there is currently an increasing interest in the
development of dynamic PRA methodologies [2, 3, 4, 5] since
they can be used to address the deficiencies of the conventional
methods listed above.

However, while dynamic methodologies have distinct ad-
vantages over conventional methods, there is no general agree-
ment about the need for dynamic methods due to the compu-
tational challenges. Computational challenges arise from the
need to run many simulations in order to adequately propagate
uncertainties and evaluate their impact in the analysis. Cur-
rently, state-of-practice for the analysis of dynamic stochastic
systems and the propagation of uncertainties is performed using
random sampling algorithms. This class of algorithms includes:
Monte-Carlo [6, 7], stratified sampling (e.g., Latin Hypercube
Sampling [8]), importance sampling [9] and orthogonal arrays
based [10] algorithms.

Only recently, deterministic algorithms such as Polynomial
Chaos Expansions [11] and Quasi Monte-Carlo [12] methods
have started to be implemented. However, both random and
deterministic sampling algorithms do not possess a sampling
strategy that takes explicitly into account the results of previous
simulations. On the other side, adaptive sampling algorithms
perform a sampling strategy that chooses the next sample based
on the results obtained by previous samples through a statistical
learning models and, thus, focus sampling in risk sensitive
regions such as boundaries between system safe and system
failure: the limit surface.

The scope of this paper is to present a methodology based
on Principal Component Analysis [13] and Support Vector Ma-
chines (SVMs) [14] for the determination of the limit surface.
A set of simple test cases will be shown in order to show the
implementation of the methodology.

ADAPTIVE SAMPLING

Propagation of uncertainties in complex systems such as
nuclear power plants is usually performed by sampling algo-
rithms which perform a series of simulation runs given a set
uncertainty parameters [15]. Typically two problems arise at
this point:

• The set of uncertain parameters is very large

• The computational costs are very high

Therefore, the space of the possible solutions, i.e., the issue
space (each dimension corresponds to an uncertainty parame-
ter), can be sampled only very sparsely and this precludes the
ability to fully analyze impact of uncertainties on the system.
The main idea behind algorithms such as Monte-Carlo or Latin
Hypercube Sampling is to sample the issue space as uniformly
as possible but the problems listed above still remain.

When sampling is applied for safety analysis applications,
the following points often emerge:

• Set of parameters that are really of safety concern is a
small subset of the original set of uncertainty parameters

• Many regions of the issue space are not of interest

The scope of adaptive sampling is to iteratively guide the
choice of the next sample by analyzing the previous sampling
history. Typically this is performed by building a surrogate
model from the set of previous simulation runs and predicting
the system behavior. In more detail three steps are needed:

1. Perform a set of initial simulation runs, i.e., training points;
typically this is performed using classical sampling algo-
rithms such as Monte-Carlo, Latin Hypercube Sampling,
Voronoi Tessellation [16]

2. Build a surrogate model using the sampling results given
in Step 1; Support Vector Machines, Regression based or
Density based algorithms are typically chosen

3. Using the model built in Step 2, a set of candidate sample
points are chosen

4. An importance parameter is assigned to each point chosen
in Step 3 and the point with highest importance is chosen
as next sample

A scheme of an adaptive sampling algorithm is given in
Fig. 1.



Fig. 1. Typical scheme of adaptive sampling algorithms

SUPPORT VECTOR MACHINES

Given a set of N samples xi and their associated results
yi = ±1 (e.g., yi = +1 for system success and yi = −1 for system
failure), the Support Vector Machine finds the boundary (i.e.,
the decision function) that separates the set of points having
different yi. The decision function lies between the support
hyper-planes which are required to:

• Pass through at least one sample of each class (called
support vectors)

• Not contain samples within them

For the linear case, see Fig. 2, the decision function is chosen
such that distance between the support hyper-planes is maxi-
mized. They can be determined by solving the following system
of equations:

w · x + b = +1
w · x + b = −1 (1)

Without going into the mathematical details, the determi-
nation of the hyper-planes is performed recursively and updated
every time a new sample has been generated. Figure 2 shows
the SVM decision function and the hyper-planes for a set of
points in a 2-dimensional space having two different outcomes:
yi = −1 (green) and yi = +1 (red) .

The transition from a linear to a generic non-linear hyper-
plane is performed using the the kernel trick. This process
involves the projection of the original samples into a higher
dimensional space known as featured space generated by kernel
functions K(xi, x j):

K(xi, x j) = exp
(
−
‖ xi − x j ‖

2σ2

)
(2)

ALGORITHM

The methodology used in this paper can be summarized in
the following three steps:

1. Generate an initial set of samples

2. Perform dimensionality reduction of the issue space (i.e.,
the number of uncertain parameters that really affect sys-
tem dynamics) using dimensionality reduction algorithm

Fig. 2. Linear Support Vector Machines in a 2-dimensional
space

3. Perform Support Vector Machine based sampling and eval-
uate decision function

For the scope of this paper we generated the initial set
of samples using Latin Hypercube Sampling algorithm and
the dimensionality reduction of the issue space using Principal
Component Analysis [13]. In more detail, the algorithms for
the Support Vector Machine based sampling is described as
follows:

Algorithm 1 Adaptive Sampling Algorithm
1: Build the support decision function
2: Choose sample point on support decision function
3: Build the support decision function
4: Choose sample point on support hyper-plane and as far as

possible from the one chosen in Step 2
5: Return to Step 1

TEST CASE

For the scope of this paper we will show an example using
a 2-dimensional test case for the algorithm presented above.
The limit surface has an arc shape and system success occurs
below that arc and system failure above it. We applied the
algorithm for such system and the results are shown in Fig. 3.

Figure 3 indicates how the density of the sample is very
high near the boundaries and how the decision function ap-
proaches the limit surface.

CONCLUSIONS

In this paper we have shown a methodology that aims to
find the limit surface for safety applications. This methodology
uses a combination of dimensionality reduction and Support
Vector Machine based sampling algorithms. Dimensionality
has been performed on the space generated by the set of uncer-



tainty parameters in order to reduce such number of parameters
and thus focus on the most relevant ones. Determination of
sampling strategy and evaluation of the limit surface has been
performed using Support Vector Machine algorithms which
gives flexibility for limit surface having non linear behavior.
The simple test case presented in this paper demonstrates a
graphical representation of the overall methodology.

Fig. 3. Limit surface obtained for the test case
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