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Appendix F 
 

Population Variability Modeling 

Population variability modeling solves the problem of how best to estimate facility-specific 

risk-model parameters, given that facility-specific data are limited but industry data are more plentiful, 

albeit most likely inhomogeneous. From a broader perspective, it is also of interest to understand just how 

variable certain parameters are, and the values over which those parameters can reasonably be expected to 

range, in a given population of facilities. 

Population variability modeling was introduced by Kaplan [F-1] in the 1980s and applied to modeling 

the frequency of loss of offsite power (LOOP) at nuclear power plants. Most plants lose power very 

seldom, but the fleet as a whole has several such events per year; the rate varies quite significantly from 

one plant to another, and plant risk is sensitive to this parameter, so we do not wish to use a generic value 

derived by pooling all the losses and dividing by the total exposure time. In Kaplan’s original work, the 

population variability distribution (PVD) portrayed the relative fraction of plants having a given LOOP 

frequency. In plant-specific analysis, this PVD was then used as a prior distribution for LOOP frequency, 

and updated with plant-specific data, the resulting posterior being then used in probabilistic risk 

assessment (PRA) as the state-of-knowledge distribution of LOOP frequency for that plant. Note the 

assumptions being used here: that it makes sense to draw a PVD in the first place for the population that 

we are trying to work with, that the facility we are interested in can be viewed as a member of this 

population, recognizing that it is characterized by variation in LOOP frequency, and so on. If we accept 

the basic ideas, then in using this framework, we end up imputing to our plant a distribution for this 

parameter that reflects our experience as well as the experience of the operating fleet, in both the central 

tendency of that parameter for our plant and the epistemic distribution of likely values of that parameter 

for our plant. If we have very little plant-specific data, our state-of-knowledge curve will look like the 

PVD curve describing the whole plant population. 

Therefore, when presented with a set of data of component performance, the most pressing question 

that arises is can we pool the data, and if not, can we find a curve that fits the variability of the data 

sufficiently to quantify a prior distribution that adequately represents the performance of the component 

population. 

F-1. POPULATION ANALYSIS STEPS 

Figure F-1 represents the basic steps used for population analysis. 



F-2  

 

Figure F-1. Population analysis steps. 

It is always best to use a pooled data set if the data set fits a pooled goodness-of-fit test. The first 

analysis is to take the full population and perform a quantitative pooling test. If the goodness-of-fit test 

passes for the distribution inferred by the pooled data, then the prior fitting the population is found and 

can be used to update with the facility component data. 

If the pooled data test fails, then a PVD is constructed for the entire population. Hierarchical Bayes is 

used in this analysis, with the prior parameters used as the first hierarchy (hyperpriors). These hyperprior 

parameters are started as flat or completely diffuse, ideally chosen to spread out along the entire realm of 

possibility. Generally, a Markov Chain Monte Carlo (MCMC) program is used with initial guesses for the 

starting points of the parameters to run the inference until the parameters converge to values that are used 

as the parameters in the PVD. The parameters may not converge to an answer depending on the degree of 

variability within the full population data set. If the PVD parameters converge to values, then the results 

for the PVD inference are used to compare to replicated values for the individual data sets in the same 

manner as for the pooling test and a goodness-of-fit score is produced. If the goodness-of-fit test passes 

for this PVD, then the prior fitting the population is found and this PVD can be used to update with the 

facility component data. 

If the full population PVD test fails to find converged values or fails the goodness-of-fit test, then a 

data source grouping analysis must be performed. This consists of both qualitative and a quantitative 

analysis. In a qualitative manner, as much information about the data set is determined as possible beyond 

just the number of failures over time or demands. If data sources are known to be from one manufacturer 

of component, for instance, that is noted. The same holds for any other pertinent information such as 

environment used, application, etc. The quantitative part of the analysis is to use a machine learning data 

mining algorithm to cluster the data into groups by these attributes identified in the qualitative analysis. 
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The cluster analysis can work on as little as two points of information (covariates) such as failures and 

time or failures and demands, however, the more covariates that can be provided, the more information 

can be gleaned from the cluster analysis. 

Using the clusters obtained from the grouping analysis an individual PVD analysis is performed on 

each cluster. If a cluster cannot be fitted with a PVD, then the grouping process can be re-performed with 

different parameters for the algorithm or by changing the number of covariates (increase or decrease). If 

clusters are marked as outliers and a PVD cannot be fitted, then a simple Bayesian update on the 

individual data sources with a Jeffrey’s prior will suffice. Once all clusters have a PVD, then they are 

weighted using a mixture prior for use in updating facility component data. The weights are equivalent to 

their percentage of the population. 

F-1.1 Markov Chain Monte Carlo Sampling 

The use of Markov Chain Monte Carlo (MCMC) programs greatly simplifies the calculation of the 

problems encountered in population variability analysis. Bayesian inference typically involves several 

integrals in the denominator of the equation and MCMC avoids the need to empirically solve the 

multidimensional integral. The basic process of MCMC uses a random number to sample directly from 

the posterior distribution. It then has one “answer.” Another random sample is taken, and another, and so 

forth until an entire set of samples can be used to determine a numerical distribution that represents the 

posterior distribution. 

The basic premise of a Markov chain is that it is constructed such that the chain converges to a joint 

posterior distribution. The chain uses a sequence of random variables X0, X1, X2, … to sample and create 

the posterior distribution. The distribution of Xn+1 only depends on Xn, which is a property of Markov 

chains. The chain “forgets” its initial state and the next sample builds on the resulting distribution of the 

prior sample. The Markov function, f(xn+1|xn), is known as a “transition kernel.” Once the distribution is 

stable from sample to sample (known as “stationary”), samples can be taken to estimate the parameters of 

interest. Various methods exist to construct the transition kernel. Gibbs sampling, Slice Sampling, and 

Metropolis-Hastings are a few of the most popular. 

F-1.1.1 OpenBUGS and JAGS 

OpenBUGS (Open-source Bayesian Updating Using Gibbs Sampling) and JAGS (Just Another Gibbs 

Sampler), two Bayesian inference MCMC programs, are vetted open-source programs that are good to 

use for these types of problems. Both programs use the BUGS language and are nearly identical. Any 

MCMC program capable of Bayesian inference can be used, however, these programs were used for the 

sample analyses presented here. 

The publicly available NASA publication NASA/SP-2009-569, [F-2] Appendix C, provides a tutorial 

in the basic use of OpenBUGS. 

F-1.2 Pooled Data Analysis 

The pooled data test uses a non-informative prior to infer parameters over the entire data set. Each 

data source is duplicated using the pooled data distribution parameters, and compared to the results 

obtained by updating individually with the non-informed prior. A goodness-of-fit such as a Chi-squared 

test is applied to determine if the replicated data matches the data using the pooled data distribution. 

The Bayesian update rule for a single degree of freedom can be expressed as: 

𝜋1(𝜃|𝐸) =
𝐿(𝐸|𝜃)𝜋0(𝜃)

∫ 𝐿(𝐸|𝜃)𝜋0(𝜃)𝑑𝜃
 (F-1) 

where: 
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E is the evidence 

θ is the parameter of interest 

𝜋0(𝜃) is the prior distribution 

𝐿(𝐸|𝜃) is the likelihood function 

𝜋1(𝜃|𝐸) is the posterior distribution (the updated estimate). 

The parameter of interest in a pooled data update is the prior distribution 𝜋0(𝜃) and how well it 

replicates the posterior distributions of each data source. 

Figure F-2 displays the directed acyclic graph of a pooled Bayesian inference of Poisson distributed 

data (failures over time). 

 

Figure F-2. Bayesian inference for a pooled analysis of failures versus time Poisson analysis. 

Parameters α and β are parameters of a Gamma distribution, which is represented by the solid arrows 

leading to λ. This Gamma distribution starts as a non-informative prior; the Jeffreys prior is commonly 

used. Updating this model for each data source starting with the Jeffreys prior until the entire population 

is updated gives a posterior numerical distribution prediction for the entire population. Each data source 

uses this update to replicate its number of failures. If the replication is nearly or exactly equivalent to the 

number of failures for the data set, then the goodness-of-fit test passes. If this is the case, then a 

distribution is fitted to the properties of the numerical distribution (such as mean, percentiles, or standard 

deviation) and used to update with facility component performance data. 

F-1.3 Population Variability Distribution Analysis 

It is preferable to pool data when it is appropriate to do so; however, if goodness-of-fit tests prove that 

the data cannot be pooled, then an attempt is made to model the variability in the sources of the data 

within the data set. A viable PVD represents the variability from source to source of component data. 

Unfortunately, there may not exist a simple-looking PVD: the data themselves may belie a simple picture. 

However, constructing an honest variability distribution is preferable to pooling data that are patently 

inhomogeneous. 

A PVD is a distribution that adequately represents the variance in the data sources of the data set. 

This is the top level of the hierarchical Bayesian inference required for this type of problem. The PVD 

distribution is on the input data at one level and the likelihood distribution for individual source outcomes 

in on a second level, which describes the hierarchy. Recall that the update rule for a single degree of 

freedom is shown in Equation (F-1).  
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Another integral is added to the denominator for each degree of freedom, whether that be a second 

parameter in the likelihood function or a second level of hierarchy. 

A Poisson distribution is commonly used when one is examining a rate-based problem (failures 

experienced over an operating time). The distribution requires inputs for failures (x) and time (t) and will 

produce a rate (λ). Simply the Poisson is described as “x is distributed as (~) the Poisson of μ,” which is 

equal to λt. 

𝑥~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇), 𝑤ℎ𝑒𝑟𝑒 𝜇 = 𝜆𝑡 (F-3) 

Figure F-3 displays the directed acyclic graph of a hierarchical Bayesian inference using Poisson 

parameters. 

 

Figure F-3. Hierarchical Bayesian inference using the Poisson parameters. 

The hyperpriors, α and β, are parameters of a Gamma distribution, which is represented by the solid 

arrows leading to λ. This Gamma distribution is the PVD and defines λ for the first hierarchy. The second 

hierarchy is the Poisson distribution, which provides the posterior for each data source. 

Generally, in hierarchical Bayes, if the parameter of interest is denoted as π(θ), then the prior 

distribution is written as: 

𝜋(𝜃) = ∫ 𝜋1(𝜃|𝜑) 𝜋2(𝜑)𝑑𝜑 (F-4) 

where 𝜋1(𝜃|𝜑) is the first stage prior that represents the population variability in θ for a given value of φ, 

which is the vector (α, β)T. 

Further broken down into terms of α and β, the first stage prior is defined as: 

𝜋1(𝜆) = ∬ 𝜋0(𝜆|𝛼, 𝛽) 𝜋0(𝛼, 𝛽)𝑑𝛼𝑑𝛽 (F-5) 

The hyperpriors, α and β, are not defined as discrete values in the non-pooled inference model. 

Instead, they are defined as diffuse, or flat values over the breadth of possible values. A Gamma 

distribution with α and β both equal to zero is a good example of a diffuse prior for use in hierarchical 

Bayes. Using MCMC, α and β are given starting points and samples are taken until the values converge to 

the Gamma parameters of the prior for use in the PVD. 

F-1.4 Data Source Grouping Analysis 

A quantitative tool to help in identifying groups within a population data set is called cluster analysis. 

Many algorithms have been developed for use in the area of data mining. One such algorithm proposed 
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for use in heterogeneous populations is Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) [F-3]. DBSCAN uses the data points in a matrix to determine the groups that are closely 

packed together (points that have many nearby neighbors) [F-4]. 

Two parameters are used in DBSCAN, the first is called the Epsilon Neighborhood of a point. This 

specifies the distance at which to determine if two data points representing a set of covariates are within 

the same neighborhood. 

𝑁𝐸𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷|𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠} (F-6) 

The second parameter is the Minimum Points, which is the minimum number or points to lie within a 

neighborhood to determine if the points are within a group. 

𝑝 ∈ 𝑁𝐸𝑝𝑠(𝑞) 

|𝑁𝐸𝑝𝑠(𝑞)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 (F-7) 

The concept of direct density reachability in the DBSCAN algorithm states that the two points, p and 

q, are in the same Epsilon Neighborhood and there are a specified number of points within that 

neighborhood to call it a cluster. Further, a third point, o, is also density reachable with respect to NEps and 

MinPts. For more information, see [F-3] and [F-4]. 

DBSCAN is available via many statistical analysis program packages, including the open source and 

free program R. The data is set into a matrix of covariates. This can be as simple as failures and time or 

failures and demands. It can also include more covariates such as environmental parameters such as 

temperature, humidity, manufacturer, etc. However, the data matrix must be entered numerically. 

The clusters that DBSCAN provides can be further analyzed in a qualitative manner to determine 

what caused the data to cluster in that way. Was it an environmental difference? Was it a manufacturer? 

Was the component used in a different manner? Can data sources be discarded as outliers? These are all 

questions that cluster analysis can help answer. 

An output graph showing the grouped points and outliers is presented in Figure F-4. The data set 

grouped here consisted of only two covariates, time (years in y-axis) and failures (x-axis). Listing the 

indices from the matrix for the groups then allows a PVD analysis to be performed for each group and a 

mixture prior set up for use in updating facility data. 

 

Figure F-4. Convex cluster hulls. 
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F-1.5 Mixture Priors 

A mixture prior uses all the information from the data set in a weighted manner. The prior in the 

Bayesian inference formula (𝜋0) is a sum of the component parts that are PVDs of the groups found 

through cluster analysis. 

𝜋1(𝜃|𝐸) =
𝐿(𝐸|𝜃)𝜋0(𝜃)

∫ 𝐿(𝐸|𝜃)𝜋0(𝜃)𝑑𝜃
 (F-8) 

𝜋0 = ∑ 𝑤𝑖𝜋𝑖 + 𝑤𝑖+1𝜋𝑖+1 + ⋯ 𝑤𝑛𝜋𝑛
𝑖=1
𝑛  (F-9) 

∑ 𝑤𝑖 +𝑖=1
𝑛 𝑤𝑖+1 + ⋯ 𝑤𝑛 = 1.0 (F-10) 

where: 

w  is the weight of the group as a ratio of the entire population. If 10 indices of the matrix out of 100 

are in the group, then the weight will be 0.10. Weights must sum to 1.0. 

𝜋0  is the mixture prior distribution for use in the Bayesian inference formula to find the posterior 

update of the facility component performance. 

F-2. EXAMPLES OF POPULATION ANALYSIS 

The following examples use rate-based data based on time used and failures experienced. Following 

these examples are another set of examples using demand-based data. 

F-2.1 Example of a Population Pooling Test 

Data for a component based on time used and failures experienced are presented in Table F-1. This could 

be any failure mode for any component. This particular data set is from a textbook example in [F-5]. 

Table F-1. Component failure rate data. 

Source Failures 

Exposure Time 

(years) 

1 2 15.986 

2 1 16.878 

3 1 18.146 

4 1 18.636 

5 2 18.792 

6 0 18.979 

7 12 18.522 

8 5 19.040 

9 0 18.784 

10 3 18.868 

11 0 19.232 

 

This example uses the data presented in Table F-1 and is for a set of data with failure counts over 

time. It uses OpenBUGS as the analysis tool. The OpenBUGS script is shown in Figure F-5. 

Key parameters in this model are: 
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 x: Failures for each source listed in the data 

 time: Time in years for each source listed in the data 

 mean: The Poisson parameter = lambda * time 

 lambda: The rate in failures per year 

 lambda.constant: The defined rate which is inferred upon the lambda for each data set in the pooled 

test 

 x.rep: The replicated Poisson result for x for each source to use in the Chi-squared comparison. 

 

Figure F-5. OpenBUGS model to check for poolability of rate-based data. 

The results of running the model with 2,000 samples to “burn-in” and converge, with 100,000 

samples taken for results are shown in Figure F-6. 
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Figure F-6. Rate-based pooled model results. 

Note that the individual sources are using the constant lambda (lambda.constant) that has defined 

values for its Gamma distribution based on the Jeffreys prior. The lambda.constant is set with an initial 

value of 0.001 in the MCMC in order toto initialize the model, but it converges to the 0.1361 per year 

value based on the inference from the data set. The replicated Poisson result from each source is 

compared to the pooled result to determine the P-value (p.value), which is the measure of model fit to the 

data. A perfect P-value would be 0.5, with values closer to zero or one indicating a poor fit. In this case, 

the P-value of 2.3E-04 (on the bottom left of Figure F-6) indicates that the pooled model is not a good fit 

to the data. 

F-2.2 Example of Full Population Variability Distribution Estimation 

For the data set in Table F-1, the pooling test indicates that the data should not be pooled. The next 

step is to see if a PVD can be fit to the data by using a hyperprior distribution to represent the variation of 

data sources as discussed above. 

A hyperprior that is commonly used with Poisson distributed data is a Gamma distribution. Other 

distributions can be utilized, such as lognormal. The reader is directed to [F-2] and [F-5] for further 

guidance. A Gamma distribution was used for this analysis. 

The hyperprior should not influence the model; rather, the model should drive the parameters of the 

hyperprior distribution to the values that fit the data. For this reason, the parameters of the Gamma 

distribution are in turn represented hyperpriors of diffuse Gamma values that produce as flat a distribution 

over the realm of values as possible, given an initial starting point, and then the MCMC uses the Bayesian 

inference to drive the Gamma parameters to converged values. This example uses the data presented in 

Table F-1 and is for a set of data with failure counts over time. It uses OpenBUGS as the analysis tool. 

The OpenBUGS script is presented in Figure F-7. 

Key parameters in this model are: 

 x: Failures for each source listed in the data 

 time: Time in years for each source listed in the data 

 mean: The Poisson parameter = lambda * time 

 lambda: The rate in failures per year 

 lambda.constant: The defined rate which is inferred upon the lambda for each data set in the pooled 

test 

 x.rep: The replicated Poisson result for x for each source to use in the Chi-squared comparison. 
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Figure F-7. Hierarchical Bayes BUGS Language Model for source population variability in rate-based 

data. 

F-2.2.1 Checking the Model for Convergence 

Any MCMC program must converge before having confidence in the samples taken for results. 

Qualitative checks for convergence include looking at a graph of the histories of the key parameters. 

Running this model with two initial values for alpha and beta allows the check of convergence in these 

parameters so that there is confidence in the samples taken for results. In addition to the qualitative 

checks, a more quantitative test for convergence used in the OpenBUGS program is the 

Brooks-Gelman-Rubin statistic (BGR). Convergence is represented graphically in BGR by an R-value 

that is consistently at 1.0 and a B-value and W-value that are equivalent values to each other. 



F-11  

Figure F-8 shows the BGR test results for alpha and beta parameters in the model. Note that the 

number of iterations is half the numbers of samples since there are two chains compiled in the model. 

Alpha and beta R-values appear to settle solidly at 1 by 30,000 iterations with the other two parameters 

tracking together. This particular example takes longer to converge for a “picky” analyst than most do. 

For models that do not converge, the R-value will typically not settle on 1.0, and will wander significantly 

away from this value. 

 

Figure F-8. BGR diagnostic test for convergence of gamma parameters. 

To use as samples for the results, 100,000 iterations are run beyond the 60,000 burn-ins. A quick 

check of the BGR diagnostic for the duration of the sampling, shown in Figure F-9, does not show any 

significant events to question the validity of the calculations. 

 

Figure F-9. BGR diagnostic for full sampling of gamma parameters. 

F-2.2.2 Results of the Rate-Based Population Variability Analysis 

Results of the analysis shown in Figure F-10 provide the following insights: 

 The Chi-Square Bayesian P-value goodness-of-fit parameter is at 0.44, which is close to the ideal 

value of 0.5 and indicates high confidence in the predicted posterior results. 

 The predicted posterior distribution that would be used for the PRA failure distribution for this 

component is a Gamma with alpha = 1.00 and beta = 7.76. Its mean is 1.56E-01 per year with a 5th 

percentile value of 8.95E-04 and a 95th percentile value of 5.38E-01. The Gamma(1.00, 7.76) 

distribution would be valid for use to update facility component performance until the next overall 

population update is performed. 

 This prior, used in the Poisson model, provides the estimations of the lambda for the mean, 5th 

percentile and 95th percentile for each source and a predicted lambda as well. 
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Figure F-10. Rate-based results with gamma hyperprior. 

A comparison of the lambdas and the predicted lambda as presented in Figure F-11 shows where the 

predicted value lies within the 5th to 95th percentile ranges of the sources. 

 

Figure F-11. Comparison of rate-based data source results. 

F-2.3 Cluster Analysis Example 

Data for a cluster analysis are presented in Table F-2. This failure rate data is from nuclear power 

plant loss of offsite power (LOOP) records, and deals with a population in which the parameters alpha 

and beta present difficulty converging to values. 
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Table F-2. Component failure rate data for a cluster analysis. 

Source Failures 

Time 

(years) 

1 1 13.054 

2 1 12.77 

3 1 7.22 

4 1 3.944 

5 1 10.548 

6 0 10.704 

7 0 24.0 

8 1 8.76 

9 3 11.79 

10 2 17.5 

11 0 20.03 

12 0 13.39 

13 5 21.5 

14 0 10.075 

15 0 26.32 

16 1 12.54 

17 3 17.5 

18 1 14.3 

19 3 10.89 

20 3 12.5 

21 0 21.38 

22 2 19.65 

23 0 11.34 

 

There are multiple references online for using DBSCAN via R. The first step is to use the k-Nearest 

Neighbor distance plot to determine the knee in the graph. This is generally the best starting point for the 

Epsilon (Eps) parameter. It can be seen from Figure F-12 that the knee is approximately at 2.3 NN 

distance. 
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Figure F-12. k-nearest neighbor distance plot. 

The next step is to run DBSCAN using the Eps and the Minimum Points (MinPts) parameters. 

Determining the MinPts parameter is less of a science than the Eps parameter. If one chooses too high of 

a value for MinPts, the algorithm will not find any clusters; too low of a value and it will find too many 

clusters. The default for MinPts is 5. For this data set, there are only 23 sources, and using a MinPts of 5 

only generates one cluster of 14 and 9 outliers. Using a MinPts value of 3 produces two clusters and 4 

outliers: 14 in Cluster 1 and 5 in Cluster 2. This is shown graphically in Figure F-13, with the two clusters 

and points in the clusters. The x-axis is the failures covariate and the y-axis is the time covariate. 
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Figure F-13. Convex cluster hulls. 

The indices of the data set that belong in each cluster can be extracted in R through the where() 

command. These are the source numbers in Table F-3. 

Table F-3. Clusters with corresponding sources. 

Cluster Data Set Index (Source, from Table G-4) 

0 (outliers) 4, 7, 13, 15 

1 1, 2, 3, 5, 6, 8, 9, 12, 14, 16, 18, 19, 20, 23 

2 10, 11, 17, 21, 22 

 

The clusters can now be run through a PVD analysis to fit individual distributions. If the outliers fail 

to find a PVD as a group, then they can be re-ran as a cluster analysis as their own data set of four or find 

an update with a Jeffreys prior to use as individual distributions in the mixture prior. 

F-2.4 Use of Mixture Prior Example 

This example will use the data presented and grouped by the previous cluster analysis. There are three 

clusters identified in the cluster analysis, however, one of the clusters is identified as an outlier. Outliers 

are not related to each other and become their own group when setting up mixture priors. So in essence, 

there are six clusters to use in setting up the mixture prior. 

A weight must be assigned for each cluster. The weight is equivalent to the proportion of the sources 

in the group to the overall number of sources in the population. Table F-4 summarizes the information. 

Table F-4. Cluster weighting for mixture prior example. 

Cluster Weight Source Failures 

Time 

(years) 

A 0.0435 4 1 3.944 

B 0.0435 7 0 24.0 
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C 0.0435 13 5 21.5 

D 0.0435 15 0 26.32 

E 0.6090 1 1 13.054 

  2 1 12.77 

  3 1 7.22 

  5 1 10.548 

  6 0 10.704 

  8 1 8.76 

  9 3 11.79 

  12 0 13.39 

  14 0 10.075 

  16 1 12.54 

  18 1 14.3 

  19 3 10.89 

  20 3 12.5 

  23 0 11.34 

F 0.2170 10 2 17.5 

  11 0 20.03 

  17 3 17.5 

  21 0 21.38 

  22 2 19.65 

 

The next step is to see if the individual clusters are poolable. If they are not, then tighter set of 

parameters are required when using the data mining in order to produce smaller clusters. 

The poolability OpenBUGS model for rate-based data is used as previously described. 

The results of the p.values for this analysis as shown in Figure F-14 show that it is reasonable to pool 

the data for each cluster since neither Cluster E nor Cluster F have a p-value that is close to zero or 1 as 

was the case when testing the entire population in the prior rate example. Ideal fit would be 0.5, however, 

the range between 0.2 and 0.8 can be considered acceptable. 

 

 

Figure F-14. Pooling result with P values for mixture prior example. 
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The next step is to pool the data in the clusters with multiple sources by summing the failures and 

time components. The mixture prior data now consists of that shown in Table F-5. 

Table F-5. Clusters with corresponding sources for mixture prior example. 

Cluster Weight Source Failures 

Time 

(years) 

A 0.0435 4 1 3.944 

B 0.0435 7 0 24.0 

C 0.0435 13 5 21.5 

D 0.0435 15 0 26.32 

E 0.6090 1, 2, 3, 5, 6, 8, 9, 12, 

14, 16, 18, 19, 20, 23 

16 159.881 

F 0.2170 10, 11, 17, 21, 22 7 96.06 

 

The model shown in Figure F-15 uses the mixture priors by weighting each cluster’s data input 

through the use of a categorical distribution, of which all components (weights) of the distribution must 

sum to one. 

 

Figure F-15. Mixture prior example. 

Note the lack of a requirement to use initial values to start the MCMC. In the case where each 

sub-population (cluster) is poolable, the program can usually generate its own initial values and burn-in 

quickly. For this example, 1,000 samples were used. 

The results are shown in Figure F-16. Lambda[1] through lambda[6] are the results for each of the 

clusters. The node “lambda.avg” is a multi-modal distribution of which its mean, percentiles, and/or 

standard deviation would be used to fit a traditional distribution for use in industry failure data. 
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Figure F-16. Convergence test result for mixture prior example. 

F-2.5 Demand-Based Component Population Variability Example 

Data for a component based on demands and failures experienced are presented in Table F-6. This 

could be any failure mode for any component and differences in manufacturer or operating conditions 

should be kept in mind in case the set cannot be pooled and a PVD cannot be fit. This particular data is 

from a textbook example in [F-5]. 
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Table F-6. Component demand-based failure data. 

Source Failures Demands 

1 0 140 

2 0 130 

3 0 130 

4 1 130 

5 2 100 

6 3 185 

7 3 175 

8 4 167 

9 5 151 

10 10 150 

 

F-2.5.1 Testing for Pool-ability of the Data 

A first qualitative look at the data shows what appears to be an outlier in Source 10. This is good to 

note in case the data cannot be pooled or a PVD cannot be applied. 

The first quantitative analysis should be to see if the data can be pooled. An OpenBUGS model to 

check for pooling applicability is presented in Figure F-17. Note that any MCMC program capable of 

Bayesian inference will work and that OpenBUGS is used here as an example. The goodness of fit test in 

this model is a Chi-squared test of the constant probabilities for each source determined by the model 

versus the replicated results using the posterior predictive distribution which in this case is a Jeffreys prior 

which adds minimal influence on the data. 

Key parameters in this model are: 

 x: Failures for each source listed in the data 

 n: Number of demands for each source listed in the data 

 N: Number of sources 

 p: The probability of failure per demand 

 x.rep: The replicated Binomial result for x from the posterior predictive distribution. 
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Figure F-17. OpenBUGS model to check for poolability of demand-based data. 

The results of running the model with 2,000 samples to “burn-in” and converge, with 100,000 

samples taken for results are shown in Figure F-18. 

 

Figure F-18. Pooling result with P values for demand-based example. 

Note that the individual sources are using the constant probability which has defined values for its Beta 

distribution based on the Jeffreys prior. The p.constant does not require an initial set value in this 

particular model because OpenBUGS is able to generate the initial value on its own. The p.constant 

converges to the 1.95E-02 failures/demand based on the inference from the data set. The replicated 
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Binomial result from each source is compared to the pooled result to determine the P-value (p.value) as 

with the previous rate-based example. The P-value of 6.22E-03 indicates that the pooled model is not a 

good fit to the data. 

F-2.5.2 Demand-Based Heirarchical Bayes for a Population Variability Distribution 
Estimation 

Now that it is determined that the data set cannot be pooled, the next step is to use a hyperprior to 

represent the variability of the data from source to source and check to see if this model can fit the data. 

A hyperprior is selected to attempt to fit the data source variability. The most common hyperprior 

distributions used for a Binomial model are the Beta, but other distributions such as the Lognormal can be 

used. A Beta distribution is used in this example. The hyperprior should not influence the model; rather 

the model should drive the parameters of the hyperprior distribution to the values that fit the data. For this 

reason, the parameters of the Beta distribution are in turn represented by diffuse values, given an initial 

starting point and then the MCMC uses Bayesian inference to drive the Beta parameters to converged 

values. 

The model in Figure F-19 uses the Beta prior to infer upon the probability in the Binomial 

distribution in a similar manner that the fixed distribution of the Jeffreys Beta prior was used to test for 

poolability of the data. The Gamma hyperprior representing the Beta parameters are the PVD that helps to 

fit the data. Predicted performance from the population is given by the posterior Beta distribution (p.pred) 

with the parameters alpha and beta. Note that the prior being used here allows the parameters to vary 

based upon the distributions they are defined by so the MCMC will have to run enough samples to 

converge both the alpha and the beta parameters. 
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Figure F-19. Hierarchical Bayes model for source population variability in demand-based data. 

F-2.5.3 Convergence of the Hyperprior Parameters 

The BGR diagnostic for the alpha and beta parameters in Figure F-20 shows some wild fluctuations 

prior to approximately 40,000 iterations (80,000 samples) at which point the R-value settles along the 

1.0 line and the other two measures track with each other. Another BGR is performed to make sure that 

nothing out of the ordinary happened during the sampling for analysis. Figure F-21 shows slight bumps 

away from exactly 1.0, as viewed around 60,000 iterations of each parameter. This is not out of the 

ordinary and does not indicate divergence. An example of divergence would be continued behavior such 

as noted prior to 35,000 iterations. 
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Figure F-20. BGR diagnostic for convergence of beta parameters. 

 

Figure F-21. BGR diagnostic for full sampling of beta parameters. 

F-2.5.4 Results of the Demand-based Population Variability Analysis 

Results of the analysis are shown in Figure F-22 and provide the following insights: 

 The predicted posterior distribution that would be used for PRA failure data for this component is a 

Beta with alpha = 2.225 and beta = 118.6. Its mean is 2.11E-02 per demand, with a 5th percentile 

value of 3.68E-04 and a 95th percentile value of 6.38E-02. 

 This prior, used in the Binomial model, provides the estimations of the probability of failure per 

demand for the mean, 5th percentile and 95th percentile for each source and a predicted probability. 

 The P-value goodness-of-fit parameter is at 0.43, which is close to the ideal value of 0.5 and indicates 

high confidence in the predicted posterior distribution results. 
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Figure F-22. Demand-based results with beta prior. 

A comparison of the probabilities (p) and the predicted probability presented in Figure F-23 shows 

where the predicted value lies within the 5th to 95th percentile ranges of the sources. 

 

Figure F-23. Comparison of demand-based source results. 

F-2.5.5 Pitfalls of MCMC and Selection of Hyperpriors 

Convergence Issues 

In the detailed demand-based data example used above, the alpha and beta variables in the Beta 

distribution were slow to converge. Generally, it is best to run as many samples as required to attain 

converged samples for measure. However, if the variables continue to refuse to converge it sometimes 

helps to reparameterize the distribution in terms such as mean and variance. If secondary parameters are 
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used, then take the samples for measure after they converge and use the secondary parameters to attain the 

primary ones for use in the PVD. For more information on this topic, see [F-6]. If running more samples 

and reparameterization does not work, then group analysis must be performed on the population using 

DBSCAN or another cluster algorithm, individual PVD analysis performed for each group, and a mixture 

prior set up for use as the current state of knowledge. 

Choosing Adequate Hyperpriors 

MCMC programs use random “picks” of a simulation across the breadth of the posterior distribution. 

For distributions with long tails this can present problems where the mean can be in the tail, sometimes 

even beyond the 95th percentile. Care must be taken by the analyst to choose a prior that will not only 

cause the posterior to fit the data, but will also produce logical results. An example using the rate-based 

data set follows. 

Another prior that is popular to use with Poisson data is the lognormal. An OpenBUGS script using 

the lognormal as the hyperprior along with the sample data from Table F-1 is shown in Figure F-24. 
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Figure F-24. Poisson model with lognormal prior. 

This model’s parameters for the lognormal PVD converge much more quickly. By 10,000 iterations 

the BGR R-value is solidly at 1.0 and the other two are tracking each other. Running the model for an 

additional 100,000 iterations gives us 200,000 samples, the same number as was used in the Gamma 

distribution hyperprior. This produces the results shown in Figure F-25. 
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Figure F-25. Rate-based results with lognormal hyperprior. 

The Bayesian P-value of 0.45 shows that this model replicates the data as well as the Gamma 

hyperprior model did. A review of the lambdas for the data set shows that the means are close to the ones 

calculated for the Gamma model. However, a study of the PVD (lambda.pred) shows that the result for 

the mean (88.36 failures/year) is extreme and well beyond the 95th percentile of 0.93 failures/year. The 

mean lies in the heavy tail due to the MCMC picking some extreme values in the tail. 

This is an anomaly where the goodness-of-fit measure says that the lognormal model replicates the 

data just as well as the Gamma model, yet the predictive posterior distribution’s mean is not logical based 

on the most extreme case in the data set (lambda[7]) having a 95th percentile result of 0.90 failures/year. 

This is also intuitively a “wrong” answer because a qualitative look at the data tells us that there is very 

little chance of 88 failures in a year. Figure F-26 displays the full probability density function and the 

section near zero using just the predicted μ and σ. This illustrates a sharp peak very close to zero and a 

long tail.  

  

Figure F-26. Probability density function with lognormal hyperprior example. 



F-28  

Further analysis of the two priors can be performed by truncating the Gamma and lognormal priors 

using the OpenBUGS interval command of “I(x,y)” where x is the lower number and y is the highest 

number in the results to consider. The OpenBUGS script used for comparison of the two hyperpriors is 

shown in Figure F-27. Note that the interval command is placed inline and behind the distribution text. 

The use of “#” comments out the hyperprior not currently in use. 
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Figure F-27. Hyperprior comparison model. 

This script was run for truncations from (0,1) to (0,5) to discover the behavior of each of these 

hyperpriors as more of their complete distribution is used in predicting the rate of the varied population. A 

chart of the results is presented in Figure F-28. 
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A few insights from the results: 

 The 95th percentile diverges, which shows the effect of the much larger tail of the lognormal. 

 The 50th percentile (median) is flat for both, with a small difference between the two. This explains 

the equally good replication of the data in the Bayesian Chi-squared test. 

 The lognormal mean starts correlated with the median in relationship to the Gamma at truncation 

(0,1), but then it is affected by the tail as the truncation increases, eventually reaching the 88.36 

prediction at full use of the distribution. 

 The Gamma mean has very little movement between the (0,5) truncation and the use of the full 

distribution. 

The take-away is that even though both hyperpriors “fit” the data in the Bayesian P-value replication 

of the model, this sort of analysis points out the better of the two priors to use for this particular set of 

data when used as a PVD for predicting future performance since its mean converges to its full 

distribution value within an intuitively reasonable numbers of failures per year truncation. 

 

Figure F-28. Hyperpriors comparison. 

F-3. PRECISION LIMITATIONS OF NUMERICAL PROGRAMS 

Returning to the rate-based example, let us assume that a prediction for hourly failure rates is 

required, rather than the yearly one. One could simply divide the results by 8760 since that is how many 

hours there are in a year; however, another analyst might want to perform the MCMC calculations using 

the yearly data first converted to hourly data. However, beware the precision limits of the MCMC 

program when performing this sort of analysis (note this limitation holds for many software programs that 

have to treat small numbers). 
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The issue here comes from how the mean is attained through the Poisson model: 

𝑃(𝑥)~𝑚𝑒𝑎𝑛𝑥∗𝑒(−𝑚𝑒𝑎𝑛) 

𝑚𝑒𝑎𝑛 = 𝑙𝑎𝑚𝑏𝑑𝑎 ∗ 𝑡 

𝑃(𝑥)~(𝑙𝑎𝑚𝑏𝑑𝑎 ∗ 𝑡)𝑥𝑒(−𝑙𝑎𝑚𝑏𝑑𝑎∗𝑡) (F-11) 

As parameter “t” becomes larger it is multiplied by the diffuse Gamma in the model and the 

numerical precision of the MCMC program comes into play. 

A comparative analysis was performed using the Gamma prior with yearly data versus using hourly 

data. The results of these are presented in Figure F-29. The difference (delta) between the two shows up 

most significantly in the lower tails of zero failure data sources, where the extremely low values for the 

2.5th percentile in the E-08 range indicate an issue with the analysis. However, there is approximately a 

100% delta across the board between using yearly data versus hourly data. A look at the hourly 

lambda.pred of 3.904E-05/h (not in the figure) multiplied by 8760 h/y results in a mean of 0.342/y rate, 

which is 219% greater than the rate determined by using yearly data. 

In cases where yearly data are given and an hourly rate is desired, it is best to use the yearly data and 

convert the results to hourly for use in PRA. If hourly data are given, be aware of limitations of the 

MCMC program in use and possibly convert the hourly data to yearly for the analysis. 
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Figure F-29. Comparison of using yearly data versus hourly data in Poisson model. 
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