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a b s t r a c t

Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior

distribution of aleatory model parameters have led to tremendous advances in Bayesian inference

capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available

software coupled with inexpensive computing power has catalyzed this advance. This paper examines

where the risk assessment community is with respect to implementing modern computational-based

Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces

salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a

variety of important problems.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The advent of Markov chain Monte Carlo (MCMC) sampling has
proliferated Bayesian inference throughout the world, across a
wide array of disciplines. The freely available software package
known as Bayesian inference using Gibbs sampling (BUGS) has
been in the vanguard of this proliferation since the mid-1990s [1].
However, more recent advances in this software, leading first to
WinBUGS and now to an open-source version (OpenBUGS),
including interfaces to the open-source statistical package R [2],
have brought MCMC to a wider audience. Problems which would
have been intractable a decade ago can now be solved in short
order with these software packages. We will use this software to
illustrate several applications from the field of risk assessment.
While our examples are from applications of risk assessment to
technology, it should be noted that there have also been many
applications of Bayesian inference in behavioral science [3],
finance [4], human health [5], process control [6], and ecological
risk assessment [7]. We mention these other applications to
indicate the degree to which Bayesian inference is being used in
the wider community, including other branches of risk assess-
ment; however, our principal focus is on applications of risk
assessment to engineered systems (including non-nuclear tech-

nology). Within this focus, we will explore specific Bayesian topics
and examples in greater detail, including

� Hierarchical modeling of variability
� Modeling of time-dependent reliability (with and without

repair)
� Modeling of random durations, such as the time to suppress a

fire or recover power
� Treatment of uncertain and missing data
� Regression models
� Model selection and validation

Siu and Kelly’s earlier work [8] is the starting point for this paper,
as it presented a tutorial on Bayesian inference for probabilistic risk
assessment, and the elementary portions of that paper remain vital
today. For the reader needing a more basic introduction to Bayesian
inference, that paper is a good starting point, and it also provides a
good point of entry to the vast (and vastly expanding) literature on
Bayesian inference. However, advances have been made since the
publication of that paper in 1998, and it is to these advances that
the current paper is devoted. Additional relevant information on the
Bayesian approach may be found in [9] and [10] has become a
popular practical reference for the PRA community.

2. Background

First, we provide a brief overview of key concepts relevant to
later discussion. In general, we have a goal of performing
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inference calculations, starting with data. ‘‘Data’’ are the observed
values of a physical process and may be subject to uncertainties,
such as imprecision in measurement, censoring, and interpreta-
tion errors. Next, at a higher level from data, we have ‘‘informa-
tion,’’ which is the result of evaluating, manipulating, or
organizing data and other information in a way that adds to
knowledge. ‘‘Knowledge’’ is what is known from gathered
information. Lastly, inference is the process of obtaining a
conclusion based on what one knows.

One must analyze data in order to produce information,
information that will ultimately be used for making inferences.
Like data, information has organizational value. However, in order
to evaluate or manipulate data, we must have a ‘‘model of the
world’’ (or simply ‘‘model’’) that allows us to translate real-world
observables into information [11,12]. Within this model of the
world, there are two fundamental types of model abstraction,
aleatory (also referred to as probabilistic or stochastic) and
deterministic. The models that will be described herein are
aleatory and parametric, and most of the model parameters are
themselves imprecisely known, and therefore uncertain. Conse-
quently, to describe this second layer of uncertainty, we employ
the notion of epistemic uncertainty (also referred to as state-of-
knowledge uncertainty). See [13] for a more extensive discussion.

All of the inference we will illustrate hinges upon Bayes’
Theorem, which we restate here for convenience

p1ðyjxÞ ¼
f ðxjyÞpoðyÞR

Y f ðxjyÞpoðyÞdy
(1)

In this equation, y is the unknown parameter of interest (often a
vector), po(y) is the prior distribution of y, f(xjy) is the likelihood
function (i.e., the aleatory model for x, conditional upon a value of
y), and p1(yjx) is the posterior distribution of y. See [8] or [10] for
more details.

3. Hierarchical Bayesian modeling of variability

As discussed by Siu and Kelly [8], treatment of variability that
can exist among sources of data is important if total uncertainty,
including population variability, is to be properly represented by
the resulting posterior distribution. Siu and Kelly [8] discusses
hierarchical Bayesian analysis briefly, but (due to software and
computer limitations that existed at that time) focuses on an older
approach of Kaplan [14] called ‘‘two-stage Bayes,’’ and on
(parametric) empirical Bayes. As pointed out by Siu and Kelly
[8], the two-stage Bayes approach can be viewed as a particular
example of the more general hierarchical Bayes, and empirical
Bayes can be viewed as an approximation to hierarchical Bayes.
Thus, with the advent of MCMC software, the hierarchical
Bayesian approach represents an achievable, fully Bayesian state
of the art and two-stage Bayes is no longer a recommended
approach [10]. Empirical Bayes, which is not fully Bayesian, still
has a role to play, however, as will be discussed below.

We first review the general framework of hierarchical Bayes.
We will then illustrate this framework with numerical examples
for hardware failure. Hierarchical Bayes is so-named because it
utilizes hierarchical or multistage prior distributions. In the
hierarchical Bayes framework, the prior distribution for the
parameter of interest, denoted p(y), is written as

pðyÞ ¼
Z
F
p1ðyjjÞp2ðjÞdj (2)

In Eq. (2), p1(yjj) is the first-stage prior, representing the
population variability in y for a given value of j (note that j is
typically a vector), and p2(j), called the hyperprior, is the
distribution representing the uncertainty in j, whose compo-

nents are called hyperparameters. The first-stage prior, p1(yjj), is
usually assumed to be of a particular parametric form, such as a
gamma or lognormal distribution when y40 or a normal
distribution when �NoyoN. It is also typical, although not
necessary, to use independent diffuse hyperpriors for the
components of j. Although nothing limits the analysis to two
stages, the use of more than two stages has been rare in
applications.

3.1. Illustrative example of hierarchical Bayes

Assume the data in Table 1 from 12 sources are available on the
failure rate of a particular type of component.

The parameter of interest is l, the intensity of the Poisson
distribution that describes the number of failures, x, in exposure
time t:

f ðxjlÞ ¼
ðltÞxe�lt

x!
; x ¼ 0;1; . . . (3)

Our prior belief is that there is source-to-source variability in l.
We will model this variability with a gamma-distribution. Thus, in
the hierarchical Bayesian approach, the first-stage prior for l,
denoted p1(yjj) above, will be

p1 lja;bð Þ ¼
bala�1e�bl

GðaÞ
(4)

Therefore j ¼ (a,b)T is the vector of hyperparameters. Hier-
archical problems such as this one are most simply represented
via a Bayesian network, also known as a directed acyclic graph or
DAG [15]. In fact, because the WinBUGS software package uses the
underlying DAG model to express the joint posterior distribution
as a product of conditional distributions, the network approach
allows for almost ‘‘math-free’’ inference, freeing the analyst from
the need to write out Bayes’ Theorem, which can quickly become
quite complex as the number of parameters in a problem
increases. The DAG for our example problem is shown in Fig. 1.
Note in this figure that a and b are independent, prior to the
observation of the data. This obviates the need to develop a joint
prior distribution for a and b that includes dependence. Once the
data are observed, these nodes become dependent, and the joint
posterior distribution will reflect this dependence.

We will assume independent diffuse hyperpriors on a and b.
Note that in some cases the high degree of correlation between a
and b can lead to very slow convergence to the joint posterior
distribution. In such cases, it may be helpful to reparameterize the
problem in terms of the mean and coefficient of variation, which
are approximately independent in the joint posterior distribution.
For more details on this and other issues that can arise, see [16].

The posterior predictive distribution of l, representing source-
to-source variability, will be given by an average of the posterior
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Table 1
Component failure rate data for hierarchical Bayes example

Source Failures Exposure time (h)

1 0 87,600

2 7 525,600

3 1 394,200

4 0 87,600

5 8 4,555,200

6 0 306,600

7 0 394,200

8 0 569,400

9 5 1,664,400

10 1 3,766,800

11 4 3,241,200

12 2 1,051,200
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distribution for l, conditional upon a and b (a gamma-distribution),
weighted by the posterior distribution for a and b. We can take
advantage of the fact that, as Fig. 1 illustrates, the components li are
conditionally independent, given a and b, to write

p lij~x; ~t
� �

¼

Z 1
0

Z 1
0
� � �

Z 1
0

Z Z Yn

i¼1

p1ðlija;bÞ
" #

p2ða;bj~x; ~tÞdadb

( )

�dl1 dl2 . . .dli�1 dliþ1 . . .dln

¼

Z Z
p1ðlij~x; ~t;a;bÞp2ða;bj~x; ~tÞdadb (5)

The third line in Eq. (5) is obtained by interchanging the order of
integration. Thus, the marginal posterior distribution for l for any
particular source is a continuous mixture of gamma-distributions,
mixed over the posterior distribution of the hyperparameters, a and
b. The distribution describing source-to-source variability in l is the
posterior predictive distribution, also referred to as the average
population variability curve.

pðl�j ~lÞ ¼
Z Z

p1ðl
�
ja;b; ~l; ~x; ~tÞp2 a;bj~x; ~t

� �
dadb

¼

Z Z
p1ðl

�
ja;b; ~x; ~tÞp2ða;bj~x; ~tÞdadb (6)

It is thus a similar mixture of gamma-distributions. It is generated
in WinBUGS by sampling a and b from their joint posterior
distribution, and then sampling l� from a gamma-distribution.
The WinBUGS script used to analyze this problem is shown in
Table 2.

Two Markov chains, each starting from a separate point in the
parameter space, were used in the analysis. Running more than
two chains may be needed in general, although two are sufficient
for this example. Running more than one chain aids in checking
convergence. Each of the chains must be given an initial value of a
and b. As discussed by Gelman [17], the starting values should be
over-dispersed around the mode of the posterior distribution of
the hyperparameters to ensure adequate coverage of the posterior
distribution. Empirical Bayes, discussed at length by Siu and Kelly
[8], can provide a reasonable estimate for the location of the
posterior mode in many cases, as it provides the maximum
likelihood estimates of the marginal likelihood function. In this
example, because the first-stage gamma prior is conjugate to the
Poisson likelihood, the marginal likelihood can be written in

closed form

Lða;bÞ ¼
Y

i

Z 1
0

ðlitiÞ
xi e�liti

xi!

bala�1
i e�bli

GðaÞ

¼
Y

i

Gðaþ xiÞ

xi!GðaÞ
ti

b

� �x

ð1þ ti=bÞ�ðaþxiÞ (7)

The natural logarithm of Eq. (7) is maximized numerically to
find estimates of a and b, and these estimates are used to
approximate the mode of the posterior distribution for a and b.
Initial values for the Markov chains are then dispersed around this
approximate mode. For this example, we find the empirical Bayes
estimates of a and b to be about 1.1 and 500,000 h.

The model in Table 2 was run with 1000 burn-in iterations,
followed by 100,000 iterations for each chain to estimate
parameter values. The posterior predictive distribution for l is
shown in Fig. 2. The mean of this distribution is 2.5�10�6/h, with
a 90% credible interval of (3.9�10�8, 8.0�10�6). Note that this is
a symmetric interval from the posterior distribution, as opposed
to a highest posterior density (HPD) interval. Symmetric intervals
are reported in this work because they are more typically used in
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xnx1

…

βa

Fig. 1. Directed acyclic graph for hierarchical Bayes model of population

variability.

Table 2

WinBUGS script for hierarchical Bayes analysis of population variability in l

model {

for(i in 1:12) {

x[i]�dpois(mu[i]) #Poisson distribution for number of failures in

each source

mu[i] o- lambda[i]*t[i] #Parameter of Poisson distribution

lambda[i]�dgamma(alpha, beta) # Distribution for selecting lambda

in each source

}

#Posterior predictive distribution for lambda

lambda.star�dgamma(alpha, beta)

#Hyperpriors on alpha and beta

alpha�dgamma(0.0001, 0.0001)

beta�dgamma(0.0001, 0.0001)

}

Inits

list(alpha ¼ 0.5, beta ¼ 6.E+5)

list(alpha ¼ 1.5, beta ¼ 4.E+5)

Fig. 2. Predictive distribution for l in hierarchical Bayes example, representing

population variability in l.

D.L. Kelly, C.L. Smith / Reliability Engineering and System Safety 94 (2009) 628–643630
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risk assessment applications. HPD intervals are not available
directly in WinBUGS, but can be easily obtained, if desired, with
the R package [2]. Fig. 3 shows credible intervals for l for each of
the 12 sources.

As a further example, we revisit the emergency diesel
generator (EDG) example from Section 6 of [8]. In that earlier
work, the authors did not carry out hierarchical Bayes analysis.
The problem is very similar in structure to the one above, with the
exception that the aleatory model is now a binomial distribution.
The first-stage prior is a beta-distribution with parameters a and
b. For the two-stage Bayes calculation, Siu and Kelly [8] used a
noninformative hyperprior proportional to (a+b)�2.5. For this
analysis, we exploit the fact that a and b are independent until the

data are observed, allowing us to write the joint prior as the
product of independent diffuse gamma-hyperpriors priors.
The WinBUGS script shown in Table 3 is used to carry out the
hierarchical Bayes analysis. The marginal posterior distribution for
p for EDG #1 is summarized in Table 4, along with the results from
[8]. The results from the hierarchical Bayes analysis are generally
comparable, but with somewhat wider uncertainty bounds. Also,
as noted by Siu and Kelly [8], a and b are highly correlated in the
posterior distribution: the rank correlation coefficient calculated
by WinBUGS is 0.98. Note that this correlation is automatically
accounted for in the MCMC sampling process in WinBUGS.

4. Time-dependent reliability

4.1. Modeling time trends

It is sometimes the case that the usual Poisson and binomial
models are rendered invalid because the parameter of interest
(l or p, respectively) is not constant over time. In the US for
example, recent data analysis in [18] has suggested decreasing
values of l and p for several important components. As an
example, let us examine valve leakage data from [19]. These data
are shown in Table 5.

We first carry out a qualitative check to see if there appears to
be any systematic time trend in p. To do this, we update the
Jeffreys prior with the data for each year, and plot the interval
estimates obtained side by side. The Jeffreys prior is used because
we want the resulting intervals to be driven by the observed
data. Note that these are 95% intervals, as this is the coverage
produced by WinBUGS, and cannot be changed easily by the user.
The result is shown in Fig. 4. The graph appears to indicate an
increasing trend with time, but significant uncertainty in the
individual estimates clouds this conclusion. Therefore, a quanti-
tative approach is needed.

A generalized linear model (GLM) is often used to model a time
trend in p or l. Various link functions can be used in such a model,
but a standard choice for p, as suggested by Atwood et al. [10], is
the logit function. In this model, logit(p), which is the log of the
odds ratio, is defined to be a linear function of time

log
p

1� p

� �
¼ aþ bt (8)

Note that b ¼ 0 in this model corresponds to no trend. If p is
increasing over time, then we will have b40. The WinBUGS script
for this model is shown in Table 6. We have used diffuse priors
over the real axis for a and b; WinBUGS refers to this distribution
as dflat(). This is an improper prior; for this type of problem, the
posterior distribution will be proper and the estimates of a and b

will be numerically similar to frequentist estimates, but in general
one should be careful when using the dflat() prior, as it may lead
to an improper posterior distribution. Such a problem may be
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[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

lambdda
0.0 5.00E-6 1.00E-5 1.50E-5

Fig. 3. 95% credible intervals for l for each of the 12 sources in hierarchical Bayes

example, obtained by updating Jeffreys prior for each source. Dots are posterior

means for each interval, red line is average of posterior means.

Table 3
WinBUGS script for hierarchical Bayes analysis of EDG example from [8]

model {

for (i in 1 : N) {

x[i]�dbin(p.fts[i], n[i]) #Binomial dist. for EDG failures

p.fts[i]�dbeta(alpha, beta) #Beta prior for FTS probability

}

p.star�dbeta(alpha, beta) #Posterior predictive distribution for p

alpha�dgamma(0.0001, 0.0001) #Vague hyperprior for alpha

beta�dgamma(0.0001, 0.0001) #Vague hyperprior for beta

}

Table 4
Results for EDG example from [8]

5th 50th 95th Mean

Empirical Bayes 4.7E–04 4.4E–03 1.7E–02 5.9E–03

Two-stage Bayes 1.2E–04 3.3E–03 1.8E–02 5.2E–03

Hierarchical Bayes 5.9E–05 4.5E–03 1.9E–02 6.3E–03

Table 5
Valve leakage data from [19]

Year Number of failures Demands

1 4 52

2 2 52

3 3 52

4 1 52

5 4 52

6 3 52

7 4 52

8 9 52

9 6 52

D.L. Kelly, C.L. Smith / Reliability Engineering and System Safety 94 (2009) 628–643 631
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indicated by convergence problems and can often be ameliorated
by switching to a normal distribution with a mean of zero and a
very small precision, such as 10�6.

The marginal posterior distribution for b is shown in Fig. 5,
which illustrates that the probability that b40 is very high,
suggesting an increasing trend in time for p.

Fig. 6 shows the posterior means and credible intervals for p in
each year, including a prediction for year 10, which could be used
in a risk assessment. For comparison, treating p as constant over
time and updating a Jeffreys prior with the pooled data from all
9 yr would give a posterior mean of 0.08, with a 90% credible
interval of (0.06, 0.099).

A similar approach can be taken for Poisson failure rates,
where the standard link function for a GLM is log(l). The details of
implementation are not described in this paper, but are presented
in [10].

4.2. Modeling failure with repair

Much past work has been devoted to modeling failures with
repair under the assumption that the repairs restore the

component to ‘‘same as new’’ condition, that is, under the
assumption that the stochastic point process being observed is a
renewal process. Disproportionately less work has addressed the
perhaps more reasonable assumption that repairs make the
component ‘‘same as old.’’ Furthermore, most of this work
has been devoted to qualitative analysis and frequentist estima-
tion. Under the assumption of a renewal process, the times
between failures (inter-arrival times) are independently and
identically distributed (iid), and this makes the statistical analysis
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Table 6
WinBUGS script for modeling time trend in p of binomial distribution

model

{

for (i in 1:N) {

x[i]�dbin(p[i], n[i]) #Binomial distribution for failures in

each year

logit(p[i]) o- a+b*i #Use of logit() link function for p[i]

}

a�dflat() #Diffuse prior for a

b�dflat() #Diffuse prior for b

}

Fig. 5. Marginal posterior density for trend parameter in logit model for p. Density

is highest for b40, suggesting an increasing trend in p.

caterpillar plot: p

p
0.0 0.1 0.2 0.3

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Fig. 4. 95% posterior credible intervals for valve leakage probability over time,

obtained by updating Jeffreys prior in each year. Dots are posterior means for each

interval, red line is average of posterior means.

caterpillar plot: p

p
0.0 0.1 0.2 0.3

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Fig. 6. Posterior mean and 95% credible interval for p in each year, from update of

Jeffreys prior (year 10 is predicted values). Dots are posterior means for each

interval, red line is average of posterior means.
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straightforward. However, under the ‘‘same as old’’ assumption for
repair, the inter-arrival times are not iid; the distribution for the
ith time is dependent upon ti�1. See [20] for further discussion.

Under a homogeneous Poisson process (HPP), the number of
failures, x, in time t is described by a Poisson distribution

f ðxÞ ¼
ðltÞxe�lt

x!
(9)

For the HPP, l is independent of time, and the expected number
of failures in time t is given by lt.

Relaxing the assumption of constant l leads to the nonhomo-
geneous Poisson process (NHPP). The number of failures in time t

is still Poisson-distributed, but the expected number of failures in
any given time interval, [t1, t2], is given byZ t2

t1

lðtÞdt (10)

If l(t) is increasing with time, the times between failures are
decreasing with time; the component is aging or wearing out.
Conversely, if l(t) is decreasing with time, the times between
failures are increasing with time, and the component is experien-
cing reliability growth.

The functional form of l(t) must be specified in order for
parametric analysis to proceed. Common forms for l(t) used for
hardware include the power-law process

lðtÞ ¼
a
b

t

b

� �a�1

, (11)

the loglinear model

lðtÞ ¼ expðaþ btÞ, (12)

and the linear model

lðtÞ ¼ aþ bt (13)

The NHPP process has also been used to model software
reliability growth during development and testing. The literature
on applications of the NHPP process to software reliability is vast;
a good introduction is provided in [21] and a more recent
reference is [22].

For this paper, we will focus on the power-law process for
hardware reliability. The power-law process has been the subject
of some past analysis and subsumes both the constant model
(a ¼ 1) and the linear model (a ¼ 2). The time to first failure for
the power-law process has a Weibull distribution with shape
parameter a and scale parameter, b

f ðt1Þ ¼
a
b

t1

b

� �a�1

exp½�ðt1=bÞa� (14)

For this reason, the power-law process is sometimes referred to
as a Weibull process. This name is unfortunate in that it can lead
to the mistaken notion that a sample of inter-arrival times (or in
some cases the times themselves!) from a power-law process is an
iid sample from a Weibull(a,b) distribution. As pointed out above,
this assumption is only valid if one is observing a renewal process.

Relatively little work has been done on Bayesian analysis of a
power-law process. Notable references are [23–25]. A reason for
the dearth of work in this area may be the relative intractability of
the Bayesian approach without MCMC. As noted by Guida et al.
[23], ‘‘[Bayesian procedures] are computationally much more
onerous than the corresponding maximum likelihood ones, since
they in general require a numerical integration.’’ This problem has
been obviated by the advent of MCMC techniques and software for
implementing such approaches.

We will analyze the case in which the observation process is
failure-truncated. The alternative, in which the observations stop
after a fixed time, is straightforward to analyze in a similar

manner. As pointed out above, the time to first failure has a
Weibull(a,b) distribution, given in Eq. (14). For i ¼ 2,y, n, we
must use the condition that the failure times are ordered

f ðtijti�1Þ ¼ f ðtijTi4ti�1Þ ¼
f ðtiÞ

PrðTi4ti�1Þ
(15)

This is a truncated Weibull distribution. Thus, for i ¼ 2,y, n, we
have

f ðtijti�1Þ ¼
a
ba
ðtiÞ

a�1 exp �
ti

b

� �a
þ

ti�1

b

� �a� �
(16)

Therefore, the likelihood function becomes

f ðt1; t2; . . . ; tnja;bÞ ¼ f ðt1Þ
Yn

i¼2

f ðtijti�1Þ

¼
an

bna

Yn

i¼1

ta�1
i

 !
exp �

tn

b

� �a� �
(17)

Strictly for comparison purposes it is worth noting that the
maximum likelihood estimate (MLE) for a is given by

â ¼ nPn
i¼1 lnðtn=tiÞ

(18)

As pointed out by [26], the MLE for a is biased; an unbiased
estimate is given (for the failure-truncated case) by

~a ¼ n� 2

n
â (19)

This bias becomes important for small sample sizes (small n).
WinBUGS was used to perform the MCMC sampling from the

joint posterior distribution of a and b and to obtain marginal
posterior distributions and summary statistics. However, the
likelihood function given by Eq. (17) is not pre-programmed into
WinBUGS, but the user can define a new aleatory model in
WinBUGS by creating a vector of size n, with every component
equal to zero. This vector is assigned a generic distribution with
parameter, f. Defining f ¼ log(likelihood) allows WinBUGS to
update the parameters in the likelihood function.

Independent, diffuse priors were used for a and b. Diffuse
priors were used strictly to allow the results to be compared with
the MLEs; a strength of the Bayesian approach is that it allows
information about parameters to be encoded into a joint prior
distribution for a and b, if such information is available. For b,
which is a scale parameter determined by the units of time in the
problem, a gamma(10�4, 10�4) prior was chosen. For a, which is a
shape parameter, one might think that a uniform distribution over
a reasonable range (a range of 0.3–3 is suggested by Guida et al.
[23]) would be appropriate. However, it is often the case that the
marginal posterior distribution for a is very sensitive to the upper
limit in the uniform prior. For this reason, a gamma(10�4, 10�4)
prior was used for a, also. The WinBUGS script is shown in Table 7.

As data, we will use the failure times given for the ‘‘sad,’’
‘‘happy,’’ and ‘‘noncommittal’’ systems given on pp. v–vi of [20].
We will present the marginal posterior distributions and sum-
mary statistics for a and then compare these results to the MLEs.

For the ‘‘sad’’ system the posterior mean of a is 2.92, with a
90% credible interval of (1.27, 5.13). For reference, the MLE of a is
3.4, larger than the posterior mean. However, the bias-corrected
estimate of a is 2.4, less than the posterior mean. A 90%
confidence interval for a is (1.6, 5.1), a bit narrower than the
90% credible interval from the Bayesian analysis. The marginal
posterior distribution of a is shown in Fig. 7. The probability that
a41, implying that l is increasing with time, is near unity,
confirming the ‘‘sad’’ nature of the system.

For the ‘‘happy’’ system (which is the ‘‘sad’’ system with the
inter-arrival times in reverse order), the posterior mean of a is
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0.61, with a 90% credible interval of (0.28, 1.06). The probability
that ao1, implying that l is decreasing with time, is quite large.
For the ‘‘noncommittal’’ system, the posterior mean of a is 1.09,
with a 90% credible interval of (0.48, 1.94).

5. Modeling random durations

There are many instances in which time is the random variable
of interest. For example, a facility may be threatened by fire, and
the time of interest is the time needed to suppress the fire, which
must be shorter than the time to damage vital equipment (which
is also a random variable). Another important application for
many modern facilities is inference on the time needed to restore
ac power once it has been lost. And of course such models can be
used for the renewal process described above.

The simplest stochastic model for applications where time is the
random variable of interest is the exponential distribution, with
density function and cumulative distribution function given by

f ðtÞ ¼ le�lt

FðtÞ ¼ PrðTptÞ ¼ 1� e�lt (20)

This is the model used for fire suppression time in the Nuclear
Regulatory Commission’s recent guidance for fire PRA [27].
However, there are numerous applications in which this model,
with its assumption of time-independent rate (of suppression,
recovery, etc.) is not realistic. For example, past work described in
[28,29] has shown that the rate of recovering offsite ac power at a
commercial nuclear plant is often a decreasing function of time after
power is lost. Therefore, the exponential distribution is not usually
an appropriate model for this case, and the analyst is led to models
that allow for time-dependent recovery rates, such as the Weibull or
lognormal distribution.

Bayesian inference is more complicated when the likelihood
function is other than exponential, and much past work has been
done on various approximate approaches for these cases. In the
past, the difficulty of the Bayesian approach has led analysts to
use frequentist methods, such as MLEs, the approach adopted for
example in both [28,29]. Today, however, WinBUGS allows a fully
Bayesian approach to the problem to be implemented.

5.1. Recovery of offsite ac power

To illustrate the use of WinBUGS for this type of problem, we
will examine offsite power recovery data from a recently
published analysis done for the USNRC [29]. As pointed out
above, the analysis of power recovery in this work was not
Bayesian, but relied on maximum likelihood estimation to obtain
estimates of the parameters of the Weibull and lognormal
distributions that were candidates for modeling recovery time.
To illustrate the modern Bayesian approach to this analysis, we
will reanalyze a portion of the data, shown in Table 8. These are
the times to recover offsite power for losses of ac power caused by
problems in the offsite grid.

From Ref. [29], we found the following MLEs for this set of
recovery times:

Weibull: a (shape) ¼ 0.929, b (scale) ¼ 2.332 h
Lognormal: m ¼ 0.300, s ¼ 1.064

The script for the Weibull analysis is shown in Table 9. Note that
WinBUGS parameterizes the Weibull distribution in terms of a
shape parameter, a, and a scale parameter, l. The scale parameter
used by WinBUGS is related to the ‘‘standard’’ scale parameter by
the following equation:

l ¼ b�a (21)
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Fig. 7. Marginal posterior density of a for ‘‘sad’’ system.

Table 8
Times to recover offsite ac power for grid-related disturbances, taken from [29]

Site Date Potential recovery

time (min)

Davis-Besse 14/8/2003 657

Fermi 14/8/2003 384

Fitzpatrick/nine mile point 1 14/8/2003 142

Ginna 14/8/2003 54

Indian point 16/6/1997 42

Indian point 14/8/2003 102

Nine mile point 2 14/8/2003 110

Palo verde 14/6/2004 37

Peach bottom 15/9/2003 16

Perry 14/8/2003 87

Summer 11/7/1989 100

Vermont yankee 17/8/1987 17

Table 7
WinBUGS script for analyzing failures with repair using power-law process

model {

for(i in 1:N) {

zeros[i] o- 0

zeros[i] �dgeneric(phi[i])

#phi[i] ¼ log(likelihood)

}

#Power-law model (failure-truncated)

for(j in 1:N) {

phi[j] o- log(alpha)-alpha*log(beta)+(alpha-1)*log(t[j])-

pow(t[N]/beta, alpha)/N }

alpha�dgamma(0.0001, 0.0001)

beta�dgamma(0.0001, 0.0001)

}

Inits

list(alpha ¼ 1, beta ¼ 100) #Inits for power-law model

list(alpha ¼ 2, beta ¼ 500)

list(alpha ¼ 0.5, beta ¼ 250)
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We used independent, diffuse gamma(10�4, 10�4) priors for
both a and l. Diffuse priors were chosen to allow the numerical
results to be compared with the MLEs obtained by [29].

One thousand iterations were used to burn-in the three chains
(three chains were used to accommodate the three possible
general choices for a: ao1, a ¼ 1, and a41, and then another
10,000 iterations for each chain were used to obtain the joint
posterior distribution of a and b. The posterior means and 90%
credible intervals for a and b are shown in Table 10.

Note that the posterior distribution of a, which is shown in
Fig. 8, has significant probability mass centered about 1.0,
indicating that an exponential distribution (which the Weibull
distribution reduces to when a ¼ 1) might be a reasonable model.
We will return to this observation when we discuss Bayesian
model validation.

The WinBUGS script used to analyze the lognormal model is
shown in Table 11. Note that WinBUGS parameterizes the
lognormal distribution in terms of the logarithmic mean, m, and
the logarithmic precision, t. The precision is related to the
logarithmic standard deviation, s, by t ¼ s�2.

One thousand iterations were used to burn-in the chains, and
then another 20,000 iterations for each chain were used to obtain
the joint posterior distribution of m and s. The posterior means
and 90% credible intervals for m and s are shown in Table 12.

6. Treatment of missing and uncertain data

It is not uncommon in risk applications to encounter situations
in which the observed data, which would normally enter into
Bayes’ theorem via the likelihood function, are either missing or
the exact values are not known with certainty. For example, in the
simple Poisson aleatory model used for initiating event frequen-
cies and failure rates, one may not know the exposure time, t,
accurately. Sometimes only an interval estimate is available. This
is especially the case for failure rates, less often the case for
initiating event frequencies. For example, in an example in which
we are interested in plugging of service water strainers, we may
have two parallel strainers in a continually operating system, but
we do not know if both strainers are always in service. Thus, over
an observation time of 24,140 h, our estimate of exposure time, t,
could be as low as 24,140 and as high as 48,180 strainer-hours.

We can handle this type of uncertainty quite easily in the
Bayesian framework. We simply assign t, a distribution that
quantifies our available information, again reinforcing the idea
that the Bayesian methodology encodes information via prob-
ability distributions. For example, we might assign t a uniform
distribution between 24,140 and 48,180 h in our example,
expressing indifference among values in this interval, and placing
zero weight on values outside the interval. In finding the marginal
distribution of l, or calculating Pr(X ¼ x), we have to average over
this distribution. This makes the mathematics more complicated,
since the posterior for l is no longer a gamma-distribution and
must be evaluated numerically, but with modern tools this is a
straightforward calculation. This type of problem has been
analyzed in [30,31].
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Table 9
WinBUGS script for estimating parameters of Weibull distribution for grid-related

offsite power recovery times

model {

for(i in 1:N){

duration.hr[i] o- duration[i]/60

duration.hr[i] �dweib(alpha, lambda) #Weibull model for

duration

}

beta o- pow(lambda, -1/alpha) #’’Standard’’ scale parameter

alpha �dgamma(0.0001, 0.0001)

lambda �dgamma(0.0001, 0.0001)

}

list(alpha ¼ 1, lambda ¼ 0.1)

list(alpha ¼ 0.5, lambda ¼ 0.5)

list(alpha ¼ 2, lambda ¼ 1)

Table 10
Posterior summaries for Weibull model of offsite power recovery

Parameter Posterior mean 90% credible interval

a 0.914 (0.812, 1.254)

b 2.58 (1.343, 4.299)

Fig. 8. Marginal posterior density for shape parameter of Weibull distribution

used to analyze grid-related offsite power recovery times.

Table 11
WinBUGS script for estimating parameters of lognormal distribution for grid-

related offsite power recovery times

model {

for(i in 1:N) {

duration.hr[i] o- duration[i]/60

duration.hr[i] �dlnorm(mu, tau) #Lognormal model for duration

}

mu �dflat()

tau o- 1/pow(sigma, 2)

sigma �dgamma(0.0001, 0.0001)

Inits

list(mu ¼ 0, sigma ¼ 2)

list(mu ¼ 1, sigma ¼ 1)

Table 12
Posterior summaries for lognormal model of offsite power recovery

Parameter Posterior mean 90% interval

m 0.299 (�0.269, 0.886)

s 1.194 (0.833, 1.725)
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The WinBUGS script used for this example is shown in
Table 13. Assume we have observed four strainer-plugging events
during an uncertain exposure time, which we model as being
uniformly distributed between the lower limit of 24,140 and the
upper limit of 48,180 strainer-hours. We use the Jeffreys prior
distribution for l. Running this script gives a posterior mean for l
of 1.3�10�4/h and a 90% credible interval of (4.5�10�5,
2.6�10�4). Note that this is nearly what we would get by using
the mean of the exposure time distribution (36,160 strainer-
hours).

The same concept can be applied to the case of failure on
demand, where the number of demands, n, may not be known
accurately. Let us consider an example of motor-operated valves
failing to open on demand. Let us assume that the number of
demands is nominally 381, but could have been as high as about
440, and as low as 275. Again, let us assign n a uniform
distribution over this range. We will use the Jeffreys prior for p.
Assume that we have seen four failures to open.

With the uncertainty in the number of demands considered,
our posterior for p is no longer a beta-distribution and must be
described numerically with WinBUGS. Using the script shown in
Table 14, the posterior mean of p is estimated to be 0.01, the same
value to 2 decimal places we would have obtained with the
demands treated as known (381). Again, because our central
estimate of n is near the fixed value of 381, modeling the
uncertainty in n does not affect the posterior distribution of p

significantly. In many cases, we may find that modeling the
uncertainty in n does not affect our estimate of p very much.

There are also occasions where the event or failure count is
uncertain. For example, in examining plant records, one may not
be able to tell if a particular event constituted failure of equipment
with respect to its function in the PRA model. Within the Bayesian
framework, one can assign a subjective distribution to the event or
failure counts, and the posterior distribution for the parameter of
interest is then averaged over this distribution, giving the
marginal posterior distribution for the parameter of interest. This
is called the posterior-averaging approach in [8] and has been
illustrated for Poisson event counts by [30,31]. Alternative
approaches to Bayesian inference with uncertain event or failure
counts have been proposed, based on modifications to the

likelihood function. We do not discuss these in detail here. See
[32,33] for more details on these approaches.

Under the posterior-averaging approach, the marginal poster-
ior distribution for l becomes, considering both uncertainty in x

and t

gavgðlÞ ¼
XN

i¼1

Z tupper

tlower

f ðxijl; tÞgðlÞR1
0

R tupper

tlower
f ðxijl; tÞgðlÞpðtÞdt dl

pðtÞdt

" #
PrðxiÞ

(22)

The equation for the binomial case is similar.
As a first example, consider strainer plugging at Plant Y again.

Earlier, the observed number of failures was treated as known
(four). Now assume that plant records described seven plugging
events over the time period of interest, but it was unclear if three
of these events would have been considered as plugging events
from the perspective of the PRA model. Therefore, the actual
number of plugging events is uncertain, and could be four, five,
six, or seven. In the posterior-averaging approach, the analyst
assigns a subjective (discrete) distribution to these values,
representing his confidence in the correctness of each value.
Assume the analyst, in poring over the plant records, has arrived
at the following distribution for the observed data:

Pr(x ¼ 4) ¼ 0.75;
Pr(x ¼ 5) ¼ 0.15;
Pr(x ¼ 6) ¼ 0.075;
Pr(x ¼ 7) ¼ 0.025.

Note that these probabilities must sum to unity. WinBUGS is
used to analyze this problem numerically, via the script shown in
Table 15. For the case where the exposure time is known with
certainty to be 48,180 h, the posterior mean is 1.0�10�4 h�1, with
90% credible interval (3.7�10�5/h, 1.9�10�4/h). If we include the
uncertainty in the exposure time, we find the posterior mean to be
1.5�10�4/h, with 90% credible interval (5.2�10�5/h, 3.0�10�4/h).

As a second example, consider MOV failures. Earlier, we took
the observed number of failures as four. Consider now the case
where this value is uncertain, and assume it could be 3, 4, 5, or 6,
with Pr(3) ¼ 0.1, Pr(4) ¼ 0.7, Pr(5) ¼ 0.15, and Pr(6) ¼ 0.05. Using
the WinBUGS script shown in Table 16, for the case where the
number of demands is known with certainty to be 381, we obtain
a posterior mean of 0.01, with 90% credible interval (0.004, 0.02).
If the uncertainty in the number of demands is included as before,
the posterior mean is still 0.01 to 2 decimal places, and the 90%
credible interval has shifted slightly to (0.005, 0.03).

ARTICLE IN PRESS

Table 13
WinBUGS script for estimating strainer-plugging rate when exposure time is

uncertain

model {

x�dpois(mu) #Poisson distribution for number of events, x

mu o- lambda*time.exp

lambda�dgamma(0.5, 0.0001) #Jeffreys prior for lambda, monitor

this node

time.exp�dunif(24140, 48180) #Models uncertainty in exposure time

}

data

list(x ¼ 4)

Table 14
WinBUGS script for estimating MOV failure probability when demands are

uncertain

model {

x�dbin(p, N)

N�dunif(275, 440) #Models uncertainty in demands

p�dbeta(0.5, 0.5) #Jeffreys prior for p, monitor this node

}

data

list(x ¼ 4)

Table 15
WinBUGS script for estimating strainer plugging by averaging posterior distribu-

tion over uncertainty in event count and exposure time

model {

for(i in 1:N) {

x[i]�dpois(mu[i])

mu[i] o- lambda[i]*time.exp

lambda[i]�dgamma(0.5, 0.0001) #Jeffreys prior for lambda

}

lambda.avg o- lambda[r] #Overall composite lambda, monitor this

node

r�dcat(p[])

time.exp �dunif(24140, 48180) #Models uncertainty in exposure time

}

data

list(x ¼ c(4,5,6,7), p ¼ c(0.75, 0.15, 0.075, 0.025))
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7. Bayesian regression models

Regression models are commonplace in statistics, and have
been applied in risk analysis, as well. An example discussed earlier
is the use of a logit or loglinear model for trend in a binomial or
Poisson parameter. In these models, time was the predictor
variable. In human reliability analysis (HRA), regression models
have been used to estimate human error probabilities. The
original SLIM (see [34]) and its derivatives are examples. We will
examine a simple example from the published literature. Another
recent example for estimating early system reliability is [35].

Dalal et al. [36] performed a frequentist regression analysis of
space shuttle field and nozzle O-ring data collected prior to the ill-
fated launch of the Challenger in January 1986. The purpose of
their analysis was to show how regression analysis could be used
to provide information to decision-makers prior to a launch,
information that could have been expected to lead to a decision to
scrub the Challenger launch due to the low temperatures (�31 1F.)
present at the launch pad on the morning of the scheduled launch.
The analysis in [36] found that a logistic regression model
provided a relatively good fit to the past data.

In the second portion of the analysis in [36], parameter
uncertainties were propagated through the fitted logistic regres-
sion model in order to estimate the probability of shuttle failure
due to O-ring failure at the estimated launch temperature of
�31 1F. Because the analysis was frequentist in nature, probability
distributions representing epistemic uncertainty in the input
parameters were not available, and the authors had to resort to an
approximate approach based on bootstrap confidence intervals, an
approach developed by Efron [37].

Ref. [38] repeats the analyses of [36] from a Bayesian
perspective. MCMC sampling was used to sample from the joint
posterior distribution of the model parameters, and to sample
from the posterior predictive distributions at the estimated
launch temperature, a temperature that had not been observed
in prior launches of the space shuttle. Uncertainties, which are
represented by probability distributions in the Bayesian approach,
were propagated through the model via Monte Carlo sampling to
obtain a probability distribution for O-ring failure, and subse-
quently for shuttle failure as a result of O-ring failure. No
approximations are required in the Bayesian approach and the
resulting distributions could be input to a decision analysis to
calculate expected utility for the decision to launch.

7.1. Stochastic model for O-ring distress

There are six O-rings on the shuttle, so during each launch, the
number of distress events, defined as erosion or blow-by of a
primary field O-ring, is modeled as binomial with parameters p

and 6: X�binomial(p, 6). Data from launches prior to the
Challenger (taken from [36]) are shown in Table 17.

In the model used in [36], p is a function of temperature and
leak-test pressure. The standard link function is the logit function

logitðpÞ ¼ log
p

1� p

� �
(23)

Following the approach in [36,38] considered two potential
explanatory regression models:

(1) logit(p) ¼ a+b� temp+c�press
(2) logit(p) ¼ a+b� temp

The WinBUGS script for the first model, which includes both
temperature and pressure as explanatory variables, is shown in
Table 18. Diffuse priors were used for the coefficients in this
model to allow the numerical results to be compared with the
maximum likelihood estimates and confidence intervals obtained
by [36].

One thousand burn-in iterations were required for conver-
gence, followed by 500,000 iterations for each of two chains to
estimate the parameters. Table 19 shows the posterior mean,
standard deviation, and symmetric 95% credible interval for each
of the parameters in the logistic regression model for p (95%
intervals are used because (36) presented 95% confidence
intervals).

Note the very large standard deviation on the intercept
parameter. Also, when plotted, the marginal posterior distribu-
tions for a and b appear approximately normal with the listed
posterior means and standard deviations. The marginal posterior
distribution for the pressure coefficient, because it is centered
about zero, indicates that pressure is not a significant explanatory
variable.

The model that includes both temperature and pressure
predicts about four distress events at 31 1F, the approximate
temperature for the disastrous launch of the Challenger.

The model with only temperature predicts essentially the same
number of events as the model with both temperature and
pressure. In a later section, we will illustrate a method for
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Table 16
WinBUGS script for estimating MOV failure probability by averaging posterior

distribution over uncertainty in failure count and number of demands

model {

for (i in 1:N){

x[i]�dbin(p[i], D)

p[i]�dbeta(0.5, 0.5) #Jeffreys prior

}

p.avg o- p[r] #Composite posterior, monitor this node

r�dcat(q[])

D�dunif(275, 440) #Models uncertainty in demands

}

data

list(x ¼ c(3, 4, 5, 6), q ¼ c(0.1, 0.7, 0.15, 0.05))

Table 17
Space shuttle field O-ring thermal distress data, taken from [36]

Flight Distress events Temp (oF.) Press (p sig)

1 0 66 50

2 1 70 50

3 0 69 50

5 0 68 50

6 0 67 50

7 0 72 50

8 0 73 100

9 0 70 100

41-B 1 57 200

41-C 1 63 200

41-D 1 70 200

41-G 0 78 200

51-A 0 67 200

51-C 2 53 200

51-D 0 67 200

51-B 0 75 200

51-G 0 70 200

51-F 0 81 200

51-I 0 76 200

51-J 0 79 200

61-A 2 75 200

61-B 0 76 200

61-C 1 58 200
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choosing between a model with only temperature as an
explanatory variable, versus a model with both temperature and
pressure.

8. Bayesian model validation

The frequentist approach to model checking or validation
typically involves comparing the observed value of a test statistic
to percentiles of the sampling distribution for that statistic. Given
that the null hypothesis is true, we would not expect to see
‘‘extreme’’ values of the test statistic. One Bayesian approach to
model checking involves calculating the posterior probability of
the various hypotheses and choosing the one that is most likely.
One can also use summary statistics derived from the posterior
predictive distribution, as described by Gelman et al. [39]. We will
discuss two such statistics: Bayesian w2 and Cramer-von Mises,
which lead to a Bayesian analog of p-value. We will also discuss
the deviance information criterion (DIC), a Bayesian analog of a
penalized likelihood measure employed by frequentist statisti-
cians. Other Bayesian approaches to Bayesian model validation
have been proposed. Some of these can be found in [40–42].

Both of the summary statistics we will use are based on the
posterior predictive distribution. This is the predictive distribu-
tion for future values of an observed random variable, given past
empirical data. It is defined as

pð~xjxÞ ¼
Z
Y

f ð~xjyÞp1ðyjxÞdy (24)

Similarly, one can define a prior predictive distribution, in
which the likelihood is averaged over the prior distribution for y.
The prior predictive distribution can help in selecting an
appropriate prior distribution, via so-called preposterior analysis.
In this approach, the probabilities of hypothetical sets of data are

calculated. If the probability of an expected set of data is low, then
the prior distribution leading to that probability is questioned.

The posterior predictive distribution can be used in a similar
fashion after data have been observed. If the observed data are
extreme values from a tail of the posterior predictive distribution,
this indicates that the ‘‘model’’ (prior and likelihood) is not able to
replicate the observed data very well, and suggests a potential
problem with the prior distribution, the likelihood function, or both.

We illustrate this use of predictive distributions with an
example related to frequency of a particular initiating event. The
usual stochastic model for the occurrence of initiating events is
that the number of such events, X, in a specified time period, t, has
a Poisson distribution with parameter lt, where l is the initiating
event frequency, with l being the unknown parameter. Thus, the
probability of seeing a specific outcome, such as one event in
10 yr, or at least two events in 25 yr, is obtained from the Poisson
distribution function

PrðX ¼ xjlÞ ¼
ðltÞxe�lt

x!
; x ¼ 0;1; . . . (25)

Note that this probability is conditional upon a value of the
unknown initiating event frequency, l. Strictly as an aid in
illustrating the calculations that follow, we will use a conjugate
gamma-distribution to describe our uncertainty about l. A
gamma-distribution has probability density function

gðlÞ ¼
bala�1e�bl

GðaÞ ; a40;b40 (26)

Because the gamma-distribution is conjugate to the Poisson
likelihood, a Bayesian update of x observed events in time t
produces a posterior distribution that is gamma with parameters
apost ¼ a+x and bpost ¼ b+t. The posterior mean is then (a+x)/(b+t).
See [8] for additional details.

Let us look at a specific example for loss of main feedwater.
Assume the prior distribution for this initiating event is
gamma(1.2, 12 yr). Assume that we anticipate two losses of
main feedwater in the next 2.7 yr. The prior mean frequency is
1.2/12 yr ¼ 0.1/yr. Based on the prior distribution, there is a 90%
probability that the frequency is in the range (0.008/yr, 0.28/yr).
The sparse plant-specific data are suggestive of a frequency of
2.7/2 yr ¼ 0.74/yr, well outside the 90% interval from the prior
distribution. However, because the data are sparse, there is
considerable uncertainty in the estimate.

Is it appropriate to use this prior distribution for the frequency
of loss of main feedwater if we expect two such events in the next
2.7 yr? To answer this question, we use the prior predictive
distribution of X, which gives the probability of seeing x events in
time t, unconditional upon l. In equation form, this can be shown
to be

PrðX ¼ xÞ ¼
Gðaþ xÞ

x!GðaÞ
t

b

� �x

ð1þ t=bÞ�ðaþxÞ (27)

Eq. (27) can be implemented in a spreadsheet or can be
simulated with WinBUGS. The probability of interest for our
example is the probability of seeing two or more losses of main
feedwater in 2.7 yr, as this tells us how far out in the upper tail of
the prior predictive distribution the expected failure count is
located. If this probability is small, then we have evidence that the
expected data are inconsistent with the proposed prior distribu-
tion for loss-of-main-feedwater frequency. Using either a spread-
sheet or WinBUGS this probability is found to be 0.04. An often-
used guideline is that this probability is ‘‘small’’ if it is less than
0.05. We are just under this guideline, so the expected data appear
to be somewhat inconsistent with the proposed gamma(1.2, 12 yr)
prior distribution.
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Table 19
Summary posterior estimates of logistic regression parameters, temperature and

pressure included as explanatory variables

Parameter Mean Standard dev. 95% credible interval

a (intercept) 2.24 3.74 (�4.71, 9.92)

b (temp. coeff.) �0.105 0.05 (�0.20, �0.02)

c (press. coeff.) 0.01 0.009 (�0.004, 0.03)

Table 18
WinBUGS script for logistic regression of primary O-ring distress on temperature

and pressure

model {

for(i in 1:K){

distress[i] �dbin(p[i], 6)

logit(p[i]) o- a+b*temp[i]+c*press[i] #Model with temperature and

pressure

distress.rep[i] �dbin(p[i], 6) #Replicate values for model

validation

diff.obs[i] o- pow(distress[i]-6*p[i], 2)/(6*p[i])

diff.rep[i] o- pow(distress.rep[i]-6*p[i], 2)/(6*p[i])

}

distress.31 �dbin(p.31, 6) #Predicted number of distress events for

launch 61-L

logit(p.31) o- a+b*31+c*200

#Prior distributions

a�dnorm(0, 0.000001)

b�dnorm(0, 0.000001)

c�dnorm(0, 0.000001)

}
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Turning now to the posterior predictive distribution, what if
we had used this prior distribution, and had then observed three
events in 2.9 yr? A naı̈ve update of the prior distribution would
give a posterior mean frequency of 0.28/yr. However, it is prudent
to ask if the resulting model (prior+likelihood) is reasonable, in
the sense where we question whether the model can replicate the
observed data with reasonable probability. The posterior pre-
dictive distribution is given by Eq. (27), with a and b replaced by
a+x and b+t, the parameter values from the gamma posterior
distribution for l. A spreadsheet or WinBUGS can be used to
calculate the probability of seeing at least three events in the next
2.9 yr. This probability is found to be 0.06, suggesting that the
model is on the edge of predictive validity.

We next illustrate a more sophisticated use of the posterior
predictive distribution for offsite power recovery time in our
earlier example. We will use WinBUGS to generate replicate times
from each of the three models under consideration, and then
compare a summary statistic, denoted Trep, for these replicated
times to the same statistic for the observed times, denoted Tobs. If
our model has predictive validity, then P(Trep4Tobs) should be
near 0.5; values near 0 or 1 indicate a model with poor predictive
validity. More details can be found in [39,43,44].

One possible choice of summary statistic is the sum of the
observed times. Unfortunately, with a Jeffreys prior and an
exponential likelihood, it can be shown that the sum of the
observed times, because it is a sufficient statistic for l, will always
be at the median of the distribution of the sum of the replicated
times, regardless of the aleatory process that generates the
observed times. Therefore, a different summary statistic is
needed. We will use a Bayesian analog of the Cramer-Von Mises
statistic [26], discussed and illustrated below.

8.1. Bayesian posterior predictive statistics and Bayesian p-value

In frequentist statistics, a commonly encountered test statistic
is

w2 ¼
X

i

ðxi � miÞ
2

s2
i

(28)

In this equation, xi is the ith observed value, mi is the ith
expected, or mean value, and si

2 is the ith variance. The
distribution of w2 is often approximately chi-square, with degrees
of freedom related to the sample size. We use this as motivation
for the following summary statistics.

We use the observed values of x to form the statistic

w2
obs ¼

X
i

ðxobs;i � miÞ
2

s2
i

(29)

We then generate replicate values of x from its posterior
predictive distribution, and construct an analogous statistic:

w2
rep ¼

X
i

ðxrep;i � miÞ
2

s2
i

(30)

Both of these statistics, defined analogously to the frequentist
w2 statistic, have a posterior distribution. wobs

2 plays the role of the
theoretical distribution in the frequentist setting, and wrep

2 plays
that of the summary statistic based on the data; in this case the
‘‘data’’ are replicate values from the Bayesian model (prior plus
likelihood). In the frequentist setting, if the summary statistic
calculated from the data is in a tail of the theoretical distribution,
we are led to reject our model. The p-value is sometimes used to
measure the degree to which the data are at conflict with the
model. We will adopt that term here, and define the Bayesian
p-value to be Pr(wrep

2
Xwobs

2 ). However, instead of choosing an
arbitrary p-value (e.g., 0.05) and rejecting a model with a p-value

below the cutoff, we will use the p-value to select the model that
is best at replicating the observed data. This will be the model
whose Bayesian p-value is closest to 0.5. Note that, as pointed out
by various authors, for example [40], the Bayesian p-value does
not possess all of the properties of the corresponding frequentist
p-value. For example, its distribution is not asymptotically
uniform for a simple null hypothesis. However, from a practical
perspective, the Bayesian p-value is useful for identifying poorly
performing models and has the attractive property of being easy
to calculate in the MCMC framework.

We first illustrate the posterior predictive approach to model
validation with an application to our earlier example of modeling
source-to-source variability in component failure rate, l. There,
we had 12 sources, as shown in Table 1. We will use the Bayesian
analog of p-value to compare the model with variable failure rate
to a simpler model in which each of the 12 sources is assumed to
have the same failure rate. The portion of the WinBUGS script
used to calculate the Bayesian p-value is shown in Table 20.

The marginal posterior distributions for wobs
2 and wrep

2 are
shown in Figs. 9 and 10 for each model. There is significantly more
overlap between wobs

2 and wrep
2 in the model with variable l,

indicating superior predictive validity of the variable-l model.
Table 21 shows the Bayesian p-values (mean of node p.value)

for the hierarchical (variable-l) model and the constant-l model.
Based on these results, significantly better predictive validity is
provided by the hierarchical model, which includes source-to-
source variability in l.

Applying this approach to the valve leakage data given in
Table 5, the model with constant p across the 9 yr (no trend) gives
a Bayesian p-value of 0.18. In comparison, the model that includes
a monotonic trend in p over the 9 yr period has a Bayesian p-value
of 0.47, significantly nearer 0.5 than the value of 0.18 for the model
with no trend, suggesting that the model with an increasing trend
in p has better predictive validity.

As a final example, we illustrate the use of a Bayesian analog of
the Cramer-von Mises statistic [26] with the offsite power
recovery data from our earlier example. The script implementing
this test is shown in Table 22.

Running this script gives the results shown in Table 23. All of
the models are quite good at replicating the observed data, with
the lognormal distribution being the best (i.e., closest to 0.5) by a
slight amount. Ref. [29] chose a lognormal distribution because it
gave the best fit to the observed data, based on several different
frequentist test statistics.

ARTICLE IN PRESS

Table 20
WinBUGS script for calculating Bayesian p-value for 12 sources of component

failure rate data

model {

for(i in 1:12) {

x[i] �dpois(mu[i]) #Poisson distribution for number of failures

in each source

mu[i] o- lambda[i]*t[i] #Model for source-to-source

variability

lambda[i] �dgamma(alpha, beta) #Distribution for selecting

lambda in each #source

#lambda[i] o- lambda.constant #Model ignoring variability

x.rep[i] �dpois(mu[i]) #Replicate value from posterior predictive

distribution

#Inputs to calculate Bayesian p-value

diff.obs[i] o- pow(x[i]-mu[i], 2)/mu[i]

diff.rep[i] o- pow(x.rep[i]-mu[i], 2)/mu[i]

}

#Calculate Bayesian p-value

chisq.obs o- sum(diff.obs[])

chisq.rep o- sum(diff.rep[])

p.value o- step(chisq.rep-chisq.obs)
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8.2. Deviance information criterion

Frequentist statistics has long made us of the deviance, defined
as deviance ¼ �2 log(likelihood), as a measure of how well a
model fits observed data. If the data are normally distributed with

known variance, s2, then the deviance can be written as

D /
X ðxi � mÞ2

s2
(31)

Thus, the deviance generalizes the w2 statistic used earlier.
As discussed by Gelman [44] the expected deviance, computed

by averaging Eq. (31) over the true sampling distribution, equals
twice the Kullback–Leibler information (up to a fixed constant).
As the sample size grows large, the model with the lowest
Kullback–Leibler information, and therefore the lowest expected
deviance, has the highest posterior probability.

Note that the discrepancy between the model and the
observed data also depends on the unknown parameters (m and
s2 in Eq. (31)). Therefore, one can average the deviance over the
posterior distribution of the unknown parameters, using draws
from their simulated posterior distribution to implement this in a
numerical framework.

The deviance averaged over the posterior distribution of the
unknown parameters will be different than the deviance calcu-
lated for a single value, such as the posterior mean. The difference
represents the effect of model fitting, and can be thought of as the
effective number of parameters in a Bayesian model. This
difference represents the decrease in deviance (i.e., expected
improvement in model fit) expected from estimating the para-
meters in the model.

One can also estimate the expected deviance in applying the
fitted model to replicated data from the posterior predictive
distribution, with the average carried out over this distribution.
This expected predictive deviance is estimated by the deviance
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Fig. 9. Marginal posterior densities for observed and replicated Bayesian w2

statistics show little overlap in the constant-l model, indicating model with

constant l is poor at replicating the observed data.
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Fig. 10. Marginal posterior densities for observed and replicated Bayesian w2

statistics show significant overlap in the variable-l model, indicating model with

variable l is good at replicating the observed data.

Table 21

Bayesian p-values for 12 sources, constant-l model and hierarchical Bayes model

for variable l

Model Bayesian p-value

Variable l 0.46

Constant l 0.002

Table 22
WinBUGS script for implementing Bayesian analog of Cramer-von Mises statistic

model

{

for (i in 1 : N) {

#Remove comments from model being used

time[i] �dexp(lambda) #Exponential distribution

time.rep[i] �dexp(lambda)

#time[i] �dweib(alpha, lambda) #Weibull distribution

#time.rep[i] �dweib(alpha, lambda)

#time[i] �dlnorm(mu, tau) #Lognormal distribution

#time.rep[i] �dlnorm(mu, tau)

time.ranked[i] o- ranked(time[],i)

time.rep.ranked[i] o- ranked(time.rep[], i)

F.obs[i] o- 1-exp(-lambda*time.ranked[i]) #CVM for

exponential #distribution

F.rep[i] o- 1-exp(-lambda*time.rep.ranked[i])

#F.obs[i] o- 1-exp(-lambda*pow(time.ranked[i], alpha)) #CVM

for Weibull #distribution

F.rep[i] o- 1-exp(-lambda*pow(time.rep.ranked[i], alpha))

#F.obs[i] o- phi((log(time.ranked[i])-mu)*tau/2) #CVM for

lognormal #distribution

F.rep[i] o- phi((log(time.rep.ranked[i])-mu)*tau/2)

diff.obs[i] o- pow(F.obs[i]-(2*i-1)/(2*N), 2)

diff.rep[i] o- pow(F.rep[i]-(2*i-1)/(2*N), 2)

}

CVM.obs o- sum(diff.obs[])

CVM.rep o- sum(diff.rep[])

p.value o- step(CVM.rep-CVM.obs) #Mean value should be near 0.5

Table 23
Results of Bayesian Cramer-von Mises test for offsite power recovery times

Distribution Bayesian p-value

Exponential 0.488

Weibull 0.413

Lognormal 0.496
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information criterion (DIC)

DIC ¼ 2Davg � Dŷ (32)

DIC, which is computed by WinBUGS, is a Bayesian analog of the
Akaike information criterion (AIC) used by frequentists [45]. For
more details on DIC, see [46].

We first illustrate the use of DIC for the valve leakage data in
Table 5. WinBUGS includes a menu option to calculate DIC, so no
additional scripting is required. DIC should not be calculated until
the chains have converged, however. The DIC for the model with a
monotonic trend is 37.9, less than the value of 40.75 for the model
with constant p. The lower DIC, coupled with the much better
Bayesian p-value of 0.47, would likely lead us to adopt the logistic
model for the valve leakage probability (p) over the simpler model
with p constant in each year.

As a second example, we use DIC to choose among candidate
regression models for the space shuttle O-ring data in Table 17.
Recall from an earlier section that two candidate logistic
regression models had been developed for the shuttle O-ring
erosion probability (p): a model with temperature as the only
explanatory variable, and a more complicated model with both
temperature and leak-test pressure. The DIC is nearly the same for
both models. Because the simpler model is essentially equivalent
to the more complex ones, we would recommend it for any
predictive analyses.

As a final illustration, we use DIC to help select among aleatory
models for random durations. First, we will use DIC to select
among the three models considered for offsite power recovery
time in our earlier example from [29]. In that example we used
Bayesian inference to obtain posterior distributions for the
parameters of the putative Weibull and lognormal models for
offsite power recovery time. We will use DIC to compare both of
these models with the simpler exponential model, in which the
recovery rate is constant in time.

Table 24 shows the results for the three models under
consideration. The model with the smallest DIC is the Weibull
model, although the difference from the other models is not very
large. In fact, none of the three models differ significantly from the
others based on DIC. From the standpoint of analytical simplicity,
the exponential model would be preferable. Note that the
lognormal distribution, with its heavy tail, will tend to give
the most conservative results in terms of the probability of not
recovering offsite power by a particular time. As noted earlier, the
lognormal model was selected in [29], based on frequentist
goodness-of-fit tests.

As a second example involving random durations, consider the
following times to failure (in hours) for a cooling pump: 1258,
1388, 1022, 1989, 2024, 1638, 390, 4362, 2240, 1215, 2146, 655.
Treating this as a renewal process, as described earlier, we are
interested in inferring the renewal distribution. We will again
consider three candidate aleatory models: exponential, Weibull,
and lognormal. Using the scripts shown earlier, with diffuse
priors on the distribution parameters, we find the results shown
in Table 25. In this case, based on both Bayesian p-value and DIC,
either the Weibull or lognormal model is clearly a better

alternative than the simple exponential model, but there is no
significant difference between the Weibull and lognormal models.

9. Other models

A variety of other ‘‘models of the world’’ are amenable to
inference via Bayes’ Theorem, including Bayesian belief networks
(BBN), influence diagrams, and fault trees. Graph models such as
BBNs and influence diagrams are very similar to the directed
acyclic graphs discussed earlier. In fact, an influence diagram is
just a directed acyclic graph to which decision nodes have been
added, as discussed in [47]. An example of these types of models is
shown in Fig. 11, where we list six possible hypotheses relating
how performance-shaping factors (PSFs) may (or may not) affect
human performance. An application of Bayesian networks for
estimating multilevel system reliability is given in [48].

Models such as fault trees, while not frequently used as the
aleatory model for Bayesian inference, nonetheless provide a
structure wherein both high-level data (e.g., system failures),
intermediate-level data (e.g., subsystem failures), and low-level
data (e.g., component failures) can all be used, simultaneously, to
perform inference at any level, as discussed in Refs. [49–51]. For
example, assume that we are interested in failure rates and
probabilities for components that make up a system, but the
observed data are at multiple ‘‘levels,’’ including the subsystem
and system level (rather than at the component level). We will use
the system fault tree and the resulting expression of system
failure probability in terms of constituent component failure
probabilities to carry out the analysis in WinBUGS. Consider the
simple fault tree shown in Figs. 6–9 of the NASA PRA Procedures
Guide [52], reproduced in Fig. 12.

Assume we have seen three failures (in 20 demands) for Gate E
(the only subsystem) and one failure (in 13 demands) for the Top
Event (the system). Assume that basic events ‘‘A’’ and ‘‘B’’
represent a standby component, which must change state upon
receipt of a demand. Assume that ‘‘A’’ represents failure to start of
this standby component and ‘‘B’’ represents failure to run for the
required time, which we will take to be 100 h. Assume basic
events ‘‘C’’ and ‘‘D’’ represent normally operating components. We
will assume the information about the basic event parameters is
as shown in Table 26. Note that the error factor of the lognormal
distribution given in Table 26 is related to the logarithmic
precision, t, which WinBUGS uses, by the following equation:

t ¼ 1

lnðEFÞ=1:645
� 	2 (33)

We are using the same distribution to represent epistemic
uncertainty in the parameters for events C, and D, so, as discussed
in [53], we should account for this state-of-knowledge depen-
dence in the Bayesian inference by using a single sampled value
for each of the ls in the problem. The WinBUGS script in Table 27
will be used to find posterior distributions for p and the ls in this
model, using the available data at the subsystem and system level.

Running the script gives the results in Table 28, which are
compared to the prior means. These results show that the
observed data have significantly increased the shared failure rate
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Table 24
DIC results for potential models for recovery time following grid-related loss of

offsite power

Model DIC

Exponential 145.6

Weibull 144.4

Lognormal 145.3

Table 25
Results of model checking for cooling pump failure times

Model Bayesian p-value DIC

Exponential 0.16 204.5

Weibull 0.49 200.7

Lognormal 0.50 200.3
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(l) used for basic events C and D. The estimate of the failure rate
of component B has decreased from its prior mean value.

10. Conclusions

In the scientific and engineering communities, we rely on
mathematical models of reality, both deterministic and aleatory.

These models contain parameters—whose values are estimated
from information—of which data are a subset. Uncertain para-
meters (in the epistemic sense) are inputs to the models used to
infer the values of future observables, leading to an increase in
scientific knowledge. Further, these parameters may be known to
high precision and thus have little associated epistemic uncer-
tainty (e.g., the speed of light), or they may be imprecisely known
and therefore subject to large epistemic uncertainties (e.g.,
probability of failure of a component). The advent of MCMC-
based sampling methods, coupled with easy-to-use software and
powerful computers, allows us to encode information via Bayes’
Theorem for a large variety of problems, domains, model types,
data sets, and complications.

In this paper, data were defined as distinct observed outcomes
of a physical process. It was noted that data may be factual or not
and that data may be known with complete certainty or not. We
described processes that are available to carry out inference in
both situations.

We stated that we view data as an observable quantity. This
statement implies a temporal constraint on the collection of data:
data are collected prior to the present moment. While it is
possible to speak about data being collected in the future, such
data do not exist until that future time when they are observed.
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Fig. 12. Example fault tree from NASA PRA Procedures Guide [52].

Table 26
Basic event parameters for the example fault tree

Basic event Parameters of interest Prior distribution

A p Lognormal, mean ¼ 0.001, EF ¼ 5

B Lambda

Mission time ¼ 100 h Lognormal, median ¼ 0.005/h, EF ¼ 5

C Lambda

Mission time ¼ 100 h Lognormal, mean ¼ 0.0005/h, EF ¼ 10

D Lambda

Mission time ¼ 100 h Lognormal, mean ¼ 0.0005/h, EF ¼ 10

Table 27
WinBUGS script for using higher-level information for fault tree shown in Error!

Reference source not found

model {

x.TE � dbin(p.TE,

n.TE)

# This is system (fault tree top) observable #(x.TE

number of failures)

x.Gate.E � dbin(p.Gate.E, n.Gate.E)

p.TE o- (p.A

+p.B)*p.C*p.D

# Probability of Top Event in terms of basic #events

(from fault tree)

p.Gate.E o- p.A+p.B-

p.A*p.B

# Probability of Gate E from fault tree

p.C o- p.ftr # Account for state-of-knowledge dependence

#between C and D

p.D o- p.ftr # by setting both to the same event

p.B o- 1-exp(-lambda.B*time.miss)

p.ftr o- 1-exp(-lambda.ftr*time.miss)

# Priors on basic event parameters

p.A � dlnorm(mu.A, tau.A)

mu.A o- log(mean.A)-pow(log(EF.A)/1.645, 2)/2

tau.A o- pow(log(EF.A)/1.645, -2)

lambda.B � dlnorm(mu.B, tau.B)

mu.B o- log(median.B)

tau.B o- pow(log(EF.B)/1.645, -2)

lambda.ftr�dlnorm(mu.ftr, tau.ftr)

mu.ftr o- log(mean.ftr)-pow(log(EF.ftr)/1.645, 2)/2

tau.ftr o- pow(log(EF.ftr)/1.645, -2)

}

data

list(x.TE ¼ 1, n.TE ¼ 13, x.Gate.E ¼ 3, n.Gate.E ¼ 20,

time.miss ¼ 100)

list(mean.A ¼ 0.001, EF.A ¼ 5, median.B ¼ 0.005, EF.B ¼ 5,

mean.ftr ¼ 0.0005, EF.ftr ¼ 10)

Table 28
Analysis results for example fault tree model

Parameter Prior mean Posterior

mean

90% credible

interval

p A 0.001 9.9�10�4 (1.2�10�4,

3.1�10�3)

Lambda B 8.1�10�3/h 2.4�10�3/h (1.1�10�3,

4.3�10�3)

Lambda.ftr (shared by

event C and D)

5�10�4/h 3.7�10�3/h (4.5�10�4,

1.0�10�2)

Fig. 11. Six different causal models related performance shaping factors to

outcomes.
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If we ask experts to predict what might happen in the future—for
example to predict how many component failures we can expect
to see over the next 10 yr—this is not a data collection activity.
Instead, we view these opinions as information, not data, since
they have not yet been observed. However, it would be incorrect
to assume that such information elicited from experts has less
value than available data or that this information cannot be used
for quantitative inference.

Information, in all its various forms, is just as useful as data
when performing inference and may have more organizational
value than data, depending on the type, quality, and quantity of
the data.

In the risk and reliability domain, we represent processes using
both aleatory and deterministic models, where we further
subdivide the aleatory classification into simple parametric
models (e.g., the Bernoulli process) and more complex models,
such as reliability-physics models. These models require informa-
tion for support, but the type of information varies from one
model to the next. Further, what is known about these models and
information, including data, may be less than complete, leading to
a layer of epistemic uncertainty. In order to use the results
produced by such models for decision-making, we need to
identify, describe, and understand this uncertainty. In our view
this is best done via Bayesian inference with modern computa-
tional tools, which eliminate the need for the approximations and
ad hoc approaches of the past. The methods described in this
paper illustrate these modern Bayesian inference techniques now
available to analysts.
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